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Wavelet Channel Coding: An Algebraic Approach
João Fonseca Neto, Leocarlos B. S. Lima, and Francisco M. de Assis

Abstract—In this paper, the wavelet channel coding
(WCC) is revisited in a more general analysis embracing
flat real wavelet matrices derived from a Haar matrix and
complex input symbols. WCC encoding and decoding are
algebraically described and a probability distribution of
wavelet symbols is formulated. Signal constellations for
transmission of wavelet symbols are proposed and the
constellation average energy is deduced from probabil-
ity generating functions of the wavelet symbols. System
performance over a flat Rayleigh channel is analyzed
and compared with symbol-by-symbol detecting systems
and diversity two space-time block coding (STBC) sys-
tems. Simulation results show that WCC presents better
performance than ordinary symbol-by-symbol detecting
systems, particularly at higher signal-to-noise ratios for
higher spectral efficiencies, and STBC systems for spectral
efficiency of 1 bit/s/Hz.

Index Terms—Communication systems, Rayleigh chan-
nels, wavelet transforms, adaptive systems, correlators,
communication system performance.

I. INTRODUCTION

Wavelet theory has influenced several areas, such
as: efficient approaches for representing functions in
terms of a basis, compression systems concentrating
most of the energy in a few coefficients, and
channel coding methods [1]. However, literature is
scarce on the application of wavelet matrices for
communication channel coding, known as wavelet
channel coding (WCC). It was originally proposed
by Tzannes brothers in [2], coining their technique
with this denomination (so we kept it).

Indeed, WCC is not properly a channel coding
approach, since it does not have a distance profile
between sequences of symbols and decoding is
performed symbol-by-symbol. It yields an effect
similar to an interleaving system and it does not
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provide any coding gain over an additive white
Gaussian noise channel.

Articles on the performance of systems that
employ WCC can be found at [5], [6], [17], [20].
In general, WCC provides an increase in system
performance at the cost of a large increase in
the dimensionality of the output code. In order
to counteract this drawback, some works propose
constellations and increase spectral efficiency to
wavelet symbols transmission, as in [8], [12], [13],
[15].

WCC encoding is performed through a finite
impulse response filter-like state machine composed
by shift registers to store input symbols, coefficient
taps from a wavelet coding matrix and adders.
Information from each input symbol is spread
over several wavelet symbols [1]. The consistent
orthogonality between wavelet matrix rows, which
remains even after overlapping and addition between
them, makes possible to decode simply by using
a bank of correlators formed from the rows of
the matrix itself. This computational simplicity in
decoding, with the same low complexity of the en-
coding process, and the ability to protect information
from communication channel fading are the main
advantages in employing WCC [2]. Furthermore, a
coding rate change in WCC may be achieved by
simple rearrangement of the coefficient taps and
adders in the encoder, which suggests its use in
adaptive systems to channel conditions. Alternative
encoding and decoding approaches for WCC-based
systems are explored in [9], [10], [16].

A WCC encoder maps a sequence of equiprobable
input symbols to a sequence of not equiprobable
wavelet symbols. The maximum number of wavelet
symbols that carry part of the information from an
input symbol is known as the constraint length of
the wavelet code and is given by the product of
the coding rate with the number of columns of the
wavelet matrix [1]. An increase in input symbols
cardinality or in constraint length has a strong impact
on the cardinality of the wavelet symbol set and
consequently on the cardinality of the transmission
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signal constellation [7]. In contrast, encoding and
decoding complexities vary just linearly with the
number of columns of the wavelet matrix.

WCC is presented and analyzed here in a more
general approach, with WCC encoding and decod-
ing algebraically described. The proposed system
consider flat real wavelet matrices derived from a
Haar matrix and complex input symbols. These input
symbols are provided by a prior data mapper, which
lets to increase the spectral efficiency, ordinarily
restricted to 1 bit/s/Hz1 [1]. A probability distri-
bution of wavelet symbols is formulated. Signal
constellations for transmission of wavelet symbols
are proposed and the constellation average energy
is deduced from probability generating functions of
the wavelet symbols.

In order to infer about the employability of
this technique, its performance was analyzed and
compared with ordinary symbol-by-symbol detecting
systems. In addition, WCC system performance was
compared with space-time block coding (STBC)
systems with two transmitting and one receiving
antennas proposed by Siavash Alamouti in [21].

Section II briefly reviews the concepts on wavelet
matrices. Section III presents the proposed WCC
system, an algebraic description of WCC encoding
and decoding processes, as well as the probability dis-
tribution of the generated wavelet symbols. Section
IV proposes signal constellations for transmission
of the WCC symbols. In addition, it calculates
probability generating functions for the generated
wavelet symbols and employs them to deduce the
average energy of these constellations. Section V
evaluates the performance of the proposed WCC
system. At last, Section VI presents the conclusions
for this work.

II. WAVELET MATRIX

A matrix A = [ask] with m ≥ 2 rows and mg
columns, such that

A =


a00 a01 · · · a0mg−1
a10 a11 · · · a1mg−1
...

... . . . ...
am−10 am−11 · · · am−1mg−1

 (1)

1Excepting the approach proposed in [13], [14], where a constella-
tion formed by pairs of consecutive integer wavelet symbols increased
the spectral efficiency to 2 bits/s/Hz.

and ask ∈ R or C, is said to be a wavelet matrix or
matrix of wavelet coefficients of rank m and genus
g if the linear condition

mg−1∑
k=0

ask = mδs,0, 0 ≤ s ≤ m− 1, (2)

and the quadratic condition

mg−1∑
k=0

as
′

[k+mr′]a
s
[k+mr] = mδs′,sδr′,r,

0 ≤ s′, s ≤ m− 1 e 0 ≤ r′, r ≤ g − 1, (3)

are met, where [k +mr] denotes the operation k +
mr mod mg, a is the complex conjugate of a and
δx,y is the Kronecker delta [1].

Equation (2) ensures that the sum of components
of the first wavelet matrix row is equal to the rank
m, whereas the sum of the components of each
other row is zero. Equation (3) establishes that
vectors represented by the m wavelet matrix rows
are orthogonal to each other, even when shifted by an
arbitrary multiple of m. Equation (3) also indicates
that each row in this matrix is orthogonal to itself
when shifted by a multiple step of m.

