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Analysis of Acoustic Feedback Cancellation
Systems based on Direct Closed-Loop Identification
Bruno C. Bispo, Cézar F. Yamamura, Wellington M. S. Nogueira, Edson A. R. Theodoro and Pedro M. Rodrigues

Abstract—This work presents, using the least squares esti-
mation theory, a theoretical and experimental analysis on the
performance of the standard adaptive filtering algorithms when
applied to acoustic feedback cancellation. Expressions for the bias
and covariance matrix of the acoustic feedback path estimate
provided by these algorithms are derived as a function of the
signals statistics as well as derivatives of the cost function. It is
demonstrated that, in general, the estimate is biased and presents
a large covariance because the closed-loop nature of the system
makes the cross-correlation between the loudspeaker and system
input signals non-zero. Simulations are carried out to exemplify
the results using speech signals, a long acoustic feedback path
and the recursive least squares algorithm. The results illustrate
that these algorithms converge very slowly to a solution that is
not the true acoustic feedback path. The relationship between
the performance of the adaptive filtering algorithms and the
aforementioned cross-correlation is proven by varying the signal-
to-noise ratio and the delay introduced by the forward path.

Index Terms—sound reinforcement system, hearing aid, acous-
tic feedback cancellation, adaptive filtering, least squares.

I. INTRODUCTION

A sound reinforcement (SR) system essentially comprises
microphones, amplifiers and loudspeakers. Its fundamental
purpose is to pick up, amplify and play back one or more
desired sounds signals in the same acoustic environment. In
many situations, mixing consoles and signal processors are
employed to combine and enhance the sound signals.

A SR system may be very complex, including hundreds of
microphones and multiple loudspeaker arrays. But nearly every
system covered in the literature is single-channel, i.e., utilizes
one microphone and one loudspeaker [1]. For this reason, only
single-channel SR systems will be addressed in this work.

The acoustic coupling between loudspeaker and microphone
unavoidably cause the loudspeaker signal to be fed back into
the microphone. Thus, a closed signal loop is generated and
leads to the so-called acoustic feedback problem [1]. The
acoustic coupling and the signal processing circuit are referred
to as acoustic feedback path and forward path, respectively.

The acoustic feedback affects the performance of a SR
system in two ways. First and foremost, the closed-loop system
can exhibit instability, which may lead to oscillations that are
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acoustically perceived as howling. This phenomenon is also
known as Larsen effect [1]. As a consequence, the achievable
amplification is limited [1], [2]. Second, the sound quality is
deteriorated by excessive reverberation or even ringing.

Most people have witnessed the howling effect in public
address (PA) systems widely used in presentations, lectures,
shows, events in general [1], [2], [3]. But it also occurs in
hearing aids (HA) [4], [5], [6], [7]. The howling effect is one
of the most frequent complaints from users and the reason
why many of them give up HA [8]. Industry experts estimate
that up to 15% of the HA are returned to the factory within
90 days after manufacture because of feedback problems [9].

In order to control the howling effect and increase the
achievable amplification, several methods have been developed
over the past decades [1]. The acoustic feedback cancellation
(AFC) methods aim at estimating the feedback signal and
subtracting it from the microphone signal [1]. The predicted
feedback signal is obtained by filtering the loudspeaker signal
with a model of the acoustic feedback path. This model is cal-
culated using an adaptive filter that is designed to estimate and
track the feedback path by means of some iterative algorithm.

The algorithms of the adaptive filtering theory, which ap-
proximate the Wiener solution through the gradient or least
squares, identify the feedback path by minimizing in some
deterministic sense the error signal [10], [11]. In the target
application, the error signal should be defined as the difference
between the true and predicted feedback signals. But the
microphone signal is actually used as the feedback path output.
Besides the feedback signal, the microphone signal also com-
prises the desired sound signal and a possible ambient noise,
which act jointly as interference to the adaptive algorithms.

This approach corresponds to direct closed-loop identifi-
cation because the data used for identification is collected
in closed loop but the identification is performed using an
open-loop model [12]. In other words, the feedback path is
identified using only measurements of its input and output,
and no assumptions are made on how they are generated [13].

The cancellation architecture is similar to the acoustic
echo cancellation (AEC) commonly used in teleconference
systems. Although it is effective when applied to AEC, this
scheme is inefficient when applied to AFC. The adaptive
filtering algorithms premise that the signals acting as input and
interference to the adaptive filter are uncorrelated [10], [11].
In AEC, these signals are independent. In AFC, on the other
hand, these signals are strongly correlated, mainly when the
desired sound signal has a high degree of spectral coloration.
Therefore, the standard adaptive filtering algorithms perform
poorly when applied to AFC [1], [4], [14].



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 218

Most solutions to overcome this problem introduce a decor-
relation procedure in the AFC approach with the aim of
reducing the cross-correlation between the loudspeaker and
interference signals [1], [14]. Some methods aims to change
the loudspeaker signal with the disadvantage of a possible
distortion. In this context, addition of different shaped noises to
the loudspeaker signal, insertion of delays, nonlinear process-
ing, as half-wave rectification, and time-varying processing,
as frequency shifting, phase and delay modulation, into the
forward path have been proposed [1], [4], [15], [16]

Other methods aims to create modified versions of the
loudspeaker or microphone signals that are used only in
updating the adaptive filter. Delaying the loudspeaker signal
was first proposed [4]. Subsequent methods are based on
the prediction error framework. They assume that the desired
sound signal is the output of a filter, the source model, whose
input is a zero-mean white noise [12], [17]. The loudspeaker
and microphone signals are then prefiltered with the inverse
source model in order to be whiten. In [5], [18], the source
model is fixed. In [6], an adaptive filter estimates the source
model in hearing aids. Short and long-time prediction filters
are combined to estimate the source model in [19].

Another possible solution is to not utilize the standard
gradient or least-squares based adaptive filtering algorithms
to update the adaptive filter. Following this approach, the
works in [2], [20] have demonstrated that the cepstra of the
microphone and error signals can be defined as a function of
the impulse responses of the feedback path, forward path and
adaptive filter. And methods that estimates the feedback path
impulse response from the signal cepstra to update the adaptive
filter in a recursive fashion have been proposed [2], [20].

The poor performance of the standard adaptive filtering
algorithms when applied to AFC has already been theoretically
studied in some previous works. In [4], [21], [22], it was
analyzed in a statistical framework using the Wiener theory.
In [1], [14], it was analyzed in a deterministic framework using
the least squares (LS) theory. And, in [5], [23], it was analyzed
considering the specific prediction error framework. However,
none of these works presented experiments using real speech
signals and a long acoustic feedback path of a PA system to
exemplify the conclusions drawn from the theoretical analysis.

This work has two goals: first, using the LS estimation the-
ory, to present a theoretical analysis on the poor performance
of the standard adaptive filtering algorithms when applied to
AFC, compiling in detail the results available in the literature;
second, to exemplify the conclusions drawn from the theore-
tical analysis using speech signals, a long acoustic feedback
path of a PA system and the recursive LS (RLS) algorithm.

This paper is organized as follows: Section II presents the
modelling of both acoustic feedback problem and acoustic
feedback cancellation; Section III presents the theoretical
analysis and compiles in detail the results available in the
literature; Section IV describes the configuration of the simu-
lated experiments; in Section V, the experimental results are
presented and discussed based on the statistical properties
of the desired sound signal, ambient noise and closed-loop
system impulse response; finally, Section VI concludes the
paper, emphasizing its main contributions.

Fig. 1: Acoustic feedback in SR systems.

II. ACOUSTIC FEEDBACK MODELLING AND
CANCELLATION SYSTEMS

The modelling of the acoustic feedback is shown in Fig-
ure 1. The source signal 𝑣(𝑛) is the desired sound. The system
input signal 𝑢(𝑛) is 𝑣(𝑛) added to the ambient noise 𝑟 (𝑛),
i.e., 𝑢(𝑛) = 𝑣(𝑛) + 𝑟 (𝑛). For convenience, 𝑢(𝑛) includes the
characteristics of the microphone and A/D converter.

