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Abstract—The performance of wireless communications sys-
tems is affected by many aspects of the fading phenomenon, such
as clustering, nonlinearity, scattered waves, and line of sight.
Even though several fading models exist which address a multi-
tude of propagation conditions, in many cases the fading statistics
or the associated system performance cannot be obtained in a
closed form. In such cases, it is difficult to decipher how each
physical aspect of fading impacts the system performance. In
this work, we propose a unified asymptotic characterization
at high signal-to-noise ratio to obtain simple, general closed-
form expressions for the diversity and coding gains of essential
performance metrics, namely, symbol error rate and outage
probability. We cover generalized propagation conditions and
all the referred fading aspects. The analysis is further extended
to investigate the performance of multibranch maximal-ratio
combining. Capitalizing on the fact that the asymptotic channel
distribution around the origin fully determines the diversity
and coding gains, our results provide new insights into how
each physical aspect of fading ultimately affects the wireless
system performance.

Index Terms—Asymptotic performance, error rate, fading
channels, maximal-ratio combining, outage probability.

I. INTRODUCTION

Wireless communications are entering into a new era. The
emerging fifth generation (5G) of mobile networks promises
ubiquitous high-rate, low-latency, and ultra-reliable commu-
nications [2]–[4]. In order to meet such unprecedented system
requirements, 5G and its key technologies can benefit from
a proper modeling of the radio channel that enables an
accurate description of the multipath fading phenomena [5]–
[8]. The wireless system performance is impacted by several
elements of fading, including clustering, nonlinearity, scat-
tered waves, and line of sight. Different combinations of
these elements have been incorporated into various proba-
bilistic fading models, ranging from the simple one-parameter
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Rayleigh distribution to the ultrageneralized seven-parameter
α-η-κ-µ distribution [7]. With these models, one can assess
the performance of communications systems in terms of
metrics such as symbol error probability (SEP) and outage
probability (OP), ultimately helping optimize the design of
emerging 5G wireless networks.

For many fading scenarios, an exact performance analysis
is intricate, and it usually does not offer tractable closed-
form solutions [9]–[11]. The analysis becomes even more
complicated when there are multiple links connecting source
to destination, such as in diversity-combining schemes. For
example, selection combining (SC), equal-gain combining
(EGC), and maximal-ratio combining (MRC) are popular
diversity techniques whose analysis in terms of SEP and OP
is cumbersome for generalized fading conditions [10], [12].
Because of that, it is difficult to obtain insights on how each
fading aspect impacts the system performance. This problem
can be overcome via an asymptotic performance analysis
at high signal-to-noise ratio (SNR), a condition required in
practice for many wireless applications. Song et al. [13]
derived asymptotic closed-form expressions for the SEP and
OP of multibranch diversity schemes, namely, SC, EGC,
MRC, and hybrid techniques, all of them operating over
Rician channels. Considering a more general fading scenario,
Zhu et al. [10] derived asymptotic upper and lower bounds
for SEP and OP of diversity receivers operating over the
α-µ fading model. More recently, based on the extreme-
value theory, Al-Badarneh et al. [12] obtained the asymptotic
performance characterization for the kth best link selection
over some fading channels, namely, Weibull, gamma, α-µ,
and gamma-gamma. Although covering different propagation
conditions, these works exploited the asymptotic approach on
a case-by-case basis, constrained to certain fading scenarios.
To our best knowledge, no published work provides com-
prehensive insights on how each physical aspect of fading
impacts intricate 5G-like channels.

In this work we aim to shed light on how each physi-
cal aspect of multipath fading impacts the wireless system
performance. To this end, we provide simple, general, and
unified closed-form expressions for the high-SNR SEP and
OP of communications systems operating in a broad fam-
ily of Gaussian-class fading scenarios. Following standard
practice, we describe our expressions in terms of two key
asymptotic parameters: the diversity and coding gains. The

https://orcid.org/0000-0001-9827-6707
https://orcid.org/0000-0002-7493-1428
https://orcid.org/0000-0002-0106-1548


JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 172

covered scenarios include as special cases a large number of
fading models, ranging from the Rayleigh distribution to the
α-η-κ-µ distribution, and embracing all the referred fading
aspects, namely, clustering, nonlinearity, scattered waves, and
line of sight. Our approach capitalizes on an important finding
in [11]: the high-SNR SEP and OP depend exclusively on the
asymptotic channel distribution around the origin. Therefore,
our main challenge here is to find a comprehensive asymptotic
channel distribution that encompasses the broad class of
fading scenarios under investigation. After obtaining such
characterization, we extend the analysis to investigate the
asymptotic performance of multibranch diversity receivers
operating over generalized fading channels. In particular, we
apply the analysis to the MRC scheme, which is the optimal
linear diversity-combining technique [14]. We demonstrate
that all the aforementioned fading aspects impact the coding
gain, whereas only clustering and nonlinearity impact the
diversity gain.