A wavelet matrix is said to be flat when all
elements have a same absolute value. If they are
real numbers it is said to be a flat real wavelet
matrix. If they are complex numbers it is said to be
a flat complex wavelet matrix [1].

A flat real wavelet matrix with normalized el-
ements satisfy the modified wavelet linear and
quadratic conditions [1], [2]

mg−1∑
k=0

ask = m
√
gδs,0, (4)

and
mg−1∑
k=0

as
′

[k+mr′]a
s
[k+mr] = mgδs′,sδr′,r. (5)

We considered here just flat real normalized wavelet
matrices derived from the Haar matrix[

1 1
1 −1

]
of rank m = 2 and genus g = 1. Rank may be
increased to some power of 2 by tensor products as
in [1, p. 50]. A genus g may be raised to 4g by an
extension process described in [1, p. 54].
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Fig. 1. Block diagram of a communication system employing WCC.

Example 1 (Wavelet coding matrix with rank m =
2 and genus g = 4): A2×8 is given by

A =

[
a00 a01 a02 a03 a04 a05 a06 a07
a10 a11 a12 a13 a14 a15 a16 a17

]
=

[
1 1 1 −1 1 1 −1 1
1 1 1 −1 −1 −1 1 −1

]
. (6)

�
In simulations, the wavelet matrices A2×8 (m =

2, g = 4), A2×32 (m = 2, g = 16), A2×128 (m =
2, g = 64), A4×16 (m = 4, g = 4), A4×64 (m =
4, g = 16) and A4×256 (m = 4, g = 64) were used.

III. WAVELET CHANNEL CODING

A. System model
We consider the communication system illustrated

in Fig. 1.
As WCC works over any subfield of the complex

field, it is natural to think about a more general
representation of input information than in [2]. It is
additionally interesting to recall the OFDM system,
where input information is firstly formatted into
complex symbols, so we followed the same idea.

In order to provide complex input symbols to
the WCC Encoder (see Fig. 1), a Data Mapper was
employed prior to the WCC Encoder to map nb-bit
sequences into 2nb-ary complex symbol sequences x,
employing a Gray code, as illustrated in Table I. This
mapping may not be the best one, but simulations
suggest that simple rotations or expansions in the
signal lattice (e.g., for nb = 2, 00 → 1, 01 → j,
11 → −1 and 10 → −j) does not alter results.
Notice that this mapping from {0, 1}nb to C is
common for classical systems (e.g., QAM), but in
those cases points are mapping to the signal space
directly. In the wavelet channel coding approach this
step is mediated by a wavelet matrix.

In Fig. 1, input symbols in x are encoded forming
wavelet symbols y, according to some coding rate

TABLE I
DATA MAPPING PROCESS FROM nb-BIT SEQUENCES INTO 2nb -ARY

COMPLEX SYMBOL SEQUENCES, WITH GRAY CODE.

nb = 1 nb = 2 nb = 4

0 −1 00 −1− j 0000 −3− 3j

1 1 01 −1 + j 0001 −3− j

11 1 + j 0011 −3 + j

10 1− j 0010 −3 + 3j

0110 −1 + 3j

0111 −1 + j

0101 −1− j

0100 −1− 3j

1100 1− 3j

1101 1− j

1111 1 + j

1110 1 + 3j

1010 3 + 3j

1011 3 + j

1001 3− j

1000 3− 3j

R. At last, wavelet symbols are modulated and
transmitted through a flat Rayleigh fading channel.
At the reception, a reverse process gives back an
estimation of the source bits.

For simplicity, throughout this work, the scope of
analysis was limited to nb = 1 and even values of
nb, as well as to R = 1 and R = 1/k, considering
k an even integer. Odd values of nb and k result
in non-regular WCC encoders and asymmetrical
constellations, without loss of generality of the
presented analysis.

B. Channel model

In Fig. 1, symbols of a sequence y =
{y0, y1, y2, . . .} are transmitted serially. The channel
is assumed to be a flat Rayleigh fading channel,
where the path gain αn at instant n is modeled as
samples of independent zero-mean complex Gaus-
sian random variables with variance 1/2 per axis.

At instant n, when a signal sn is transmitted, the
received signal rn is given by

rn = αnsn + ηn, (7)

where noise samples ηn are independent samples of
a zero-mean complex Gaussian random variable with
variance EsR/(2nbEb/N0) per dimension, where Es
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is the average energy of the transmission constella-
tion and Eb/N0 is the energy per bit to noise power
spectral density ratio.

We assume that perfect channel state information
is available at the receiver. So, the Demodulator
module employs the decision metric∣∣∣∣ rnαn − sk

∣∣∣∣2 (8)

over all possible transmitted signals {sk}. The
MAP (maximum a posteriori probability) criterion
is adopted as decision rule.

C. Algebraic WCC encoding
Consider a binary source of i.i.d. equiprobable bits.

Thus, the Data Mapper module yields a sequence of
i.i.d. equiprobable symbols x = {x0, x1, x2, . . .}. In
order to describe algebraically the encoding process,
x may be expressed as a formal series

x(D) = x0 + x1D + x2D
2 + · · · =

∞∑
i=0

xiD
i, (9)

where D represents a delay or shift operator, as
in [3]. As m symbols enter the encoder at a time,
consider a serial to parallel operation prior to the
encoding process and define the m series

xj(D) , xj + xm+jD + x2m+jD
2 + · · ·

=
∞∑
i=0

xim+jD
i, j ∈ {0, 1, . . . ,m− 1},

(10)

which express the m input symbols {xim, xim+1, . . .,
x(i+1)m−1} at an instant i. Remark that

x(D) =
m−1∑
j=0

xj(D
m)Dj. (11)

In [2], the WCC encoding may be understood as a
table operation, where m input symbols multiply the
m rows of the wavelet coding matrix, a symbol for
each line, and the m2g resulting values are stored in
m lines of the table. Then, m/R wavelet symbols
are obtained from the summations of the first m/R
columns of the table. Afterwards, the entire table is
shifted by m/R columns and the same operation is
performed with the next m input symbols to produce
the next m/R wavelet symbols. As a consequence
of this process, 1/g < R < 1. Tables II, III and IV

illustrate this process for the cases of the wavelet
coding matrix in (6) with coding rates R = 1, 1/2
and 1/4, respectively.