The acoustic feedback path models the acoustic coupling
between loudspeaker and microphone. For simplicity, it also
includes the characteristics of the D/A converter, loudspeaker,
microphone and A/D converter. The feedback path may present
non-linearities, for example due to loudspeaker saturation, but
it is generally assumed to be linear. Hence, the feedback path
is represented by the 𝑁𝐹 -order time-varying transfer function

𝐹 (𝑞, 𝑛) = 𝑓0 (𝑛) + 𝑓1 (𝑛)𝑞−1 + . . . + 𝑓𝑁𝐹
(𝑛)𝑞−𝑁𝐹 , (1)

where 𝑞 denotes the discrete-time shift operator [24], i.e.,
𝑞−1𝑥(𝑛) = 𝑥(𝑛 − 1), or by the impulse response

f (𝑛) =
[
𝑓0 (𝑛) 𝑓1 (𝑛) . . . 𝑓𝑁𝐹

(𝑛)
]𝑇
. (2)

The forward path models the amplification system and any
other signal processing device inserted in that part of the
signal loop. The forward path may present non-linearities, for
example because of frequency compression, but it is usually
assumed to be linear. Hence, the forward path is represented
by the 𝑁𝐺-order time-varying transfer function

𝐺 (𝑞, 𝑛) = 𝑔0 (𝑛) + 𝑔1 (𝑛)𝑞−1 + . . . + 𝑔𝑁𝐺
(𝑛)𝑞−𝑁𝐺 (3)

or by the impulse response

g(𝑛) =
[
𝑔0 (𝑛) 𝑔1 (𝑛) . . . 𝑔𝑁𝐺

(𝑛)
]𝑇
. (4)

The loudspeaker signal 𝑥(𝑛) and the system input signal
𝑢(𝑛) are related by the time-varying closed-loop transfer
function of the SR system as follows

𝑥(𝑛) = 𝐺 (𝑞, 𝑛)
1 − 𝐺 (𝑞, 𝑛)𝐹 (𝑞, 𝑛) 𝑢(𝑛) = 𝐴(𝑞, 𝑛)𝑢(𝑛), (5)

where the filtering of 𝑥(𝑛) with 𝐹 (𝑞, 𝑛) is given by

𝐹 (𝑞, 𝑛)𝑥(𝑛) = f (𝑛) ∗ 𝑥(𝑛) =
𝑁𝐹∑︁
𝑘=0

𝑓𝑘 (𝑛)𝑥(𝑛 − 𝑘) (6)

and the symbol ∗ denotes the convolution operation.
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From the control systems theory, the Nyquist’s stability
criterion states that the closed-loop system is unstable if there
is at least one frequency 𝜔 for which [1]{ ��𝐺 (𝑒 𝑗𝜔, 𝑛)𝐹 (𝑒 𝑗𝜔, 𝑛)

�� ≥ 1
∠𝐺 (𝑒 𝑗𝜔, 𝑛)𝐹 (𝑒 𝑗𝜔, 𝑛) = 2𝑘𝜋, 𝑘 ∈ Z,

(7)

where 𝐺 (𝑒 𝑗𝜔, 𝑛) and 𝐹 (𝑒 𝑗𝜔, 𝑛) are the short-term frequency
responses of the forward and feedback paths, respectively, and
𝜔 ∈ [0, 2𝜋] is the normalized angular frequency.

Therefore, if one frequency component is not attenuated
and its phase is shifted by an integer multiple of 2𝜋 by the
time-varying open-loop transfer function of the SR system,
𝐺 (𝑞, 𝑛)𝐹 (𝑞, 𝑛), then this frequency component will never
disappear from the system even if there is no more input signal
𝑢(𝑛). If it is amplified, its magnitude will increase after each
loop in the system, leading to a howling at that frequency.

With the aim of quantifying the achievable amplification in
a SR system, it is customary to define a broadband gain of
the forward path as [1], [2]

𝐾 (𝑛) = 1
2𝜋

∫ 2𝜋

0
|𝐺 (𝑒 𝑗𝜔, 𝑛) | d𝜔 (8)

and to extract it from 𝐺 (𝑞, 𝑛) as follows

𝐺 (𝑞, 𝑛) = 𝐾 (𝑛)𝐽 (𝑞, 𝑛). (9)

Assuming that 𝐽 (𝑞, 𝑛) is known and 𝐾 (𝑛) can be varied, the
maximum stable gain (MSG) of the SR system is defined as [1]

MSG(𝑛) (dB) = 20 log10 𝐾 (𝑛)
such that max

𝜔∈𝑃 (𝑛)

��𝐺 (𝑒 𝑗𝜔, 𝑛)𝐹 (𝑒 𝑗𝜔, 𝑛)
�� = 1, (10)

resulting in [1], [2]

MSG(𝑛) (dB) =

− 20 log10

[
max

𝜔∈𝑃 (𝑛)

��𝐽 (𝑒 𝑗𝜔, 𝑛)𝐹 (𝑒 𝑗𝜔, 𝑛)��] , (11)

where 𝑃(𝑛) denotes the set of frequencies at which the phase
condition in (7) is satisfied, which are also called the critical
frequencies of the SR system.

The cancellation architecture of the AFC approach is de-
picted in Figure 2 [1], [2]. The adaptive filter, which identifies
and tracks the acoustic feedback path 𝐹 (𝑞, 𝑛), is represented
by the 𝑁𝐻 -order time-varying transfer function

𝐻 (𝑞, 𝑛) = ℎ0 (𝑛) + ℎ1 (𝑛)𝑞−1 + . . . + ℎ𝑁𝐻
(𝑛)𝑞−𝑁𝐻 (12)

or by the impulse response

h(𝑛) =
[
ℎ0 (𝑛) ℎ1 (𝑛) . . . ℎ𝑁𝐻

(𝑛)
]𝑇
. (13)

Then, the feedback signal f (𝑛)∗𝑥(𝑛) is estimated as h(𝑛)∗𝑥(𝑛)
and subtracted from the microphone signal 𝑦(𝑛), generating
the feedback-compensated or error signal

𝑒(𝑛) = 𝑦(𝑛) − h(𝑛) ∗ 𝑥(𝑛)
= 𝑢(𝑛) + [f (𝑛) − h(𝑛)] ∗ 𝑥(𝑛),

(14)

which is effectively the signal fed to the forward path 𝐺 (𝑞, 𝑛).

Fig. 2: Structure for acoustic feedback cancellation.

The signals 𝑥(𝑛) and 𝑢(𝑛) are now related by the closed-
loop transfer function of the SR system with a AFC method,
hereinafter called AFC system, as follows

𝑥(𝑛) = 𝐺 (𝑞, 𝑛)
1 − 𝐺 (𝑞, 𝑛) [𝐹 (𝑞, 𝑛) − 𝐻 (𝑞, 𝑛)] 𝑢(𝑛). (15)

According to the Nyquist’s stability criterion, the closed-loop
AFC system is unstable if there is at least one frequency 𝜔

for which{ ��𝐺 (𝑒 𝑗𝜔, 𝑛)
[
𝐹 (𝑒 𝑗𝜔, 𝑛) − 𝐻 (𝑒 𝑗𝜔, 𝑛)

] �� ≥ 1
∠𝐺 (𝑒 𝑗𝜔, 𝑛)

[
𝐹 (𝑒 𝑗𝜔, 𝑛) − 𝐻 (𝑒 𝑗𝜔, 𝑛)

]
= 2𝑘𝜋, 𝑘 ∈ Z,

(16)

where 𝐻 (𝑒 𝑗𝜔, 𝑛) is the short-term frequency response of the
adaptive filter.

The MSG of the AFC system is defined as [1], [2]

MSG(𝑛) (dB) = −20 log10[
max

𝜔∈𝑃𝐻 (𝑛)

��𝐽 (𝑒 𝑗𝜔, 𝑛) [𝐹 (𝑒 𝑗𝜔, 𝑛) − 𝐻 (𝑒 𝑗𝜔, 𝑛)
] ��] (17)

and the increase in the amount of achievable amplification, the
MSG increase, is given by [1], [2]

ΔMSG(𝑛) (dB) = −20 log10
max

𝜔∈𝑃𝐻 (𝑛)

��𝐽 (𝑒 𝑗𝜔, 𝑛) [𝐹 (𝑒 𝑗𝜔, 𝑛) − 𝐻 (𝑒 𝑗𝜔, 𝑛)
] ��

max
𝜔∈𝑃 (𝑛)

|𝐽 (𝑒 𝑗𝜔, 𝑛)𝐹 (𝑒 𝑗𝜔, 𝑛) |

 , (18)

where 𝑃𝐻 (𝑛) denotes the set of frequencies at which the phase
condition in (16) is met, which are the critical frequencies of
the AFC system.