The remainder of this paper is organized as follows. Sec-
tion II revisits key results from the literature to provide some
preliminaries for our work. In Section III we develop an
asymptotic analysis to obtain a comprehensive characteriza-
tion of the system performance at high SNR. Section IV
reduces the proposed general model to many particular cases
and provides closed-form expressions for the diversity and
coding gains of a variety of fading models. In Section V
the proposed asymptotic characterization is further extended
to address multibranch MRC receivers. In Section VI we
evaluate the diversity and coding gains in terms of the fading
parameters for single-branch and multibranch MRC receivers.
Finally, Section VII summarizes the main conclusions of
this paper.

In what follows, f(·)(·) denotes probability density function
(pdf); E[·], expected value; V[·], variance; (·)T , transpose;
log[·], the base-10 logarithm; Γ(·), the gamma function;
Q(x) ,

∫∞
x

(1/
√

2π) exp(−t2/2)dt, the Q-function; and
“∼”, asymptotically equal to around zero, i.e., f(x) ∼
g(x) ⇐⇒ limx→0 f(x)/g(x) = 1.

II. PRELIMINARIES

Two metrics commonly used to assess the wireless system
performance are the SEP and OP, whose formulation relies on
the probability distribution of the (fading) channel. In [11],
Wang and Giannakis demonstrated that at high SNR the SEP
and OP can be characterized by diversity and coding gains
that depend exclusively on the asymptotic channel power pdf
around the origin. We now revisit how this asymptotic pdf
fully determines the high-SNR behavior of SEP and OP.

Let B ≥ 0 represent the channel power coefficient with
asymptotic pdf given by

fB(β) ∼ aB,0βbB,0 , (1)

where aB,0 and bB,0 are constants obtained from the first
term of the Maclaurin series expansion of fB(·). Considering
γ = Bγ̄ to be the instantaneous SNR at the receiver, it follows
that γ̄ is the mean SNR when E[B] = 1. We assume additive
white Gaussian noise (AWGN) and an instantaneous SEP in

the form of Q(
√
νBγ̄), where ν is a positive constant that

depends on the signaling scheme. Accordingly, the average
SEP (PE) can be expressed at high SNR as [11]

PE ∼ (Gcγ̄)−Gd , (2)

where the diversity gain Gd and the coding gain Gc are
obtained in terms of aB,0 and bB,0 as

Gd =bB,0 + 1 (3a)

Gc =ν

[
2bB,0aB,0Γ(bB,0 + 3/2)√

π(bB,0 + 1)

]− 1
bB,0+1

. (3b)

In a similar manner, the OP (Pout) can be expressed at high
SNR as [11]

Pout ∼ (Ocγ̄)−Od , (4)

where the diversity gain Od and the coding gain Oc are
obtained as

Od =Gd = bB,0 + 1 (5a)

Oc =
1

γth

(
aB,0

bB,0 + 1

)− 1
bB,0+1

, (5b)

and γth > 0 is a certain outage threshold of SNR.
Besides the system parameters ν and γth, note that the

diversity and coding gains of SEP and OP only depend on
the terms aB,0 and bB,0 of the asymptotic channel power pdf
around the origin. If aB,0 and bB,0 are expressed in terms of
the aforementioned fading aspects, we can outline how each
fading parameter affects the system performance. To this end,
we introduce next a novel asymptotic analysis that leads to
aB,0 and bB,0 in terms of the physical parameters embraced
by generalized fading models.

III. ASYMPTOTIC ANALYSIS

In this section, we develop an asymptotic analysis con-
sidering a general fading scenario to reveal how physical
parameters impact the high-SNR system performance in a
broad class of fading conditions.

A. General Fading Model

The signal transmitted over a multipath fading channel
reaches the receiver in a large number of scattered, reflected,
and diffracted waves, coming from diverse paths and with
random amplitudes. In many physical situations, these am-
plitudes can be assumed statistically independent and with
finite variances, such that the conditions of the Central Limit
Theorem are satisfied [15], [16]. Accordingly, the sum of
these amplitudes at the receiver yields a Gaussian random
variable (RV), which has motivated many Gaussian-class
fading models (e.g., see [7], [17], [18], and references therein).