According to this encoding process, in order to
express algebraically the resulting wavelet symbols,
consider the wavelet coding matrix Am×mg of rank
m and genus g in (1) and define the matrix m/R×m
of polynomials of degree gR− 1

A(D) ,
∑gR−1

k=0 a0km
R

Dk · · ·
∑gR−1

k=0 am−1km
R

Dk∑gR−1
k=0 a0km

R
+1
Dk · · ·

∑gR−1
k=0 am−1km

R
+1
Dk

... . . . ...∑gR−1
k=0 a0km

R
+m

R
−1D

k · · ·
∑gR−1

k=0 am−1km
R

+m
R
−1D

k

 .
(12)

So, a column vector of m/R polynomials which
own the m/R wavelet symbols due to each m input
symbols may be given by

y0(D)
y1(D)

...
ym/R−1(D)

 = A(D)


x0(D)
x1(D)

...
xm−1(D)

 . (13)

At last, considering a parallel to serial operation, the
sequence of wavelet symbols y = {y0, y1, y2, . . .}
may be obtained from (13) as

y(D) = y0 + y1D + y2D
2 + · · · =

∞∑
i=0

yiD
i

=

m/R−1∑
j=0

yj(D
m/R)Dj. (14)

Combining Equations (10), (11), (12), (13) and (14),

y(D) =

m
R
−1∑

j=0

m−1∑
l=0

gR−1∑
k=0

∞∑
i=0

alkm
R

+j
xim+lD

(k+i)m
R

+j.

(15)
Thus, the n-th wavelet symbol can be given by

yn =
∑

n=
(k+i)m

R
+j

0≤k<gR
i≥0

0≤j<m
R

m−1∑
l=0

alkm
R

+j
xim+l. (16)

By inspection in (16), one observe that each wavelet
symbol yn is derived from a linear combination
of mgR input symbols weighted by coefficients
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TABLE II
WCC ENCODING PROCESS FOR THE MATRIX IN (6), WITH RANK

m = 2, GENUS g = 4 AND CODING RATE R = 1.

0 1 2 3 4 5 6 7 · · ·

x0a
0
0 x0a

0
1 x0a

0
2 x0a

0
3 x0a

0
4 x0a

0
5 x0a

0
6 x0a

0
7

x1a
1
0 x1a

1
1 x1a

1
2 x1a

1
3 x1a

1
4 x1a

1
5 x1a

1
6 x1a

1
7

x2a
0
0 x2a

0
1 x2a

0
2 x2a

0
3 x2a

0
4 x2a

0
5 · · ·

x3a
1
0 x3a

1
1 x3a

1
2 x3a

1
3 x3a

1
4 x3a

1
5 · · ·

x4a
0
0 x4a

0
1 x4a

0
2 x4a

0
3 · · ·

x5a
1
0 x5a

1
1 x5a

1
2 x5a

1
3 · · ·

x6a
0
0 x6a

0
1 · · ·

x7a
1
0 x7a

1
1 · · ·

y0 y1 y2 y3 y4 y5 y6 y7 · · ·

· · · xn xn−1 xn−2 xn−3 xn−4 xn−5 xn−6 xn−7

a1
1 a0

1 a1
3 a0

3 a1
5 a0

5 a1
7 a0

7

a1
0 a0

0 a1
2 a0

2 a1
4 a0

4 a1
6 a0

6

∑

∑

yn

yn−1

Fig. 2. WCC encoder diagram for the matrix in (6), with rank m = 2,
genus g = 4 and coding rate R = 1 (two input symbols in red and
two output symbols at a time).

from the wavelet coding matrix. Each one of the
m2g matrix coefficients are employed just once in
the equations of the m

R
wavelet symbols derived

from a block of m input symbols. Also, real flat
wavelet matrix coefficients, as considered here, have
only values +1 or −1 (see (6) in Example 1). As
a consequence, in the case of nb = 1, wavelet
symbols are integer values yn ∈ {−mgR,−mgR +
2, . . . ,−2, 0, 2, . . . ,mgR}.

Example 2 (WCC 2 × 8 with R = 1): Consider
the wavelet coding matrix in (6). Table II presents
the encoding process and Fig. 2 shows the encoder
diagram for a coding rate R = 1.

The matrix of polynomials A(D) in (12) in this
case is

A(D) =

[
1 +D +D2 −D3 1 +D −D2 +D3

1−D +D2 +D3 1−D −D2 −D3

]
.

Thus, the wavelet symbols may be algebraically

TABLE III
WCC ENCODING PROCESS FOR THE MATRIX IN (6), WITH RANK

m = 2, GENUS g = 4 AND CODING RATE R = 1/2.

0 1 2 3 4 5 6 7 · · ·

x0a
0
0 x0a

0
1 x0a

0
2 x0a

0
3 x0a

0
4 x0a

0
5 x0a

0
6 x0a

0
7

x1a
1
0 x1a

1
1 x1a

1
2 x1a

1
3 x1a

1
4 x1a

1
5 x1a

1
6 x1a

1
7

x2a
0
0 x2a

0
1 x2a

0
2 x2a

0
3 · · ·

x3a
1
0 x3a

1
1 x3a

1
2 x3a

1
3 · · ·

y0 y1 y2 y3 y4 y5 y6 y7 · · ·

· · · xn xn−1 xn−2 xn−3

a1
3 a1

2 a0
3 a0

2 a1
7 a1

6 a0
7 a0

6

a1
1 a1

0 a0
1 a0

0 a1
5 a1

4 a0
5 a0

4

∑

∑

∑

∑

y2n+1

y2n−2

y2n

y2n−1

Fig. 3. WCC encoder diagram for the matrix in (6), with rank m = 2,
genus g = 4 and coding rate R = 1/2 (two input symbols in red and
four output symbols at a time).