It is concluded from (18) that the achievable ΔMSG(𝑛)
increases as the match between the frequency response mag-
nitudes of the adaptive filter and feedback path at the critical
frequencies of the AFC system gets better. If 𝐻 (𝑒 𝑗𝜔, 𝑛) =

𝐹 (𝑒 𝑗𝜔, 𝑛), ∀𝜔 ∈ 𝑃𝐻 (𝑛), the MSG of the AFC system can
be indefinitely high. But some reverberation may still exist in
𝑒(𝑛) due to the frequency components that were not perfectly
matched. If 𝐻 (𝑞, 𝑛) = 𝐹 (𝑞, 𝑛), it follows from (14) and (15)
that the acoustic feedback will be totally cancelled and the
system will no longer have a closed signal loop, respectively.
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III. LEAST SQUARES ANALYSIS OF AFC SYSTEMS

This section presents, using the LS estimation theory, a
theoretical analysis on the poor performance of standard
adaptive filtering algorithms when applied to AFC and com-
piles in detail the results already presented in the literature.
Thereunto, let a data record {𝑥(𝑘), 𝑦(𝑘)}𝑛𝑘=1 of the loudspeaker
and microphone signals be available as well as the initial
conditions {𝑥(𝑘)}0

𝑘=1−𝑁𝐻
of the loudspeaker signal. And let

the feedback path be time-invariant (f (𝑛) = f) so that no data
windowing is employed and the order of the feedback path
estimator h(𝑛) be equal to that of f (𝑁𝐻 = 𝑁𝐹 ).

In the LS approach, an estimate of f at the sample index
𝑛, h(𝑛), is obtained by minimizing the cost function or error
criterion1 defined as [25]

𝐽𝑛 (h) =
1
2

𝑛∑︁
𝑘=1

𝑒2 (𝑘)

=
1
2

𝑛∑︁
𝑘=1

[
𝑦(𝑘) − x𝑇 (𝑘)h(𝑛)

]2

=
1
2
[y − Xh(𝑛)]𝑇 [y − Xh(𝑛)] , (19)

where the data matrices and vectors are defined as

y = [𝑦(𝑛) 𝑦(𝑛 − 1) · · · 𝑦(1)]𝑇 (20)

X = [x(𝑛) x(𝑛 − 1) · · · x(1)]𝑇 (21)

x(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) · · · 𝑥(𝑛 − 𝑁𝐻 )]𝑇 . (22)

The LS cost function, defined in (19), can be written as

𝐽𝑛 (h) =
1
2
[
y𝑇 y − 2y𝑇 Xh(𝑛) + h𝑇 (𝑛)X𝑇 Xh(𝑛)

]
(23)

and thus its gradient is given by

𝐽 ′𝑛 (h) = −X𝑇 y + X𝑇 Xh(𝑛). (24)

The LS estimator of the feedback path is then obtained by
making the gradient equal to zero, resulting in [1]

h(𝑛) =
(
X𝑇 X

)−1
X𝑇 y

=

(
X𝑇 X

)−1
X𝑇 (u + Xf)

=

(
X𝑇 X

)−1
X𝑇 u + f, (25)

where
u = [𝑢(𝑛) 𝑢(𝑛 − 1) · · · 𝑢(1)]𝑇 . (26)

An estimator may be characterized by its bias and vari-
ance [1], [25]. In the sequel, the bias and variance of the LS
estimator defined in (25) is obtained and discussed separately.

A. Bias of the LS Estimator

The bias of an estimator is the difference between its ex-
pected value and the parameter true value [25]. Hence, at index
𝑛, the bias of the feedback path estimator is defined as [1]

bias {h(𝑛)} = E {h(𝑛)} − f, (27)

1The error criterion in the LS approach is commonly defined as 𝐽𝑛 (h) =∑𝑛
𝑘=1 𝑒

2 (𝑘) [25]. In this work, a constant 1/2 is included only for convenience.

where E {·} denotes the statistical expectation operator. The
estimator is desired to be unbiased, i.e., to have zero bias [25].

Replacing (25) in (27), the bias of the LS estimator of the
feedback path is given by [1], [14]

bias {h(𝑛)} = E
{(

X𝑇 X
)−1

X𝑇 u + f
}
− f

= E
{(

X𝑇 X
)−1

X𝑇 u
}
. (28)

In order to conclude on the bias, it is necessary to realize
that (28) can be written as

bias {h(𝑛)} = E
{
R−1

𝑥 p𝑥𝑢

}
, (29)

where
R𝑥 =

1
𝑛

X𝑇 X (30)

is the (𝑁𝐻 +1) × (𝑁𝐻 +1) time-average autocorrelation matrix
of 𝑥(𝑛) [11] and

p𝑥𝑢 =
1
𝑛

X𝑇 u (31)

is the (𝑁𝐻 +1)×(𝑁𝐻 +1) time-average cross-correlation vector
between 𝑥(𝑛) and 𝑢(𝑛) [11].

If 𝑥(𝑛) and 𝑢(𝑛) are at least jointly wide-sense stationary
and ergodic processes then, for large 𝑛, the time averages R𝑥

and p𝑥𝑢 are consistent estimates of the respective statistical
averages [26], i.e.,

lim
𝑛→∞

R𝑥 = R𝑥 (32)

and
lim
𝑛→∞

p𝑥𝑢 = p𝑥𝑢 , (33)

where R𝑥 is the (𝑁𝐻 + 1) × (𝑁𝐻 + 1) autocorrelation matrix
of 𝑥(𝑛) and p𝑥𝑢 is the (𝑁𝐻 + 1) × 1 cross-correlation vector
between 𝑥(𝑛) and 𝑢(𝑛) [11].

In this case, by replacing (32) and (33) in (29), the bias of
the feedback path estimator is defined as [21], [22], [4]

bias {h(𝑛)} = R−1
𝑥 p𝑥𝑢 . (34)

Since autocorrelation matrices are positive definite for prac-
tical signals [11], R−1

𝑥 is positive definite and thus the only
possibility for the bias defined in (34) to be null is that p𝑥𝑢 = 0,
i.e., the loudspeaker signal 𝑥(𝑛) and the system input signal
𝑢(𝑛) must be orthogonal. If at least one of them has zero
mean, it is equivalent to say that they must be uncorrelated.
However, as indicated in (5), 𝑥(𝑛) and 𝑢(𝑛) are related by the
closed-loop transfer function 𝐴(𝑞, 𝑛) of the SR system, which
generally introduces linear dependence. As will be discussed
later, a counterexample to this correlation introduced by the
system closed loop is when 𝑢(𝑛) is white Gaussian noise and
𝐴(𝑞, 𝑛) has at least 1-sample delay.

Disregarding the assumptions of stationarity and ergodicity
of 𝑥(𝑛) and 𝑢(𝑛), similar conclusion can be drawn directly
from (29). The bias can be generally understood to be nonzero
because the closed-loop nature of the system tends to cause
p𝑥𝑢 ≠ 0. Therefore, in general, bias {h(𝑛)} ≠ 0. And it actually
depends on the autocorrelation matrix of the loudspeaker
signal 𝑥(𝑛) and the cross-correlation vector between 𝑥(𝑛) and
the system input signal 𝑢(𝑛).
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The existence of bias means that, on average, the feedback
path estimator h(𝑛) will not converge to f, the true value of the
feedback path, no matter how many process realizations are
performed and their time duration [25]. The resulting effect in
AFC is twofold: first, the adaptive filter estimates and cancels
only part of the feedback signal f ∗ 𝑥(𝑛); second, it also
estimates and cancels part of the system input signal 𝑢(𝑛).
As a consequence, the feedback-compensated signal 𝑒(𝑛) is a
distorted estimate of the system input signal 𝑢(𝑛) [1], [2].