Following standard practice [7], we consider a general
fading model obtained from a sum of squared independent
Gaussian RVs. This way, the channel power B can be writ-
ten as

B
α
2 =

M∑
i=1

X2
i , S, (6)



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 173

where α > 0 is a nonlinearity parameter [7], M is the
number of Gaussian components, and each Xi is a Gaussian
RV with mean E[Xi] = mi and variance V[Xi] = σ2

i .
We can arrange the components Xi into the vector form
X , [X1 X2 · · · XM ]

T so that the multivariate pdf of X ,
fX(·), can be formulated in terms of its mean vector m ,
E[X] and covariance matrix Σ , E[(X −m)(X −m)T ].
Specifically, the (positive-definite) covariance matrix Σ can
be expressed as

Σ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

M

 , (7)

whose inverse is given by

Σ−1 =


1
σ2

1
0 · · · 0

0 1
σ2

2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
M

 . (8)

Altogether, the multivariate Gaussian pdf of X can be ob-
tained as

fX(x) =

exp

[
−1

2
(x−m)TΣ−1(x−m)

]
[(2π)M det(Σ)]

1
2

. (9)

Considering this general fading model, next we determine
the asymptotic channel power pdf.

B. Asymptotic Channel Characterization

We now obtain the asymptotic pdf of B = S2/α. To this
end, we initially derive the asymptotic pdf of X , of X2 ,[
X2

1 X
2
2 · · · X2

M

]T
, and of S.

Using the Maclaurin series expansion of the exponential
function in (9) and taking its first term, the asymptotic pdf of
X can be written as

fX(x) ∼
exp

[
−1

2
mTΣ−1m

]
[(2π)M det(Σ)]

1
2

. (10)

For convenience, we let ki , m2
i /σ

2
i , ∀i, such that (10)

reduces to

fX(x) ∼ (2π)−
M
2 exp

[
−1

2

M∑
i=1

ki

]
M∏
i=1

1

σi
. (11)

Furthermore, via a simple transformation of variables, we
obtain from (11) the asymptotic pdf of X2:

fX2

(
x2
)
∼ (2π)−

M
2 exp

[
−1

2

M∑
i=1

ki

]
M∏
i=1

1

σi|xi|
. (12)

In order to obtain from (12) the asymptotic pdf of S
(defined in (6)), let the Maclaurin series expansion of the pdf
of each X2

i be given by

fX2
i

(
x2
i

)
=

∞∑
n=0

ai,n
(
x2
i

)bi,n ∼ ai,0 (x2
i

)bi,0
, (13)

and the Maclaurin series expansion of the pdf of S be
expressed by

fS(s) =

∞∑
n=0

ans
bn ∼ a0s

b0 , (14)

where ai,n, an, bi,n, and bn are constants, ∀i, n. Note that
ai,0

(
x2
i

)bi,0 and a0s
b0 denote the asymptote of fX2

i
(·) and of

fS(·), respectively. Since the asymptotic multivariate pdf of
independent RVs is equal to the product of the corresponding
asymptotic marginal pdfs [19], we have that

fX2

(
x2
)
∼

M∏
i=1

ai,0
(
x2
i

)bi,0
. (15)

In this way, comparing (15) with (12), we obtain ai,0 and
bi,0 as

ai,0 = (2π)−
1
2 exp

− 1

2M

M∑
j=1

kj

 M∏
j=1

σ
− 1
M

j (16a)

bi,0 = −1

2
, (16b)

and substituting (16) into [19, eq. (23)], we attain

a0 =

exp

[
−1

2

M∑
i=1

ki

]
2
M
2 Γ
(
M
2

) M∏
i=1

1

σi
(17a)

b0 =
M

2
− 1. (17b)

Finally, we obtain the asymptotic pdf of B = S2/α by
performing once again a transformation of variables, which
leads to

fB(β) ∼ aB,0βbB,0 =
αa0

2
β
α(b0+1)−2

2 . (18)

Using (17) and (18), aB,0 and bB,0 are then expressed as

aB,0 = α

exp

[
−1

2

M∑
i=1

ki

]
2
M+2

2 Γ
(
M
2

) M∏
i=1

1

σi
(19a)

bB,0 =
αM

4
− 1. (19b)

Note that (19) gives the terms aB,0 and bB,0 as a function
of the physical parameters M , α, {mi}Mi=1, and {σ2

i }Mi=1

from the general fading model in (6). We can now obtain
a comprehensive characterization of the asymptotic system
performance in terms of these fading parameters, as pro-
vided next.