expressed as

y(D) = y0(D
2) + y1(D

2)D

=
[
1 +D2 +D4 −D6 1 +D2 −D4 +D6

]
·[

x0 + x2D
2 + x4D

4 + · · ·
x1 + x3D

2 + x5D
4 + · · ·

]
+[

1−D2 +D4 +D6 1−D2 −D4 −D6
]
·[

x0 + x2D
2 + x4D

4 + · · ·
x1 + x3D

2 + x5D
4 + · · ·

]
D

= x0 + x1 + (x0 + x1)D+

(x0 + x1 + x2 + x3)D
2+

(−x0 − x1 + x2 + x3)D
3+

(x0 − x1 + x2 + x3 + x4 + x5)D
4+

(x0 − x1 − x2 − x3 + x4 + x5)D
5 + · · ·

�
Example 3 (WCC 2× 8 with R = 1/2): Consider

the wavelet coding matrix in (6). Table III presents
the encoding process and Fig. 3 shows the encoder
diagram for a coding rate R = 1/2.

The wavelet symbols may be algebraically ex-
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TABLE IV
WCC ENCODING PROCESS FOR THE MATRIX IN (6), WITH RANK

m = 2, GENUS g = 4 AND CODING RATE R = 1/4.

· · · 5 6 7 8 9 10 11 · · ·

· · · x0a
0
5 x0a

0
6 x0a

0
7

· · · x1a
1
5 x1a

1
6 x1a

1
7

x2a
0
0 x2a

0
1 x2a

0
2 x2a

0
3 · · ·

x3a
1
0 x3a

1
1 x3a

1
2 x3a

1
3 · · ·

· · · y5 y6 y7 y8 y9 y10 y11 · · ·

· · · xn xn−1

a0
0 a0

1

a1
0 a1

1

· · ·

· · ·

· · ·

· · ·

a0
6 a0

7

a1
6 a1

7

∑

∑

∑

∑

y4n−4

y4n−3

· · ·

· · ·

y4n+2

y4n+3

Fig. 4. WCC encoder diagram for the matrix in (6), with rank m = 2,
genus g = 4 and coding rate R = 1/4 (two input symbols in red and
eight output symbols at a time).

pressed as

y(D) = y0(D
4) + y1(D

4)D+

y2(D
4)D2 + y3(D

4)D3

= x0 + x1 + (x0 + x1)D + (x0 + x1)D
2+

(−x0 − x1)D3 + (x0 − x1 + x2 + x3)D
4+

(x0 − x1 + x2 + x3)D
5+

(−x0 + x1 + x2 + x3)D
6+

(x0 − x1 − x2 − x3)D7 + · · ·

�
Example 4 (WCC 2× 8 with R = 1/4): Consider

the wavelet coding matrix in (6). Table IV presents
the encoding process and Fig. 4 shows the encoder
diagram for a coding rate R = 1/4.

The wavelet symbols may be algebraically ex-
pressed as

y(D) = x0 + x1 + (x0 + x1)D + (x0 + x1)D
2+

(−x0 − x1)D3 + (x0 − x1)D4+

(x0 − x1)D5 + (−x0 + x1)D
6+

(x0 − x1)D7 + (x2 + x3)D
8+

(x2 + x3)D
9 + (x2 + x3)D

10 + · · ·

�

An important remark about the WCC encoding
process is that encoder diagrams for the same wavelet
matrix and different coding rates just differ on the
number of outputs (adders) and registers. Tap com-
ponents stay the same, but in a different connection
array. This feature suggests the employment of WCC
where adaptability to channel conditions is desired.

D. Probability distribution of wavelet symbols

Considering a wavelet coding matrix of rank m
and genus g, coding rate R = 1 and a data mapping
for nb = 1 bit/symbol (see Table I), there are

Ns = mgR + 1 (17)

possible integer wavelet symbols

yn ∈ {−mgR,−mgR + 2, . . . ,−2, 0, 2, . . . ,mgR}.
(18)

If nb > 1, formatted input symbols are complex,
consequently wavelet symbols are as well. In the
data mapping proposed (see Table I), even values
of nb > 1 are just considered, although odd values
may be employed. In this case,

Re {yn}, Im {yn} ∈
{
−mgR

(
2nb/2 − 1

)
,

−mgR
(
2nb/2 − 1

)
+ 2, . . . ,

−2, 0, 2, . . . , mgR
(
2nb/2 − 1

)}
, (19)

so there are

Ns =
[
mgR

(
2nb/2 − 1

)
+ 1
]2

(20)

possible complex wavelet symbols.
If input bits are i.i.d., formatted input symbols will

also be i.i.d. Since wavelet coding is linear, wavelet
symbols in (18) and (19) will be independent, but
not equally distributed. In this case, when nb = 1,
the wavelet symbols {yn} in (18) present a binomial
probability distribution [2] given by

P [yn = 2k −mgR] =
(
mgR

k

)
1

2mgR
, (21)

where 0 ≤ k ≤ mgR. For nb > 1, real and
imaginary parts of the wavelet symbols in (19) are
multinomially distributed (see subsection IV-B on
the methodology employed to derive wavelet symbol
probabilities from a probability generation function).
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Since Re {yn} and Im {yn} are independent of each
other, then

P
{
yn = 2k −mgR

(
2nb/2 − 1

)
+

j
[
2l −mgR

(
2nb/2 − 1

)]}
=

1

2mgRnb

 ∑
k1+···+k

2nb/2
=mgR

(
mgR

k1, . . . , k2nb/2

)
 ∑
l1+···+l

2nb/2
=mgR

(
mgR

l1, . . . , l2nb/2

) , (22)

where j =
√
−1 is the imaginary unit, 0 ≤ k ≤

mgR
(
2nb/2 − 1

)
, 0 ≤ l ≤ mgR

(
2nb/2 − 1

)
and

the integer indexes k1, . . . , k2nb/2 and l1, . . . , l2nb/2

represent the yielded Re {yn} and Im {yn}, re-
spectively. Each index in k1, . . . , k2nb/2 (similarly
in l1, . . . , l2nb/2) is associated to one of the 2

nb
2

formatted input symbols and means how many times
the respective input symbol appears in the coder’s
register to produce yn. As the coder has length mgR,
so k1 + · · ·+ k2nb/2 = mgR.