In addition to the definitions in (28), (29) and (34), a differ-
ent expression for the bias can be obtained by realizing that

R𝑥 =
1
𝑛
𝐽 ′′𝑛 (·) (35)

and

p𝑥𝑢 = −1
𝑛
𝐽 ′𝑛 (f), (36)

where 𝐽 ′′𝑛 (·) is the second derivative of the error criterion as
a function of h(𝑛). Replacing (35) and (36) in (29), the bias
can be defined as a function of the error criterion as follows

bias {h(𝑛)} = −E
{[
𝐽 ′′𝑛 (·)

]−1
𝐽 ′𝑛 (f)

}
. (37)

B. Variance of the LS Estimator

The variance of the LS estimator can be obtained by
considering its covariance matrix, also called coefficient-error-
vector covariance matrix, which is defined as [11], [10]

cov {h(𝑛)} = E
{
[h(𝑛) − f] [h(𝑛) − f]𝑇

}
. (38)

Replacing (25) in (38), the covariance matrix is given by

cov {h(𝑛)} = E

{(
X𝑇 X

)−1
X𝑇 u

[(
X𝑇 X

)−1
X𝑇 u

]𝑇 }
, (39)

which using (30) and (31) becomes

cov {h(𝑛)} = E
{
R−1

𝑥 p𝑥𝑢

[
R−1

𝑥 p𝑥𝑢

]𝑇 }
. (40)

Assuming that 𝑥(𝑛) and 𝑢(𝑛) are at least jointly wide-
sense stationary and ergodic processes and thus replacing (32)
and (33) in (40), the covariance matrix is defined as

cov {h(𝑛)} = R−1
𝑥 p𝑥𝑢

[
R−1

𝑥 p𝑥𝑢

]𝑇
= bias {h(𝑛)} [bias {h(𝑛)}]𝑇 . (41)

The only possibility for the covariance matrix, defined
in (41), to be null is that bias {h(𝑛)} = 0, i.e, the estimator h(𝑛)
must be unbiased. However, as discussed in the previous sub-
section, this does not normally occur because the closed-loop
transfer function 𝐴(𝑞, 𝑛) of the SR system makes p𝑥𝑢 ≠ 0,
which results in a biased LS estimator of the feedback path.

Disregarding the assumptions of stationarity and ergodicity
of 𝑥(𝑛) and 𝑢(𝑛), similar conclusion can be drawn directly
from (40). The covariance matrix can be generally understood
to be nonzero because the closed-loop nature of the system
tends to cause p𝑥𝑢 ≠ 0. Therefore, in general, cov {h(𝑛)} ≠

0. And it actually depends on the autocorrelation matrix of
the loudspeaker signal 𝑥(𝑛) and the cross-correlation vector
between 𝑥(𝑛) and the system input signal 𝑢(𝑛).

The resulting effect of the covariance matrix in AFC can
be understood by realizing that (39) can be written as

cov {h(𝑛)} = E
{(

X𝑇 X
)−1

X𝑇 R̂𝑢X
(
X𝑇 X

)−1
}

(42)

or [1], [13]
cov {h(𝑛)} =

[
E
{
X𝑇 R−1

𝑢 X
}]−1

, (43)

where
R𝑢 = E

{
uu𝑇

}
(44)

is the 𝑛 × 𝑛 autocorrelation matrix of 𝑢(𝑛) [11], [10] and

R̂𝑢 = uu𝑇 (45)

is its instantaneous estimate [10].
The interpretation of (42) and (43) may be related to the

double-talk problem in AEC [1]. In AEC, the signals 𝑥(𝑛) and
𝑢(𝑛), which are respectively called far-end speaker signal and
near-end speaker signal, are independent. Then, when 𝑥(𝑛) is
active and 𝑢(𝑛) is not, the covariance matrix of the echo path
LS estimator is relatively small because R̂𝑢 ≈ R𝑢 ≈ 0 and thus
the adaptive filter works properly. But when both signals are
active, situation commonly called double-talk, the covariance
matrix can become large because R̂𝑢 0 0 and R𝑢 0 0, which
consequently lead to a decrease in the convergence speed,
or even divergence, of the adaptive filter [1]. This problem
becomes more severe when 𝑢(𝑛) has a high degree of spectral
coloration, as occurs when 𝑣(𝑛) is speech, because R𝑢 presents
a denser structure in this case [1].

In AFC, on the other hand, the loudspeaker signal 𝑥(𝑛)
and the system input signal 𝑢(𝑛) are not independent because
they are related by the system closed-loop as indicated in (5).
Therefore, except for possible short time intervals dependent
on 𝐹 (𝑞, 𝑛) and 𝐺 (𝑞, 𝑛), the system operates in a continuous
double-talk situation. And this is further worsened by the
aforementioned correlation between 𝑢(𝑛) and 𝑥(𝑛) [1]. The re-
sulting effect in AFC is that the adaptive filter 𝐻 (𝑞, 𝑛) presents
a slow convergence speed throughout its operation [1].

In addition to the previous definitions, the covariance matrix
can be also defined as a function of the error criterion by
replacing (35) and (36) in (40), resulting in

cov {h(𝑛)} = E
{[
𝐽 ′′𝑛 (·)

]−1
𝐽 ′𝑛 (f)

[
𝐽 ′𝑛 (f)

]𝑇 [
𝐽 ′′𝑛 (·)

]−1
}
. (46)

IV. SIMULATIONS CONFIGURATION

This section describes the configuration of the two experi-
ments carried out in a simulated environment to corroborate
and exemplify the conclusions on the bias and covariance
matrix of the LS estimator. In the first, the bias is estimated
over time. In the second, the slow convergence speed of the
standard adaptive filtering algorithms when applied to AFC
is exemplified using the RLS algorithm. To this end, the
following configuration is used.

A. Simulated Environment
1) Feedback Path: The impulse response f of the feedback

path is a measured room impulse response (RIR) available
in [27]. The RIR was downsampled to the sampling rate 𝑓𝑠 =

16 kHz and then truncated so that 𝑁𝐹 = 1000. The impulse
response of the acoustic feedback path is shown in Figure 3.
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Fig. 3: Impulse response f of the feedback path.

2) Forward Path: As in [1], [2], the forward path is a time-
invariant filter defined as a delay and a gain, i.e.,

𝐺 (𝑞) = 𝑔𝑁𝐺
𝑞−𝑁𝐺 , (47)

which leads to 𝐾 (𝑛) = 𝑔𝑁𝐺
and 𝐽 (𝑞, 𝑛) = 𝑞−𝑁𝐺 . The delay is

inherent to any digital signal processing included in that part
of the signal loop and plays a key role in the analysis. Because
of that, 𝑁𝐺 = {1, 100, 400, 800}. And 𝑔𝑁𝐺

= 0.7 so that the
initial gain margin, the difference between the MSG of the SR
system and the actual broadband gain, is 3 dB as in [1], [2].

3) Closed-loop System: According to (5), the closed-loop
transfer function of the SR system is defined as

𝐴(𝑞, 𝑛) = 𝐺 (𝑞, 𝑛)
1 − 𝐺 (𝑞, 𝑛)𝐹 (𝑞, 𝑛) . (48)

If |𝐺 (𝑒 𝑗𝜔 , 𝑛)𝐹 (𝑒 𝑗𝜔 , 𝑛) | < 1, a sufficient condition to ensure
the closed-loop system stability, then 𝐴(𝑞, 𝑛) can be written as

𝐴(𝑞, 𝑛) = 𝐺 (𝑞, 𝑛)
∞∑︁
𝑘=0

[𝐺 (𝑞, 𝑛)𝐹 (𝑞, 𝑛)]𝑘 . (49)

It can be concluded that the system closed-loop transfer
function is the forward path transfer function multiplied by
a power sum of the system open-loop transfer function. Each
term on (49) can be interpreted as the transfer function from
𝑢(𝑛) to 𝑥(𝑛) after 𝑘 loops through the SR system.

By replacing (47) in (49), the closed-loop transfer function
of the simulated SR system is given by

𝐴(𝑞) =
∞∑︁
𝑘=0

𝑔𝑘+1
𝑁𝐺
𝑞−𝑁𝐺 (𝑘+1)𝐹𝑘 (𝑞). (50)

In the time domain, except for a constant, the first two terms
(𝑘 = 0, 1) on (50) correspond to an impulse at the sample index
𝑁𝐺 (the forward path impulse response) and the feedback path
impulse response delayed by 2𝑁𝐺 samples, respectively. The
other terms (𝑘 > 1) correspond to 𝑘 successive convolutions
of the feedback path impulse response delayed by (𝑘 + 1)𝑁𝐺

samples. Thus, as 𝑁𝐺 increases, this linear delay as a function
of 𝑁𝐺 causes an increasing dilatation of the system closed-
loop impulse response a along the sample axis. This effect is
illustrated in Figure 4 for 𝑁𝐺 = {100, 400}, where it should
be noted that 𝑎𝑘 = 0 for 𝑘 < 𝑁𝐺 .
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Fig. 4: Impulse response a of the closed-loop system for:
(a) 𝑁𝐺 = 100; (b) 𝑁𝐺 = 400.