C. Diversity and Coding Gains

Based on the above analysis, we can use (19) to obtain
the diversity and coding gains for SEP and OP, thereby
providing an insightful system performance characterization.
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Accordingly, substituting (19) into (3), we obtain the gains
for SEP:

Gd =
αM

4
(20a)

Gc =ν

{
Mπ

1
2 2

M
2 (1−α2 )Γ

(
M

2

)[
Γ

(
αM

4
+

1

2

)]−1

× exp

[
1

2

M∑
i=1

ki

]
M∏
i=1

σi

} 4
αM

. (20b)

Similarly, substituting (19) into (5), we obtain the gains
for OP:

Od =Gd =
αM

4
(21a)

Oc =
1

γth

{
M2

M
2 −1Γ

(
M

2

)
exp

[
1

2

M∑
i=1

ki

]
M∏
i=1

σi

} 4
αM

.

(21b)

For any values of ν and γth, note from (20) and (21) that
the diversity and coding gains of SEP and OP are given in
terms of the various elements of the fading model in (6): the
number of multipath clusters (M ), the medium nonlinearity
(α), the line of sight (mi), and the mean power of the scattered
waves (σ2

i ). Therefore, we have a simple and thorough under-
standing about how each fading parameter impacts the system
performance at high-SNR conditions, a compelling regime to
assess and compare communications systems.

IV. PARTICULAR CASES

The general fading model considered in the previous section
can be reduced to a variety of existing fading distributions.
Before doing so, we address the case where the multipath
clusters Xi in (6) are exchangeable RVs [15], which we call
commutative scenario.

A. Commutative Scenario

In this scenario, the RVs Xi in (6) are identically dis-
tributed. Under such constraint, we can eliminate the indices
to let mi = m, σi = σ, and ki = k, ∀i. Using this into (20)
and (21), the diversity and coding gains reduce to

Gd =Od =
αM

4
(22a)

Gc =ν

{
σMMπ

1
2 2

M
2 (1−α2 )Γ

(
M

2

)[
Γ

(
αM

4
+

1

2

)]−1

× exp

[
kM

2

]} 4
αM

(22b)

Oc =
1

γth

{
σMM2

M
2 −1Γ

(
M

2

)
exp

[
kM

2

]} 4
αM

. (22c)

From these expressions, we provide in Section VI some
insights into the system performance in terms of each fading
parameter. Previously, we reduce (20) and (21) to many
existing fading models, as detailed next.

B. Existing Fading Models

There are many distributions available in the literature that
model the fading channel. In order to reduce our analysis
to each specific case, we follow a common notation [7] and
define some parameters:
• K > 0 is the ratio between the total power of the

specular components and the total power of the scattered
components, i.e.,

K ,

∑M
i=1m

2
i∑M

i=1 σ
2
i

; (23)

• P > 0 is the ratio between the number of in-phase com-
ponents Mx and the number of quadrature components
My, i.e.,

P ,
Mx

My
, (24)

where M = Mx +My;
• Q > 0 is the ratio between two other ratios, namely,

(i) the total power of the in-phase specular components
divided by the total power of the in-phase scattered

components
(
Kx ,

∑Mx
i=1 m

2
i∑Mx

i=1 σ
2
i

)
and (ii) the total power

of the quadrature specular components divided by the
total power of the quadrature scattered components(
Ky ,

∑Mx+My
i=Mx+1

m2
i∑Mx+My

i=Mx+1
σ2
i

)
, i.e.,

Q ,
Kx

Ky
. (25)

Table I presents the gains for many fading models,
from the simple Rayleigh distribution to the highly sophis-
ticated α-η-κ-µ distribution. As a user guide to the reader,
we provide a detailed explanation of that table:
• The first column outlines several popular Gaussian-class

fading models available in the literature. All these models
can be obtained from (6) as particular cases;

• The second column provides the parameters of the cor-
responding fading model in the first column;

• The third column shows how to set the parameters of
the general model in (6) in order to match each existing
model. Such correspondence is in terms of the parameters
M , K, P , Q, α, and σ, where parameters not shown
are either irrelevant for the equivalence (e.g., Q is not
a parameter of the Rayleigh distribution) or the same
for our general model and its corresponding particular
case (e.g., the nonlinearity parameter α is the same for
the general fading model and the α-µ fading model).
Furthermore, {(Xi,mi, σi)}Mx

i=1 denotes the Gaussian
clusters and parameters of the in-phase components,
whereas {(Xi,mi, σi)}