E. Correlation WCC decoding

Input symbols x may be estimated by correlation
of the last mg received wavelet symbols ŷ with
the rows of the wavelet coding matrix [2]. Each
new m/R received wavelet symbols ŷ produce
m symbols x̂ at the output of the WCC Decoder
module.

Denote by zsr the correlation between the s-th
line of the wavelet matrix and the last mg received
wavelet symbols ŷ at instant r, such that

zsr =

mg−1∑
t=0

asmg−1−tyr−t.

From (16),

zsr =

mg−1∑
t=0

∑
r−t= (k+i)m

R
+j

0≤k<gR
i≥0

0≤j<m
R

m−1∑
l=0

asmg−1−ta
l
km
R

+j
xim+l.

(23)
Considering condition (5), which guarantees that

wavelet coding matrix rows are orthogonal between
them even at shifts of m columns, then all terms in

· · · ŷn ŷn−1 ŷn−2 ŷn−3 ŷn−4 ŷn−5 ŷn−6 ŷn−7

a1
7 a1

6 a1
5 a1

4 a1
3 a1

2 a1
1 a1

0

a0
7 a0

6 a0
5 a0

4 a0
3 a0

2 a0
1 a0

0

∑

∑

≶

≶

x̂n

x̂n−1

Fig. 5. Correlation WCC decoder diagram for the matrix in (6), with
rank m = 2, genus g = 4 and coding rate R = 1 (two input symbols
in red and two output symbols at a time).

(23) cancel, except when l = s and (mg − 1)− t =
km
R

+ j. Thus,

zsr = x(r−mg+1)R+s

mg−1∑
u=0

asua
s
u

= mgx(r−mg+1)R+s. (24)

Detailed descriptions of this decoding process for
R = 1 and nb = 1 can be found in [2], [7], [8],
[17]–[20].

Example 5 (WCC 2 × 8): Consider the wavelet
coding matrix in (6). Fig. 5 shows the correlation
decoder diagram for a coding rate R = 1. In fact,
this decoder operates for any R, when it receives
2/R input symbols and yields two output symbols
at a time.

In Fig. 5, blocks ≶ implement a decision logic
over values of zsr in (24). �

IV. CONSTELLATIONS FOR WCC SYSTEMS

System performance depends directly on the
modulation scheme. This Section presents signal
constellations for transmitting wavelet symbols pro-
duced by the proposed system in Fig. 1. In the
next Section, its performance is evaluated over a flat
Rayleigh fading channel.

The proposed WCC system requires specially
designed constellations since generated wavelet sym-
bols are not equiprobable and the alphabet cardinality
grows with the wavelet coding matrix order. The
construction of special constellations was explored
in [7], [8], [13], [14].

A. Constellation model
As introduced in Section I, an increase in the

input symbols cardinality and in the code constraint
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length have a strong impact on the cardinality of
the wavelet symbols set and consequently on the
cardinality of the transmission signal constellation.

The WCC entropy rate is 1 bit/symbol when the
coding rate is unitary and the spectral efficiency is
limited to 1 bit/s/Hz [1]. In order to improve this
efficiency, a method to increase it to 2 bits/s/Hz by
constructing a signal constellation from consecutive
pairs of integer wavelet symbols was proposed in
[13]. These symbol pairs were directly associated
to points in a signal space diagram forming a
constellation for transmission. One observed that
greater probability constellation points corresponded
to lower energy signals. In [15], an optimizing effort
suggested that these constellations were optimal. The
method proposed in [13] could be generalized to
blocks of length greater than two to achieve an
arbitrary spectral efficiency, however the block-to-
signal mapping would not be as simple as in the
case of symbols pairs.

The data mapping proposed in Fig. 1 to gener-
alize the WCC encoding and decoding algebraic
formulations results in an alternative way to improve
the spectral efficiency when nb > 1 (see Table I).
The Modulator module directly associates a complex
wavelet symbol a+ jb to a constellation point (a, b).
This method allows to achieve a spectral efficiency

η = nbR (bits/s/Hz), (25)

for a coding rate R. However, This approach entails
an exponential growing of the constellation cardinal-
ity, since the number of possible wavelet symbols
in (20) rises with 2nbR2 when nb > 1.

B. Probability generating function of WCC symbols

In [13], a probability generating function (PGF)
for a wavelet symbol sequence was formulated. This
alternative PGF permitted to predict integer symbol
pairs generated by a WCC encoder and provided the
joint probability distribution of these pairs. Following
this methodology, a PGF that identifies the sequence
of complex wavelet symbols generated in the system
proposed here and their probability distribution are
derived. From this PGF, one can also derive the
average energy of the constellation.

Firstly, consider a binary source generating i.i.d.
equiprobable bits. As a consequence, the Data Map-
per module yields i.i.d. equiprobable input symbols

x to the WCC Encoder (see Fig. 1). So, one can
write the PGF of the n-th input symbol xn as

Gxn(z) = E [zxn ] =
∑
i

zαiP (xn = αi)

=
1

2nb

2nb−1∑
i=0

zαi , (26)

where {αi} is the set of all possible input symbols.
Example 6 (PGF of WCC Encoder input symbols

from Table I): Consider the symbols generated by
the Data Mapper according to the Table I. From (26),
if nb = 1,

Gxn(z) =
1

2
(z1 + z−1). (27)

If nb = 2,

Gxn(z) =
1

4

[
(z1+j + z−1−j) + (z1−j + z−1+j)

]
.

(28)
If nb = 4,

Gxn(z) =
1

16

[
(z3+3j + z−3−3j) + (z3+j+

z−3−j) + (z3−j + z−3+j) + (z3−3j + z−3+3j)+

(z1+3j + z−1−3j) + (z1+j + z−1−j)+

(z1−j + z−1+j) + (z1−3j + z−1+3j)
]
. (29)

�
A common PGF of a sequence of n wavelet

symbols {yk+1, . . . , yk+n} is a power series rep-
resentation of the joint probability distribution
P (yk+1, . . . , yk+n) of this sequence, given by

Gyk+1,...,yk+n
(z1, . . . , zn) = E

(
z
yk+1

1 · · · zyk+n
n

)
=

∑
yk+1,...,yk+n

P (yk+1, . . . , yk+n)z
yk+1

1 · · · zyk+n
n .