B. Evaluation Metrics

1) Bias energy: In the first experiment, the bias of the LS
estimator is measured through its energy, which is defined as

𝐸 (𝑛) = ‖bias {h(𝑛)} ‖2 (51)

where ‖ · ‖ denotes the Euclidean or Frobenius norm.
2) Misalingment: In the second experiment, the perfor-

mance of the adaptive filter is evaluated through the normal-
ized misalignment (MIS), which is defined as [2]

MIS(𝑛) = ‖f (𝑛) − h(𝑛)‖
‖f (𝑛)‖ =

‖𝐹 (𝑒 𝑗𝜔 , 𝑛) − 𝐻 (𝑒 𝑗𝜔 , 𝑛))‖
‖𝐹 (𝑒 𝑗𝜔 , 𝑛)‖ . (52)

3) Maximum stable gain: In the second experiment, the
performance of the adaptive filter is also evaluated through
the achievable ΔMSG(𝑛) defined in (18). It is noteworthy that
the metrics MIS(𝑛) and ΔMSG(𝑛) are related because both
depend on

��𝐹 (𝑒 𝑗𝜔, 𝑛) − 𝐻 (𝑒 𝑗𝜔, 𝑛)
��. With respect to this factor,

the difference is that MIS(𝑛) takes all frequencies into account
while ΔMSG(𝑛) considers only one of the critical frequencies.

C. Speech Signals

The source signals 𝑣(𝑛) are created from signals of a
speech database. Each signal contains one short sentence
recorded in a 4 s time slot and at a 48 kHz sampling rate, but
downsampled to 16 kHz. The active power level of each signal
is normalized to −26 dBov according to the ITU-T Rec. P.56
algorithm. All sentences are spoken by native speakers of the
following nationalities and genders: 4 Americans (2 males and
2 females), 2 British (1 male and 1 female), 2 French (1 male
and 1 female) and 2 Germans (1 male and 1 female).

Since long-term signals are required, several signals from
the same speaker are concatenated and the silence parts are
removed through a voice activity detector (VAD), thereby
resulting in 10 speech signals (1 signal per speaker).
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V. SIMULATIONS RESULTS

This section is devoted to reporting the results of the two ex-
periments performed. The simulated environment, evaluation
metrics and signals described in Section IV are employed.

A. Experiment 1

In this experiment, the bias {h(𝑛)} is computed over time
using (28) for several signal-to-noise ratios (SNR). The ambi-
ent noise 𝑟 (𝑛) is a white Gaussian noise with zero mean and
variance 𝜎2 such that SNR = {∞, 30, 20, 10,−∞} dB, where
SNR = −∞ indicates that 𝑣(𝑛) = 0 and 𝜎 = 1.

The bias energy 𝐸 (𝑛) is measured according to (51). In
order to simplify the analysis and discussion of the results,
it is assumed that 𝑥(𝑛) and 𝑢(𝑛) are stationary and ergodic
processes as well as 𝑛 is large enough so that R𝑥 ≈ R𝑥 and
p𝑥𝑢 ≈ p𝑥𝑢 , thereby making (34) valid. In this case, 𝐸 (𝑛) is
bounded from above as follows [28]

𝐸 (𝑛) ≤ ‖R−1
𝑥 ‖2‖p𝑥𝑢 ‖2. (53)

As demonstrated in Appendices A and B, R𝑥 and p𝑥𝑢 can
be written as

R𝑥 =

∞∑︁
𝑘=−∞

𝑟𝑎 (𝑘)R𝑣 (𝑘) + 𝜎2R̃𝑎 (54)

and

p𝑥𝑢 =

∞∑︁
𝑘=0

𝑎𝑘p𝑣 (𝑘) + 𝜎2 [𝑎0 0 · · · 0
]𝑇
, (55)

where p𝑣 (𝑘), 𝑟𝑎 (𝑘), R𝑣 (𝑘) and R̃𝑎 are defined in (73), (79),
(85) and (86), respectively. As 𝑎𝑘 = 0, 𝑘 < 𝑁𝐺 , (55) becomes

p𝑥𝑢 =

∞∑︁
𝑘=𝑁𝐺

𝑎𝑘p𝑣 (𝑘) (56)

and therefore p𝑥𝑢 is actually independent of 𝑟 (𝑛).
The results for SNR → ∞ and 𝑁𝐺 = {1, 100, 400, 800}

are shown in Figure 5. It is observed that 𝐸 (𝑛) decreases
exponentially over time, becoming nearly constant at the end
of the simulation. This occurs because the time averages R𝑥

and p𝑥𝑢 are not sensitive to any changes in the signal statistics
for large 𝑛 [10]. But 𝐸 (𝑛) ≠ 0 even after 10 s, which illustrates
the bias of the acoustic feedback path estimate provided by the
standard adaptive filtering algorithms.

It is also noticed that 𝐸 (𝑛) decreases as 𝑁𝐺 increases. This
can be explained by noting that ‖p𝑥𝑢 ‖2 is bounded from above
as follows

‖p𝑥𝑢 ‖2 ≤
∞∑︁

𝑘=𝑁𝐺

|𝑎𝑘 |2‖p𝑣 (𝑘)‖2. (57)

As 𝑁𝐺 increases, fewer correlation vectors are included in
right-hand side of (57), decreasing the upper bound of ‖p𝑥𝑢 ‖2.
And, since the autocorrelation function of speech signals usu-
ally decays with increasing lag, the higher magnitude vectors
p𝑣 (𝑘) are removed from this computation and consequently
the upper bound of ‖p𝑥𝑢 ‖2 tends to significantly decrease. On
the other hand, as 𝑁𝐺 increases, 𝑟𝑎 (𝑘) presents an increasing
dilatation along the lags 𝑘 caused by the similar dilation
of a along the sample axis, as discussed in Section IV-A3.
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Fig. 5: Bias energy for speech signals, SNR = ∞ and several
values of 𝑁𝐺 .

0 2 4 6 8 10
−30

−25

−20

−15

−10

−5

0

Time (s)

B
ia

s 
en

er
gy

 (
dB

)

 

 

SNR → ∞

SNR = 30

SNR = 20

SNR = 10

Fig. 6: Bias energy for speech signals, 𝑁𝐺 = 400 and several
values of SNR.

This effect in R𝑥 , defined in (54), is not significant because
the aforementioned decreasing behavior of the speech signal
autocorrelation function makes R𝑣 (𝑘) ≈ 0(𝑁𝐻+1)×(𝑁𝐻+1) for
high values of |𝑘 |. Therefore, as 𝑁𝐺 increases, ‖p𝑥𝑢 ‖2 tends
to decrease while ‖R−1

𝑥 ‖2 is not significantly affected, leading
to a decrease in the upper bound of 𝐸 (𝑛). In practise, although
not mathematically guaranteed, the bias energy ultimately
decreases as indicated by the obtained results.

In addition, the results for 𝑁𝐺 = 400 and SNR = {∞, 30,
20, 10} dB are shown in Figure 6. It is observed that 𝐸 (𝑛)
decreases as SNR decreases. This is justified by observing
that p𝑥𝑢 , defined in (56), is not affected by 𝑟 (𝑛) while R𝑥 ,
defined in (54), is affected by its power (𝜎). From (54), it is
noted that ‖R𝑥 ‖2 is bounded from above as follows

‖R𝑥 ‖2 ≤
∞∑︁

𝑘=−∞
|𝑟𝑎 (𝑘) |2 ‖R𝑣 (𝑘)‖2 + 𝜎2‖R̃𝑎‖2 (58)

while ‖R−1
𝑥 ‖2 has the following lower bound [28]

‖R−1
𝑥 ‖2 ≥ ‖𝐼 ‖2

‖R𝑥 ‖2 =
𝑁𝐻

‖R𝑥 ‖2 . (59)

As 𝜎 increases (SNR decreases), the upper bound of ‖R𝑥 ‖2

increases and consequently the lower bound of ‖R−1
𝑥 ‖2 de-
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Fig. 7: Bias energy for white Gaussian noise and 𝑁𝐺 = 1, 400.

creases. Therefore, as SNR decreases, ‖p𝑥𝑢 ‖2 is not affected
while ‖R−1

𝑥 ‖2 tends to decrease, leading to a decrease in the
upper bound of the bias energy defined in (53). Again in prac-
tise, although not mathematically guaranteed, the bias energy
ultimately decreases as indicated by the obtained results.