Mx+My=M
i=Mx+1 denotes the Gaussian

clusters and parameters of the quadrature components.
• The fourth column provides closed-form expressions for

the diversity gains of SEP and OP (Gd = Od) in terms
of the original parameterization (in the second column);

• The fifth and sixth columns provide, respectively, closed-
form expressions for the coding gains of SEP (Gc) and
OP (Oc), also in terms of the original parameterization.
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TABLE I
DIVERSITY AND CODING GAINS FOR EXISTING FADING MODELS

Fading
Model

Original
Parameterization a General Model Parameterization Gd = Od Gc Oc

Rayleigh (Ω)

M = 2;K = 0;P = 1;α = 2;

σ1 = σ2 =

[
Ω

2

] 1
2

.

1 2νΩ Ω

γth

Hoyt (b,Ω)

M = 2;K = 0;P = 1;α = 2;

σ1 =

[
Ω(1 + b)

2

] 1
2

;σ2 =

[
Ω(1− b)

2

] 1
2

.

1 2νΩ [(1 + b) (1− b)]
1
2

Ω

γth
[(1 + b) (1− b)]

1
2

Rice (kRice,Ω)

M = 2;K = kRice;P = 1;α = 2;

σ1 = σ2 =

[
Ω

2(kRice + 1)

] 1
2

.

1 2νΩ
exp [kRice]

kRice + 1

Ω

γth

exp [kRice]

kRice + 1

Nakagami-m (m,Ω)

M = 2m;K = 0;P = 1;α = 2;

σi =

[
Ω

2m

] 1
2

, ∀i ∈ {1, . . . ,M}.
m νΩ

2

[
2
√
πΓ(m)

mm−1Γ
(
m+ 1

2

)] 1
m Ω

γth

[
Γ(m)

mm−1

] 1
m

Weibull (α,Ω)

M = 2;K = 0;P = 1;

σ1 = σ2 =

[
Ω

2

] 1
2

.

α

2
ν

2

[
2
√
πΩ

Γ
(
α
2

+ 1
2

)] 2
α Ω

2
α

γth

α-µ (α, µ, r̂)

M = 2µ;K = 0;P = 1;

σi =

[
r̂α

2µ

] 1
2

,∀i ∈ {1, . . . ,M}.

αµ

2
νr̂2

2

[
2
√
πΓ(µ)

µµ−1Γ
(αµ

2
+ 1

2

)] 2
αµ r̂2

γth

[
Γ(µ)

µµ−1

] 2
αµ

η-µ (η, µ, r̂)

M = 4µ;K = 0;P = 1;α = 2;

σi =

[
ηr̂2

2µ(η + 1)

] 1
2

,∀i ∈
{

1, . . . ,
M

2

}
;

σi =

[
r̂2

2µ(η + 1)

] 1
2

,∀i ∈
{
M

2
+ 1, . . . ,M

}
.

2µ νr̂2

2

[
4
√
πηµΓ(2µ)

µ2µ−1(η + 1)2µΓ
(
2µ+ 1

2

)] 1
2µ r̂2

γth

[
2ηµΓ(2µ)

µ2µ−1(η + 1)2µ

] 1
2µ

κ-µ (κ, µ, r̂)

M = 2µ;K = κ;P = 1;α = 2;

σi =

[
r̂2

2µ(κ+ 1)

] 1
2

, ∀i ∈ {1, . . . ,M}.
µ νr̂2

2

[
2
√
πΓ(µ) exp [κµ]

µµ−1(κ+ 1)µΓ
(
µ+ 1

2

)] 1
µ r̂2

γth

[
Γ(µ) exp [κµ]

µµ−1(κ+ 1)µ

] 1
µ

η-κ
(Beckmann)

(η, κ, r̂)

M = 2;K = κ;P = 1;α = 2;

σ1 =

[
ηr̂2

(η + 1)(κ+ 1)

] 1
2

;

σ2 =

[
r̂2

(η + 1)(κ+ 1)

] 1
2

.

1
νr̂2

4
√
η exp

[
κ(η+1)(q+1)

2(ηq+1)

]
(η + 1)(κ+ 1)

r̂2

γth

2
√
η exp

[
κ(η+1)(q+1)

2(ηq+1)

]
(η + 1)(κ+ 1)

α-η-µ (α, η, µ, r̂)

M = 4µ;K = 0;P = 1;

σi =

[
ηr̂α

2µ(η + 1)

] 1
2

,∀i ∈
{

1, . . . ,
M

2

}
;

σi =

[
r̂α

2µ(η + 1)

] 1
2

,∀i ∈
{
M

2
+ 1, . . . ,M

}
.