This is equivalent to the definition of a characteristic
function of a random vector, as in [22, p. 255-256].
So, an ordinary PGF of a sequence of n wavelet
symbols can be viewed or interpreted as a mapping

Zn −→ Cn.

Consider now a sequence of wavelet symbols gen-
erated by the system expressed as a polynomial
y(D) as in (15). One may consider, as in [13], an
alternative definition of a PGF of a sequence of
wavelet symbols as

Gy(D)(z) =E
(
zy(D)

)
,
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which employs a single complex variable z. In this
last case, the PGF consists of a mapping

Zn −→ Z[D],

where Z[D] is a ring of polynomials in D.
In the PGF in (26), as in the PGF of wavelet

symbols deduced below, exponents of z indicate the
generated wavelet symbols and constants multiplying
terms in z inform the probability of each correspond-
ing symbol. In (26), all symbols are equiprobable, but
resultant wavelet symbols shall not be equiprobable.

If y(D) is the sequence of wavelet symbols
generated by a WCC Encoder, from (15),

Gy(D)(z) = E
[
zy(D)

]
= E

[
z

∑
i,j,k,l a

l
km
R

+j
xim+lD

(k+i)m
R

+j
]
. (30)

As input symbols are independent,

Gy(D)(z) =
∏
i,l

E

[
z
xim+l

∑
j,k a

l
km
R

+j
D

(k+i)m
R

+j
]

=
∏
i,l

Gxim+l

(
z

∑
j,k a

l
km
R

+j
D

(k+i)m
R

+j
)
.

(31)

As input symbols are equiprobable and each wavelet
symbol is a function of mgR input symbols weighted
by wavelet coding matrix coefficients (values +1 and
−1), one can find for the n-th wavelet symbol in
the generated sequence that

Gyn(z) =
1

2mgRnb

(
2nb−1∑
i=0

zαi

)mgR

, (32)

where {αi} is the set of all possible input symbols.
Applying the multinomial theorem2 to solve the
power of sum in (32),

Gyn(z) =
1

2mgRnb

∑
k0+···+k2nb−1=mgR(
mgR

k0, . . . , k2nb−1

)
z
∑2nb−1

i=0 kiαi . (33)

2By the well-known multinomial theorem (generalization of the
binomial theorem),(

m∑
i=1

xi

)n

=
∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

)
m∏
i=1

xki
i ,

where
(

n
k1,k2,...,km

)
= n!

k1!k2!...km!
is the so-called multinomial

coefficient.

In (33), as in (26), exponents of z indicate
generated wavelet symbols and constants multiplying
each term inform the probability of the corresponding
symbol. For nb > 1, wavelet symbols are complex
and (33) may be changed to treat separately real
and imaginary parts of the symbols, as in subsection
III-D. There, (22) was derived to provide wavelet
symbol probabilities with lower complexity.

Example 7 (PGF of wavelet symbols for a coding
matrix A2×8 and R = 1/2): Consider the wavelet
coding matrix in (6) and a coding rate R = 1/2.

Considering equally distributed input symbols,
from (32), for nb = 1 in Table I,

Gyn−3(z) = Gyn−2(z) = Gyn−1(z) = Gyn(z)

=
1

24
(
z1 + z−1

)4
.

If nb = 2,

Gyn−3(z) = Gyn−2(z) = Gyn−1(z) = Gyn(z)

=
1

28
[
(z1+j + z−1−j)+ (z1−j + z−1+j)

]4
.

If nb = 4,

Gyn−3(z) = Gyn−2(z) = Gyn−1(z) = Gyn(z) =

1

216
[
(z3+3j + z−3−3j) + (z3+j + z−3−j)+

(z3−j + z−3+j) + (z3−3j + z−3+3j)+

(z1+3j + z−1−3j) + (z1+j + z−1−j)+

(z1−j + z−1+j) + (z1−3j + z−1+3j)
]4
.

From (33), for nb = 2,

Gyn−3(z) = Gyn−2(z) = Gyn−1(z) = Gyn(z) =

1

256

(
z−4−4j + z−4+4j + z4−4j + z4+4j

)
+

1

64

(
z−4−2j + z−4+2j + z4−2j + z4+2j + z−2−4j+

z−2+4j + z2−4j + z2+4j
)
+

3

128

(
z4 + z−4+

z4j + z−4j
)
+

1

16

(
z−2−2j + z−2+2j + z2−2j+

z2+2j
)
+

3

32

(
z2 + z−2 + z2j + z−2j

)
+

9

64
z0.

Fig. 6 illustrates the resulting constellations and
corresponding probability distribution curves for the
above cases.

�
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Fig. 6. Signal constellations and probability distribution curves for a
WCC system with the coding matrix A2×8 in (6) and R = 1/2.

C. Constellation average energy

One can employ the wavelet symbols PGF to
determine the average energy Es of the resulting
constellation. The mean value of wavelet symbols,
E [yn], can be obtained evaluating the first derivative
of the PGF in z = 1 and E [y2n] − E [yn] can be
calculated evaluating the second derivative of the
PGF in z = 1 [22]. One can remark that Es = E [y2n].

Initially, consider the PGF in (32) when nb = 1,
case of integer wavelet symbols. Its first derivative
is

G′y(z) =
mgR

2mgR
(
1− z−2

) (
z + z−1

)mgR−1
. (34)

So,
E [yn] = G′y(z)

∣∣
z=1

= 0. (35)

Thus, when nb = 1, the second derivative of the
PGF in z = 1 directly yields the average energy of
the constellation.