Finally, the results for white Gaussian noise (SNR → −∞)
and 𝑁𝐺 = {1, 400} are shown in Figure 7. It is observed
that the values of 𝐸 (𝑛) are practically the same. This occurs
because, as can be concluded from (56), 𝑣(𝑛) = 0 combined
with 𝑎0 = 0 makes p𝑥𝑢 = 0, i.e, the loudspeaker signal
𝑥(𝑛) and the system input signal 𝑢(𝑛) are uncorrelated. As a
consequence, bias {h(𝑛)} = 0. It is noteworthy that, although
it is much smaller than for speech signals, the bias energy
is still nonzero after 10 s because 𝑟 (𝑛) is indeed sequences
of pseudorandom values drawn from the standard normal
distribution and, consequently, R𝑥 and p𝑥𝑢 are close but not
equal to the statistical R𝑥 and p𝑥𝑢 even for large 𝑛.

The presented results exemplify and corroborate the theore-
tical discussion on the existence of bias in the feedback path
estimate provided by the standard adaptive filtering algorithms
and its direct relationship with the autocorrelation matrix of
the loudspeaker signal 𝑥(𝑛) and the cross-correlation between
𝑥(𝑛) and the system input signal 𝑢(𝑛).

B. Experiment 2

In this experiment, the slow convergence speed of the
standard adaptive filtering algorithms when applied to AFC is
exemplified using the RLS algorithm, 𝑁𝐻 = 𝑁𝐹 and SNR =

{∞, 30, 20, 10,−∞}. The RLS algorithm is initialized with
h(0) = 0 and R−1

𝑥 = 𝛿I. For each signal, the algorithm is run
with 𝛿 = 10−𝛼 and forgetting factor 𝜆 = 1 − 10−𝛽 , where 𝛼 =

{2, 3, 4} and 𝛽 = {0, 2, 3, 4, 5, 6}, and the result that minimize
instability time and, secondarily, MIS(𝑛) average is selected.

As did in Experiment 1, in order to simplify the analysis and
discussion of the results, it is assumed that 𝑥(𝑛) and 𝑢(𝑛) are
stationary and ergodic processes as well as 𝑛 is large enough
so that R𝑥 ≈ R𝑥 and p𝑥𝑢 ≈ p𝑥𝑢 , thereby making (37) valid.
In this case, the norm of the covariance matrix is given by

‖cov {h(𝑛)}‖ = ‖bias {h(𝑛)} [bias {h(𝑛)}]𝑇 ‖
= ‖bias {h(𝑛)}‖2 = 𝐸 (𝑛), (60)
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Fig. 8: Average results of the RLS algorithm for speech
signals, SNR → ∞ and several values of 𝑁𝐺: (a) MIS(𝑛);
(b) ΔMSG(𝑛).

being equal to the bias energy.
The average results for SNR → ∞ and 𝑁𝐺 = {1, 100, 400,

800} are shown in Figure 8. It should be observed from
Figure 8a that the adaptive filter has not yet converged even
after 10 s in all cases. For 𝑁𝐺 = 1, the adaptive filter
actually diverged. But, due to the high time required for filter
convergence and computational cost of the RLS algorithm, the
discussion on the improvement in the convergence speed will
be addressed by means of the illustrated transient behavior.

From Figure 8, it is observed that performance improves
as 𝑁𝐺 increases. This occurs because, when 𝑢(𝑛) is speech,
increasing 𝑁𝐺 decreases the bias energy, as discussed in the
previous subsection, and consequently ‖cov {h(𝑛)}‖, leading
to an increase in the convergence speed of the adaptive filter.
The lack of improvement from 𝑁𝐺 = 1 to 𝑁𝐺 = 100 in
Figure 8b is due to ΔMSG(𝑛) taking only one frequency into
consideration as explained in Section IV-B3.

Moreover, the average results for 𝑁𝐺 = 400 and SNR =

{∞, 30, 20, 10} dB are shown in Figure 9. It is noticed that
performance improves as SNR decreases. This occurs because
the white Gaussian noise 𝑟 (𝑛) decreases the bias energy,
as discussed in the previous subsection, and consequently
‖cov {h(𝑛)}‖, thereby leading to an increase in the conver-
gence speed of the adaptive filter. Note that the results for
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Fig. 9: Average results of the RLS algorithm for speech
signals, 𝑁𝐺 = 400 and several values of SNR: (a) MIS(𝑛);
(b) ΔMSG(𝑛).

SNR= {∞, 30} dB are very close since the difference between
the bias energies is small as indicated in Figure 6.

However, in the cases discussed so far, MIS > −3.5 dB and
MSG < 4.2 dB after 10 s. These results exemplify the slow
convergence speed of the standard adaptive filtering algorithms
when applied to AFC and are explained by the fact that,
when 𝑢(𝑛) is speech, R𝑢 is such that cov {h(𝑛)} is large.
These results are even more striking because of the known fast
convergence speed of the RLS algorithm when the eigenvalue
spread of autocorrelation matrix of the adaptive filter input,
Rx in this case, is large as occurs for speech signals [10].

Finally, the results for white Gaussian noise (SNR → −∞)
and 𝑁𝐺 = {1, 400} is shown in Figure 10. It is observed
that MIS(𝑛) and MSG(𝑛) are very similar over time. This
occurs because, as discussed in the first experiment, 𝑎0 = 0
is, in theory, sufficient to completely decorrelate 𝑥(𝑛) and
𝑢(𝑛) when the latter is white Gaussian noise, leading to
bias {h(𝑛)} = 0 and thus cov {h(𝑛)} = 0 in both cases.
Because of that, the performance of the adaptive filter is much
better than for speech signals, achieving MIS ≈ −12 dB and
MSG ≈ 12 dB after 10 s. However, despite the improvement
in convergence speed, it is noteworthy the adaptive filter has
not yet converged because 𝑟 (𝑛) is indeed sequences of pseu-
dorandom values drawn from the standard normal distribution.
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Fig. 10: Average results of the RLS algorithm for white
Gaussian noise and 𝑁𝐺 = {1, 400}: (a) MIS(𝑛); (b) ΔMSG(𝑛).

This causes bias {h(𝑛)} ≠ 0, as can be seen in Figure 7, and
thus cov {h(𝑛)} ≠ 0, thereby limiting the convergence speed
of the adaptive filter.

As a matter of fact, when 𝑎0 = 0 and 𝑢(𝑛) is white Gaussian
noise with zero mean and variance 𝜎2, the signals 𝑥(𝑛) and
𝑢(𝑛) are independent and thus the covariance matrix, defined
in (42), can be written as [10]

cov {h(𝑛)} = E
{(

X𝑇 X
)−1

X𝑇 uu𝑇 X
(
X𝑇 X

)−1
}

= E
{(

X𝑇 X
)−1

X𝑇 E
{
uu𝑇

}
X
(
X𝑇 X

)−1
}

= 𝜎2E
{(

X𝑇 X
)−1

X𝑇 X
(
X𝑇 X

)−1
}

= 𝜎2E
{(

X𝑇 X
)−1

}
, (61)

which, by replacing (30), becomes

cov {h(𝑛)} = 𝜎2

𝑛
E
{
R−1

𝑥

}
. (62)

The equations (61) and (62) are the Cramer-Rao lower bound
(CRLB) of the covariance matrix for any unbiased estimator
of f [10]. Therefore, h(𝑛) is not only the best unbiased linear
estimator (BLUE), in the sense that no other unbiased linear



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 226

solution generated by any approach has lower variance, but
also is the minimum-variance unbiased (MVU) estimator [10].