αµ νr̂2

2

[
4
√
πµ1−2µηµΓ(2µ)

(η + 1)2µΓ
(
αµ+ 1

2

)] 1
αµ r̂2

γth

[
2ηµΓ(2µ)

µ2µ−1(η + 1)2µ

] 1
αµ

α-κ-µ (α, κ, µ, r̂)

M = 2µ;K = κ;P = 1;Q = q;

σi =

[
r̂α

2µ(κ+ 1)

] 1
2

, ∀i ∈ {1, . . . ,M}.

αµ

2
νr̂2

2

[
2
√
πµ1−µΓ(µ) exp [κµ]

(κ+ 1)µΓ
(αµ

2
+ 1

2

) ] 2
αµ r̂2

γth

[
Γ(µ) exp [κµ]

µµ−1(κ+ 1)µ

] 2
αµ

α-η-κ-µ (α, η, κ, µ, p, q, r̂)

M = 2µ;K = κ;P = p;Q = q;

σi =

 ηr̂α
(p+1)
(η+1)

2µp(κ+ 1)

 1
2

, ∀i ∈ {1, . . . ,Mx};

σi =

 r̂α
(p+1)
(η+1)

2µ(κ+ 1)

 1
2

, ∀i ∈ {Mx + 1, . . . ,

Mx +My = M}.

αµ

2

νr̂2

2


2
√
π(p+ 1)µ

(
η
p

) pµ
p+1

µµ−1(η + 1)µ(κ+ 1)µ

×
Γ(µ) exp

[
κµ(η+1)(pq+1)
(p+1)(ηq+1)

]
Γ
(αµ

2
+ 1

2

)


2
αµ

r̂2

γth


(p+ 1)µ

(
η
p

) pµ
p+1

Γ(µ)

µµ−1(η + 1)µ(κ+ 1)µ

× exp

[
κµ(η + 1)(pq + 1)

(p+ 1)(ηq + 1)

]} 2
αµ

a See [7, Sec. VI] for further details on the original parameterization of the existing fading models.
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V. APPLICATION TO MAXIMAL-RATIO COMBINING

MRC is a combining technique that has been widely
exploited to improve the wireless system performance. This
technique achieves full diversity order at high SNR and is
optimum in the sense that it maximizes the output SNR for
independent AWGN channels [14], [20]. Herein, we further
extend our analysis in order to evaluate the performance
of multibranch MRC receivers over generalized Gaussian-
class fading.

Considering an MRC receiver with L mutually independent
branches, let γl and γΣ represent the instantaneous SNR for
the lth branch and for the combiner output, respectively. The
resulting SNR γΣ is the sum of the SNRs of each individual
branch [14], i.e.,

γΣ =

L∑
l=1

γl. (26)

For convenience, let Gdl and Odl denote the diversity gains
of SEP and OP at the lth branch, and let GdΣ

and OdΣ
denote

the resulting diversity gains of SEP and OP at the MRC
output, respectively. As already observed in the literature, the
resulting diversity gains of SEP and OP are given by [11]

GdΣ
=

L∑
l=1

Gdl (27)

OdΣ
=

L∑
l=1

Odl . (28)

Furthermore, note from (21a) that the diversity gains of SEP
and OP at the lth branch are identical, i.e., Gdl = Odl ,∀l.
Let αl and Ml represent the nonlinearity parameter and the
number of Gaussian clusters for the lth branch, respectively,
such that (20a) and (21a) can be written as

Gdl = Odl =
αlMl

4
. (29)

Therefore, substituting (29) into (27) and (28) we attain

GdΣ = OdΣ =
1

4

L∑
l=1

αlMl. (30)

Similarly, let Gcl and Ocl denote the coding gains of SEP
and OP at the lth branch, and let GcΣ and OcΣ denote the
resulting coding gains of SEP and OP at the MRC output,

respectively. The resulting coding gains of SEP and OP can
be obtained as [11]

GcΣ =


2L−1π

L−1
2 Γ

(
1
2 +

L∑
l=1

Gdl

)[
L∏
l=1

GdlΓ(Gdl)

]
(

L∑
l=1

Gdl

)
Γ

(
L∑
l=1

Gdl

)

×

[
L∏
l=1

1

G
Gdl
cl Γ(Gdl + 1

2 )

]}− 1
L∑
l=1

Gdl (31a)

OcΣ =


[
L∏
l=1

OdlΓ(Odl)

]
(

L∑
l=1

Odl

)
Γ

(
L∑
l=1

Odl

)[
L∏
l=1

O
Odl
cl

]

− 1

L∑
l=1

Odl

.