The second derivative of (32) is

G′′y(z) =
mgR

2mgR

[
2z−3

(
z + z−1

)mgR−1
+(

1− z−2
)2

(mgR− 1)
(
z + z−1

)mgR−2]
. (36)

So, the constellation average energy when nb = 1 is

Es = G′′y(z)
∣∣
z=1

=
mgR

2mgR
[
2 · 1 · 2mgR−1+

02 · (mgR− 1)2mgR−2
]
= mgR. (37)

When nb > 1, wavelet symbols are complex. Con-
sider now a complex wavelet symbol yn = un+ jvn,
where un and vn are the real and imaginary parts of
yn. Observe that un and vn are independent because
un is due to the real part of the input symbols
and vn is due to their imaginary part. In addition,
the real and imaginary parts of the input symbols
may be associated to half the input bits in data
mapping (nb/2). So, un and vn behave as yn when
nb = 1 and un, vn ∈ {−mgR2nb/2,−mgR2nb/2 +
2, . . . ,mgR2nb/2}. Then, the PGFs of un and vn
can be directly derived from (32) as

Gun(z) = Gvn(z) =
1

2mgRnb/22nb/2−1∑
i=0

z2i−2
nb/2+1

mgR

. (38)

In order to evaluate the mean of un and vn, as
in the case of nb = 1, the first derivative of (38) is
evaluated in z = 1. So,

G′un(z) = G′vn(z) =
1

2mgRnb
mgR(

2nb−1∑
i=0

z2i−2
nb/2+1

)mgR−1

2nb−1∑
i=0

(
2i− 2nb/2 + 1

)
z2i−2

nb/2 (39)

and

E [yn] = G′y(z)
∣∣
z=1

=
mgR

2mgRnb/2
2(mgR−1)nb/2

2nb−1∑
i=0

(
2i− 2nb/2 + 1

)
= 0, (40)

since the mean value of the input symbols is null.
Thus, the second derivative of the PGF in z = 1
directly yields E [u2n] and E [v2n].
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The second derivative of (38) is

G′′u(z) = G′′v(z) =
mgR

2mgRnb/2
[(mgR− 1)2nb/2−1∑

i=0

z2i−2
nb/2+1

mgR−2

2nb/2−1∑
i=0

(
2i− 2nb/2 + 1

)
z2i−2

nb/2+2nb/2−1∑
i=0

z2i−2
nb/2+1

mgR−1
2nb/2−1∑

i=0

i 6=2nb/2−1

(
2i− 2nb/2

+1)
(
2i− 2nb/2

)
z2i−2

nb/2−1
]
. (41)

So,

G′′u(z)|z=1 = G′′v(z)|z=1 =
mgR

2mgRnb/2{
(mgR− 1)2

nb
2
(mgR−2)

2nb−1∑
i=0

(
2i− 2nb/2 + 1

)
+

2
nb
2
(mgR−1)

[
4
2nb−1∑
i=0

i2 − (4 · 2nb/2 − 2)
2nb−1∑
i=0

i+

2nb−1∑
i=0

(
2nb − 2nb/2

)
−
(
2 · 2nb/2−1 − 2nb/2 + 1

)
(
2 · 2nb/2−1 − 2nb/2

)]}
= mgR · 2−nb/2[

4
(
2nb/2 − 1

)
2nb/2

(
2 · 2nb/2 − 2 + 1

)
6

−

(
4 · 2nb/2 − 2

) (2nb/2 − 1
)
2nb/2

2
+

2nb/2
(
2nb − 2nb/2

)]
⇒

G′′u(z)|z=1 = G′′v(z)|z=1 =
mgR

3
(2nb − 1) . (42)

As un and vn are independent, the constellation
average energy when nb > 1 is

Es = E
[
|yn|2

]
= E

[
u2n + v2n

]
= E

[
u2n
]
+ E

[
v2n
]

=
2mgR

3
(2nb − 1) . (43)

0 5 10 15 20 25 3010−6

10−5

10−4

10−3

10−2

10−1

Eb/N0, dB

B
E

R

R = 1 nb = 1 R = 1 nb = 2
R = 1 nb = 4 R = 1/2 nb = 1

R = 1/2 nb = 2 R = 1/2 nb = 4
R = 1/2 nb = 8 R = 1/4 nb = 2
R = 1/4 nb = 4 R = 1/4 nb = 8
R = 1/4 nb = 16

Fig. 7. Performances of the WCC system in Fig. 1 with a wavelet
coding matrix 4 × 16 (rank m = 4 and genus g = 4) for a broad
range of parameters. Curves for the same encoding rate have the same
color and curves for the same value of nb employ the same point
mark.

V. PERFORMANCE ANALYSIS

In this Section, the performance of the proposed
WCC system is evaluated by simulation. Firstly the
consequences of variation of wavelet code parame-
ters on the system performance is examined. Then,
its performance is compared with the performance of
ordinary symbol-by-symbol detecting systems and
space-time block coding (STBC) systems.

A. Performance of WCC systems

In order to obtain a broad view of performance of
the WCC system proposed in Fig. 1, it was simulated
considering a wide range of parameters. Wavelet
coding matrices with ranks m = 2 and 4, genera
g = 4, 16 and 64, coding rates R = 1, 1/2 and 1/4,
and data mapping with nb = 1, 2, 4, 8 and 16 bits
per input symbol were considered.

Fig. 7 presents performance curves of a WCC
system employing a wavelet coding matrix 4× 16
(rank m = 4 and genus g = 4) for some parameter
variations. The cases were limited to spectral effi-
ciencies (see Equation (25)) of 1, 2 and 4 bits/s/Hz.
In Fig. 7, curves for the same encoding rate have
the same color and curves for the same value of nb
employ the same point mark (e.g., blue curves have
R = 1/2 and curves with nb = 2 employ ? as point
mark).
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Fig. 8. Performances of the WCC system in Fig. 1 with encoding
rate R = 1/4 and data mapping with nb = 4 for wavelet coding
matrices 2× 8, 2× 32, 2× 128, 4× 16, 4× 64 and 4× 256 (ranks
m = 2 and 4 and genus g = 4, 16 and 64).

Fig. 7, as expected, displays that decreasing rates
result in better performance while increasing nb, on
the contrary, worsens that. Unfortunately, the first
does not compensate the second for the same spectral
efficiency and the employment of greater values
of nb rapidly degrades system’s performance. An
exception occurs when nb goes from 1 to 2, case in
which similar performances are obtained for the same
encoding rate (modulation with nb = 2 corresponds
to modulations with nb = 1 in quadrature). Further-
more, for the same spectral efficiency, the best WCC
system performance is obtained employing nb = 2.
Similar behavior is obtained for any other wavelet
coding matrix m×mg.