And considering that 𝑛 is large enough so that R𝑥 ≈ R𝑥 ,
the covariance matrix defined in (62) can be written as

cov {h(𝑛)} = 𝜎2

𝑛
R−1

𝑥 , (63)

which, by making use of (54), becomes

cov {h(𝑛)} = R̃−1
𝑎

𝑛
. (64)

Therefore, in the problem at hand, the CRLB of the covariance
matrix depends solely on the sample autocorrelation matrix of
the closed-loop impulse response of the SR system. Moreover,
from (62) to (64), it can be concluded that elements of
cov {h(𝑛)} decrease as time progresses, becoming null as
𝑛→ ∞. This result is in agreement with the discussion of the
results shown in Figure 10 because the assumptions made are
the same that led to bias {h(𝑛)} = 0 and thus cov {h(𝑛)} = 0.

The presented results corroborate the theoretical discussion
on the covariance matrix of the acoustic feedback path estimate
provided by the AFC systems based on direct closed-loop
identification. In addition, they exemplify the slow conver-
gence speed of the standard adaptive filtering algorithms and
its direct relationship with the autocorrelation matrix of the
system input signal 𝑢(𝑛). This fact justifies the development
of specific methods to estimate the impulse response f of the
acoustic feedback path in AFC systems.

VI. CONCLUSIONS

This work presented, using the least squares estimation
theory, a theoretical and experimental analysis on the poor
performance of standard adaptive filtering algorithms, which
approximate the Wiener solution through the gradient or least
squares, when applied to acoustic feedback cancellation with
direct closed-loop identification.

Expressions for the bias and covariance matrix of the
acoustic feedback path estimate provided by these algorithms
were derived as functions of the signals statistics as well as
derivatives of the cost function. Stationary and non-stationary
environments were considered. It was demonstrated that, in
general, the acoustic feedback path estimate is biased and
presents a large covariance because the closed-loop nature
of the system makes the cross-correlation between the loud-
speaker and system input signals non-zero. As a consequence,
the adaptive filter converges very slowly to a solution that is
not the true acoustic feedback path.

These problems were exemplified using speech signals, a
long acoustic feedback path and the RLS algorithm. It was
verified that, after 10 s, the bias energy is usually greater than
−15 dB while the RLS algorithm achieves a normalized mis-
alignment not less than −3.5 dB and increases the maximum
stable gain by no more than just 4.2 dB. The relationship
between the performance of the adaptive algorithm and the
aforementioned cross-correlation was proven by varying the
signal-to-noise ratio and the delay caused by forward path.

APPENDIX A
EXPANSION OF THE CROSS-CORRELATION VECTOR p𝑥𝑢

The (𝑁𝐻 +1) ×1 cross-correlation vector between 𝑥(𝑛) and
𝑢(𝑛) is defined as [11]

p𝑥𝑢 =
[
𝑟𝑥𝑢 (0) 𝑟𝑥𝑢 (1) · · · 𝑟𝑥𝑢 (𝑁𝐻 )

]𝑇
, (65)

where
𝑟𝑥𝑢 (𝑖) = E {𝑥(𝑛 − 𝑖)𝑢(𝑛)} (66)

is the cross-correlation function between 𝑥(𝑛) and 𝑢(𝑛) [11].
By replacing (5) in (66), we have

𝑟𝑥𝑢 (𝑖) = E

{ ∞∑︁
𝑘=−∞

𝑎𝑘𝑢(𝑛 − 𝑘 − 𝑖)𝑢(𝑛)
}

=

∞∑︁
𝑘=−∞

𝑎𝑘E {𝑢(𝑛 − 𝑘 − 𝑖)𝑢(𝑛)} . (67)

As 𝑢(𝑛) = 𝑣(𝑛) + 𝑟 (𝑛), then (67) becomes

𝑟𝑥𝑢 (𝑖) =
∞∑︁

𝑘=−∞
𝑎𝑘E {[𝑣(𝑛 − 𝑘 − 𝑖) + 𝑟 (𝑛 − 𝑘 − 𝑖)] [𝑣(𝑛) + 𝑟 (𝑛)]}

=

∞∑︁
𝑘=−∞

𝑎𝑘 [E {𝑣(𝑛 − 𝑘 − 𝑖)𝑣(𝑛)} + E {𝑟 (𝑛 − 𝑘 − 𝑖)𝑟 (𝑛)}

+E {𝑟 (𝑛 − 𝑘 − 𝑖)𝑣(𝑛)} + E {𝑣(𝑛 − 𝑘 − 𝑖)𝑟 (𝑛)}]

=

∞∑︁
𝑘=−∞

𝑎𝑘 [𝑟𝑣 (𝑘 + 𝑖) + 𝑟𝑟 (𝑘 + 𝑖) + 𝑟𝑟 𝑣 (𝑘 + 𝑖) + 𝑟𝑣𝑟 (𝑘 + 𝑖)]

(68)

where 𝑟𝑣 (𝑖) = E {𝑣(𝑛 − 𝑖)𝑣(𝑛)} and 𝑟𝑟 (𝑖) = E {𝑟 (𝑛 − 𝑖)𝑟 (𝑛)}
are the autocorrelation functions of 𝑣(𝑛) and 𝑟 (𝑛), respectively,
𝑟𝑣𝑟 (𝑖) = E {𝑣(𝑛 − 𝑖)𝑟 (𝑛)} is the cross-correlation function
between 𝑣(𝑛) and 𝑟 (𝑛), and 𝑟𝑟 𝑣 (𝑖) = 𝑟𝑣𝑟 (−𝑖) is the cross-
correlation function between 𝑟 (𝑛) and 𝑣(𝑛).

Assuming that 𝑟 (𝑛) is a white Gaussian noise with zero
mean and variance 𝜎2, then 𝑟𝑟 𝑣 (𝑖) = 𝑟𝑣𝑟 (𝑖) = 0 and

𝑟𝑟 (𝑖) =
{
𝜎2, 𝑖 = 0,
0, otherwise.

(69)

Hence, in this case, (68) becomes

𝑟𝑥𝑢 (𝑖) =
∞∑︁

𝑘=−∞
𝑎𝑘𝑟𝑣 (𝑘 + 𝑖) +

∞∑︁
𝑘=−∞

𝑎𝑘𝑟𝑟 (𝑘 + 𝑖)

=

∞∑︁
𝑘=−∞

𝑎𝑘𝑟𝑣 (𝑘 + 𝑖) + 𝜎2𝑎−𝑖 . (70)

Assuming that the closed-loop system is causal, then 𝑎𝑘 =

0, 𝑘 < 0, and (70) becomes

𝑟𝑥𝑢 (𝑖) =
{∑∞

𝑘=0 𝑎𝑘𝑟𝑣 (𝑘 + 𝑖) + 𝜎2𝑎−𝑖 , 𝑖 ≤ 0,∑∞
𝑘=0 𝑎𝑘𝑟𝑣 (𝑘 + 𝑖), 𝑖 > 0.

(71)

Therefore, by replacing (71) in (65), the cross-correlation
vector between the loudspeaker signal 𝑥(𝑛) and the system
input signal 𝑢(𝑛) can be expanded as

p𝑥𝑢 =

∞∑︁
𝑘=0

𝑎𝑘p𝑣 (𝑘) + 𝜎2 [𝑎0 0 · · · 0
]𝑇
, (72)

where

p𝑣 (𝑘) =
[
𝑟𝑣 (𝑘) 𝑟𝑣 (𝑘 + 1) · · · 𝑟𝑣 (𝑘 + 𝑁𝐻 )

]𝑇
. (73)
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APPENDIX B
EXPANSION OF THE AUTOCORRELATION MATRIX R𝑥

The (𝑁𝐻 + 1) × (𝑁𝐻 + 1) autocorrelation matrix of 𝑥(𝑛) is
defined as [11]

R𝑥 =


𝑟𝑥 (0) 𝑟𝑥 (1) · · · 𝑟𝑥 (𝑁𝐻 )
𝑟𝑥 (1) 𝑟𝑥 (0) · · · 𝑟𝑥 (𝑁𝐻 − 1)
...

...
. . .

...