(31b)

Also, recalling that αl and Ml represent the nonlinearity
parameter and the number of Gaussian clusters for the lth
branch, respectively, we can rewrite (20b) and (21b) as

Gcl =ν

{
Mlπ

1
2 2

Ml
2 (1−α2 )Γ

(
Ml

2

)[
Γ

(
αlMl

4
+

1

2

)]−1

× exp

[
1

2

Ml∑
i=1

kl,i

]
Ml∏
i=1

σl,i

} 4
αlMl

(32)

Ocl =
1

γth

{
Ml

21−Ml2
Γ

(
Ml

2

)
exp

[
1

2

Ml∑
i=1

kl,i

]
Ml∏
i=1

σl,i

} 4
αlMl

,

(33)

where σl,i and kl,i are the standard deviation and the power
ratio, respectively, for the ith cluster of the lth branch. We can
then substitute (32) and (33) into (31a) and (31b), respectively,
so as to obtain the resulting coding gains in (34) and (35),
shown at the bottom of this page.

Note that the closed-form expressions obtained in (30),
(34), and (35) are novel and fully describe the asymptotic
performance of MRC receivers operating over a large variety
of Gaussian-class fading channels.

VI. NUMERICAL RESULTS

In this section, we evaluate how the diversity and coding
gains vary with the fading parameters M , σ, k, and α for
single-branch and multibranch MRC receivers. We have ex-
tensively validated our asymptotic expressions by comparing
them with their corresponding exact solutions, obtained via

GcΣ
= ν


2L−1π

1
2

∏L
l=1 2

Ml
2 (1−αl2 )Γ

(
Ml

2

)
exp

[
1
2

∑Ml

i=1 kl,i

]∏Ml

i=1 σl,i[(∑L
l=1 αlMl

)
Γ
(

1
4

∑L
l=1 αlMl

)]−1

Γ
(

1
2 + 1

4

∑L
l=1 αlMl

)∏L
l=1 αlΓ

(
αlMl

4

)


4∑L
l=1

αlMl

(34)

OcΣ
=

1

γth


2L−2

∏L
l=1 2

Ml
2 Γ

(
Ml

2

)
exp

[
1
2

∑Ml

i=1 kl,i

]∏Ml

i=1 σl,i[(∑L
l=1 αlMl

)
Γ
(

1
4

∑L
l=1 αlMl

)]−1∏L
l=1 αlΓ

(
αlMl

4

)


4∑L
l=1

αlMl

(35)
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Fig. 1. Diversity and coding gains as a function of the number of clusters
for α = 2, σ = 1, and k = 0.
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Fig. 2. Diversity and coding gains as a function of the standard deviation
for varying α, M = 2, and k = 0.

numerical integration using the software Mathematica. For
illustrative purposes, we consider the commutative scenario
and let Ml = M , σl = σ, kl = k, and αl = α, ∀l, with
ν = γth = 1. In particular, M = 2 represents popular
fading models such as Rayleigh, Rice, Hoyt, and Weibull;
σ = 1, scattered waves of unit powers; k = 0, absence of
line of sight; and α = 2 and α 6= 2, linear and nonlinear
media, respectively.

A. Single-Branch Receivers

The analysis for the diversity gain is quite simple: note from
(22a) that Gd and Od are directly proportional to the medium
nonlinearity (α) and to the number of clusters (M ). This
indicates that as α and M increase, so does the magnitude
of the slope in the SEP and OP curves, as expected from (2)
and (4). Therefore, the fading parameters α and M increase
the diversity gain, as illustrated in Figs. 1–4, and ultimately
dominate the system performance at high SNR.