Fig. 8 presents performance curves of WCC
systems with encoding rate R = 1/4 and data
mapping with nb = 4 for wavelet coding matrices
2× 8, 2× 32, 2× 128, 4× 16, 4× 64 and 4× 256
(ranks m = 2 and 4 and genera g = 4, 16 and 64).

We observe in Fig. 8 that increases in rank
or genus (increasing the constraint length) of the
wavelet matrix yield better performances of the pro-
posed WCC system over a fading channel, mainly at
higher signal-to-noise ratios. It happens because the
correlation decoder employed here takes advantage
of the input information spread over the transmitted
symbols. A sequential decoding must take greater
advantage of that and yield a better performance for a
longer constraint length. This fact was verified in [16]
with the employment of a Viterbi decoder. Future

works shall verify it for other sequential decoders,
as the Fano algorithm and the M -algorithm.

B. Comparison with other systems

In order to evaluate the WCC ability to improve
system performance over a flat Rayleigh fading
channel, the WCC system performance is compared
with the performance of ordinary symbol-by-symbol
detecting systems and STBC systems proposed in
[21] considering two transmitting and one receiving
antennas.

As WCC symbol-by-symbol decoding are em-
ployed here, it is more natural to compare its per-
formance with ordinary symbol-by-symbol detecting
systems. The symbol-by-symbol detecting systems
simulated were BPSK for a spectral efficiency of
1 bit/s/Hz, QPSK for 2 bits/s/Hz and 16-QAM for
4 bits/s/Hz.

STBC systems’ performance is taken here as
a reference of a powerful technique employed in
modern systems. A performance comparison between
WCC and STBC is not quite fair, since WCC is
as simple as systems employing symbol-by-symbol
decoding and only one transmitting and one receiving
antennas, without spatial diversity as in STBC
systems. Thus, it is not expected that WCC provides
in general better performance than STBC. In fact,
it is expected that a spatial diversity system may
be developed from WCC, which can be explored in
future works.

STBC was simulated employing the generating
matrix

G =

[
s1 s2
−s∗2 s∗1

]
,

where s1 and s2 are two transmitted signals consid-
ering as modulation BPSK for a spectral efficiency
of 1 bit/s/Hz, QPSK for 2 bits/s/Hz and 16-QAM
for 4 bits/s/Hz.

Fig. 9 shows performance curves of WCC, BPSK
and STBC systems for a spectral efficiency of
1 bit/s/Hz. WCC systems with wavelet matrices 2×8,
2×32 and 2×128, considering R = 1/2 and nb = 2,
exhibited better performance than BPSK and STBC
systems. STBC presented performance better than
WCC just for the smaller constraint length (wavelet
matrix 2× 8) for Eb/N0 > 23 dB.

Fig. 10 presents performance curves of WCC,
QPSK and STBC systems for a spectral efficiency
of 2 bit/s/Hz. The WCC system presented better
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Fig. 9. Comparison between WCC, BPSK and STBC system
performances with a spectral efficiency of 1 bit/s/Hz.
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Fig. 10. Comparison between WCC, QPSK and STBC system
performances with a spectral efficiency of 2 bit/s/Hz.

performance than QPSK. Differently than the former
case, WCC performance was worse than STBC
performance. The WCC performance was restrained
by the rise of nb in order to attain greater spectral
efficiency.

Fig. 11 presents performance curves of WCC, 16-
QAM and STBC systems for a spectral efficiency
of 4 bit/s/Hz. A similar behavior may be seen in
Fig. 10: higher values of nb degraded the WCC
system performance. The WCC system presented
worse performance than 16-QAM, except for the
longer constraint length (wavelet matrix 2× 128) in
Eb/N0 > 19 dB.
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Fig. 11. Comparison between WCC, 16-QAM and STBC system
performances with a spectral efficiency of 4 bit/s/Hz.

VI. CONCLUSIONS

This paper presented a more general analysis of
WCC considering flat real wavelet matrices derived
from a Haar matrix and complex input symbols
produced by a data mapper and representing nb
source bits. WCC encoding and decoding processes
were algebraically described and a probability dis-
tribution was formulated for the generated wavelet
symbols. Also, signal constellations were proposed
for transmission of these wavelet symbols and PGFs
were calculated for them and used to deduce the
average energy of the constellations.

The performance analysis of this system over
a flat Rayleigh channel revealed that increasing
rank or genus of the wavelet coding matrix yielded
better performances of the proposed WCC system,
specially for high signal-to-noise ratios. It happened
because the correlation decoder employed here take
advantage of the input information spread over the
transmitted symbols. Future works should explore
the employment of sequential decoders, as the
Fano algorithm and the M -algorithm, instead of the
correlation one. Sequential decoding for WCC may
yield important performance increases, specially for
large constraint lengths, at the expense of decoding
complexity.

We also observed that the data mapping process
employed prior to the WCC encoding degraded the
system performance, whereas it allowed to increase
the spectral efficiency. For a spectral efficiency of
1 bit/s/Hz, the WCC system presented a performance
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better than an ordinary symbol-by-symbol detecting
system and even an STBC system with diversity 2
and the same spectral efficiency. For greater spectral
efficiencies, when nb increased, the WCC system
performance got worse. However, despite the ob-
served degradation due to increases in nb, we found
great potential possibilities of application of WCC,
since it showed better performances than ordinary
symbol-by-symbol detecting systems, particularly
at higher signal-to-noise ratios for higher spectral
efficiencies.

Many critics pointed to the low spectral efficiency
provided by WCC as its main disadvantage. Further
improvements in this regard are planned for future
works. Still as future work, as successive wavelet
symbols in WCC are generated from a matrix
with consistent orthogonality properties, one may
investigate its employment as a diversity system.
Application of WCC in multi-band ultra wideband
systems (UWB) may also be investigated, since sub-
bands of UWB may be coded with Hadamard codes
and real flat wavelet matrices of genus g = 1 are
Hadamard matrices [24].
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