𝑟𝑥 (𝑁𝐻 ) 𝑟𝑥 (𝑁𝐻 − 1) · · · 𝑟𝑥 (0)


, (74)

where

𝑟𝑥 (𝑖) = E {𝑥(𝑛)𝑥(𝑛 − 𝑖)} (75)

is the autocorrelation function of 𝑥(𝑛) [11].
By replacing (5) in (75), we have

𝑟𝑥 (𝑖) =
∞∑︁

𝑙=−∞
𝑎𝑙

∞∑︁
𝑘=−∞

𝑎𝑘E {𝑢(𝑛)𝑢(𝑛 − 𝑖)} . (76)

As 𝑢(𝑛) = 𝑣(𝑛) + 𝑟 (𝑛), then (76) becomes

𝑟𝑥 (𝑖) =
∞∑︁

𝑙=−∞
𝑎𝑙

∞∑︁
𝑘=−∞

𝑎𝑘 [𝑟𝑣 (𝑖 + 𝑘 − 𝑙) + 𝑟𝑟 (𝑖 + 𝑘 − 𝑙)

+𝑟𝑣𝑟 (𝑖 + 𝑘 − 𝑙) + 𝑟𝑟 𝑣 (𝑖 + 𝑘 − 𝑙)] . (77)

Assuming that 𝑟 (𝑛) is a white Gaussian noise with zero
mean and variance 𝜎2, then 𝑟𝑟 𝑣 (𝑖) = 𝑟𝑣𝑟 (𝑖) = 0 and 𝑟𝑣 (𝑖) is
defined as (69). Hence, in this case, (77) becomes

𝑟𝑥 (𝑖) =
∞∑︁

𝑙=−∞
𝑎𝑙

∞∑︁
𝑘=−∞

𝑎𝑘𝑟𝑣 (𝑖 + 𝑘 − 𝑙)

+
∞∑︁

𝑙=−∞
𝑎𝑙

∞∑︁
𝑘=−∞

𝑎𝑘𝑟𝑟 (𝑖 + 𝑘 − 𝑙)

=

∞∑︁
𝑙=−∞

𝑎𝑙

∞∑︁
𝑘=−∞

𝑎𝑘𝑟𝑣 (𝑖 + 𝑘 − 𝑙) + 𝜎2
∞∑︁

𝑙=−∞
𝑎𝑙𝑎𝑙−𝑖

=

∞∑︁
𝑙=−∞

𝑎𝑙

∞∑︁
𝑘=−∞

𝑎𝑘𝑟𝑣 (𝑖 + 𝑘 − 𝑙) + 𝜎2𝑟𝑎 (𝑖) (78)

where

𝑟𝑎 (𝑖) =
∞∑︁

𝑙=−∞
𝑎𝑙𝑎𝑙−𝑖 (79)

is the sample autocorrelation function of a [11].
Assuming that the closed-loop system is causal, then 𝑎𝑘 =

0, 𝑘 < 0, and (78) becomes

𝑟𝑥 (𝑖) =
∞∑︁
𝑙=0

𝑎𝑙

∞∑︁
𝑘=0

𝑎𝑘𝑟𝑣 (𝑖 + 𝑘 − 𝑙) + 𝜎2𝑟𝑎 (𝑖). (80)

Expanding the summation and regrouping its terms, (80) may
be written as

𝑟𝑥 (𝑖) = 𝑎0 [𝑎0𝑟𝑣 (𝑖) + 𝑎1𝑟𝑣 (𝑖 + 1) + 𝑎2𝑟𝑣 (𝑖 + 2) + . . .]
+ 𝑎1 [𝑎0𝑟𝑣 (𝑖 − 1) + 𝑎1𝑟𝑣 (𝑖) + 𝑎2𝑟𝑣 (𝑖 + 1) + . . .]
+ 𝑎2 [𝑎0𝑟𝑣 (𝑖 − 2) + 𝑎1𝑟𝑣 (𝑖 − 1) + 𝑎2𝑟𝑣 (𝑖) + . . .]
+ . . . +
+ 𝑎𝑁 [𝑎0𝑟𝑣 (𝑖 − 𝑁) + 𝑎1𝑟𝑣 (𝑖 − 𝑁 + 1) + 𝑎2𝑟𝑣 (𝑖 − 𝑁 + 2) + . . .]
+ . . . + 𝜎2𝑟𝑎 (𝑖)

= 𝑟𝑣 (𝑖) [𝑎0𝑎0 + 𝑎1𝑎1 + 𝑎2𝑎2 + . . .]
+ 𝑟𝑣 (𝑖 + 1) [𝑎0𝑎1 + 𝑎1𝑎2 + 𝑎2𝑎3 + . . .]
+ 𝑟𝑣 (𝑖 − 1) [𝑎1𝑎0 + 𝑎2𝑎1 + 𝑎3𝑎2 + . . .]
+ . . . +
+ 𝑟𝑣 (𝑖 + 𝑁) [𝑎0𝑎𝑁 + 𝑎1𝑎𝑁+1 + 𝑎2𝑎𝑁+2 + . . .]
+ 𝑟𝑣 (𝑖 − 𝑁) [𝑎𝑁 𝑎0 + 𝑎𝑁+1𝑎1 + 𝑎𝑁+2𝑎2 + . . .]
+ . . . + 𝜎2𝑟𝑎 (𝑖). (81)

Using (79), (81) can be written as

𝑟𝑥 (𝑖) = 𝑟𝑣 (𝑖)𝑟𝑎 (0) + 𝑟𝑣 (𝑖 + 1)𝑟𝑎 (1) + 𝑟𝑣 (𝑖 − 1)𝑟𝑎 (1)
+ . . . + 𝑟𝑣 (𝑖 + 𝑁)𝑟𝑎 (𝑁) + 𝑟𝑣 (𝑖 − 𝑁)𝑟𝑎 (𝑁)
+ . . . + 𝜎2𝑟𝑎 (𝑖)

= 𝑟𝑣 (𝑖)𝑟𝑎 (0) +
∞∑︁
𝑘=1

[𝑟𝑣 (𝑖 + 𝑘) + 𝑟𝑣 (𝑖 − 𝑘)] 𝑟𝑎 (𝑘) + 𝜎2𝑟𝑎 (𝑖)

=

∞∑︁
𝑘=−∞

𝑟𝑣 (𝑖 + 𝑘)𝑟𝑎 ( |𝑘 |) + 𝜎2𝑟𝑎 (𝑖). (82)

Finally, as 𝑟𝑎 (𝑘) = 𝑟𝑎 (−𝑘), the autocorrelation function of
the loudspeaker signal 𝑥(𝑛) is given by

𝑟𝑥 (𝑖) =
∞∑︁

𝑘=−∞
𝑟𝑣 (𝑖 + 𝑘)𝑟𝑎 (𝑘) + 𝜎2𝑟𝑎 (𝑖). (83)

Therefore, by replacing (83) in (74), the autocorrelation
matrix of the loudspeaker signal 𝑥(𝑛) can be expanded as

R𝑥 =

∞∑︁
𝑘=−∞

𝑟𝑎 (𝑘)R𝑣 (𝑘) + 𝜎2R̃𝑎, (84)

where

R𝑣 (𝑘) =


𝑟𝑣 (𝑘) 𝑟𝑣 (𝑘 + 1) · · · 𝑟𝑣 (𝑘 + 𝑁𝐻 )

𝑟𝑣 (𝑘 + 1) 𝑟𝑣 (𝑘) · · · 𝑟𝑣 (𝑘 + 𝑁𝐻 − 1)
...

...
. . .

...

𝑟𝑣 (𝑘 + 𝑁𝐻 ) 𝑟𝑣 (𝑘 + 𝑁𝐻 − 1) · · · 𝑟𝑣 (𝑘)


(85)

is an (𝑁𝐻 + 1) × 1 autocorrelation matrix of the source signal
𝑣(𝑛) so that R𝑣 (0) = R𝑣 and

R̃𝑎 =


𝑟𝑎 (0) 𝑟𝑎 (1) · · · 𝑟𝑎 (𝑁𝐻 )
𝑟𝑎 (1) 𝑟𝑎 (0) · · · 𝑟𝑎 (𝑁𝐻 − 1)
...

...
. . .

...

𝑟𝑎 (𝑁𝐻 ) 𝑟𝑎 (𝑁𝐻 − 1) · · · 𝑟𝑎 (0)


(86)

is the (𝑁𝐻 +1) × (𝑁𝐻 +1) sample autocorrelation matrix of a.
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