The analysis for the coding gains is more cumbersome.
Figs. 1–4 depict the coding gains in terms of M , σ, k,
and α, respectively. As M increases, Fig. 1 shows that Oc
increases and, more interestingly, Gc decreases. However, this
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Fig. 3. Diversity and coding gains as a function of the power ratio for σ = 1
and some combinations of M and α.
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Fig. 4. Diversity and coding gains as a function of the nonlinearity for
varying M , σ = 1, and k = 0.

does not necessarily mean that the SEP increases, since the
diversity gain Gd = αM

4 increases with M , and this latter
aspect dominates the system performance at high SNR, as
already mentioned. In Fig. 2, σ increases the coding gains
by (40/α) log[σ] dB, and in Fig. 3, k increases them by
20(k/α) log[e] dB, where e is the Euler’s number. These three
figures reveal that a growth in the number of multipath clusters
(M ), in the power of scaretted waves (σ2), or in the power of
specular components (m2) improves the system performance.
Indeed, such growth corresponds to more signal replicas
(M) or signal power (σ2 and m2) reaching the receiver,
thereby decreasing metrics such as SER and OP. In Fig. 4,
the coding gains approach infinity as α approaches zero,
a region that corresponds to a severe fading condition [7].
Conversely, as α increases, Oc approaches unity (zero decibel)
and Gc approaches zero. In this case, even though Gc tends
to deteriorate the channel as α approaches infinity, note that
Gd = αM

4 is also a function of α, which dominates the SEP at
high SNR. Hence, the system performance improves when the
parameters M , σ, m, and α increase, a result that corroborates
and generalizes others recently obtained in the literature for
particular fading models, e.g., the α-η-µ [21] and the α-κ-
µ [22] distributions.
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Fig. 5. MRC diversity gain as a function of the number of clusters for varying
number of branches L, α = 2, σ = 1, and k = 0.
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Fig. 6. MRC coding gains as a function of the number of clusters for varying
number of branches L, α = 2, σ = 1, and k = 0.

B. Multibranch Receivers

Herein we consider multibranch MRC receivers operating
over the commutative scenario. As can be noticed from
Figs. 5–11, the fading parameters impact such receivers in
a similar fashion as that of the single-branch case. Therefore,
in the following discussion we focus mainly on the impact of
the number of branches on the system performance.

Note from (30) that the resulting diversity gains of SEP
and OP are given as GdΣ = OdΣ = 1

4

∑L
l=1 αlMl, i.e., when

L increases, so do GdΣ and OdΣ . In particular, when αl = α
and Ml = M , ∀l, the resulting diversity gains are given by
GdΣ

= OdΣ
= αLM

4 , which implies that (i) the diversity
gains vary linearly with L, (ii) the diversity gains in the linear
scenario (α = 2) are half the total number of Gaussian clusters
(GdΣ = OdΣ = LM

2 ), and (iii) the number of branches (L)
is interchangeable with the number of Gaussian clusters per
branch (M ), causing an equivalent impact on diversity.

The coding gains of SEP and OP have different behaviors
as L varies: when L increases, OcΣ

also increases, but GcΣ
de-

creases, as shown in Figs. 6–11. Unlike for the diversity gains,
these variations are no longer linear with L. In particular, on a
log scale (or, equivalently, on a dB basis), the variations in the
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Fig. 7. MRC diversity and coding gains of SEP as a function of the standard
deviation for varying number of branches L, α = 2, M = 2, and k = 0.
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Fig. 8. MRC diversity and coding gains of OP as a function of the standard
deviation for varying number of branches L, α = 2, M = 2, and k = 0.

coding gains are seen to diminish as L increases. Also note
in Fig. 11 that the coding gain of SEP tends to zero when α
increases, regardless of L. However, as already mentioned for
the single-branch receiver, the diversity gain dominates the
system performance at sufficiently high SNR, and hence the
SEP decreases when α increases.

These insights are useful to determine in a simple manner
the high-SNR performance of MRC receivers operating over
a broad class of fading models.

VII. CONCLUSIONS

In this work we proposed a simple and unified asymptotic
performance analysis of communications systems operating
over fading channels. Closed-form expressions for the diver-
sity and coding gains of SEP and OP were derived considering
a general fading model that covers a multitude of propagation
scenarios. Such analysis offers insights on how each fading
parameter affects the wireless system performance at high-
SNR regime. We also further extended the results to investi-
gate the performance of MRC receivers. It turned out that all
the referred fading aspects affect the coding gains, whereas
only the clustering and nonlinearity affect the diversity gain.
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Fig. 9. MRC diversity and coding gains of SEP as a function of the power
ratio for varying number of branches L, α = 2, M = 2, and σ = 1.
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Fig. 10. MRC diversity and coding gains of OP as a function of the power
ratio for varying number of branches L, α = 2, M = 2, and σ = 1.

This can be readily used to evaluate many communication
schemes operating in a broad family of propagation scenarios,
thus helping optimize system design.
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