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Multichannel Source Separation Using
Time-Deconvolutive CNMF

Thadeu Luiz Barbosa Dias, Wallace Alves Martins, and Luiz Wagner Pereira Biscainho

Abstract—This paper addresses the separation of audio sources
from convolutive mixtures captured by a microphone array. We
approach the problem using complex-valued non-negative matrix
factorization (CNMF), and extend previous works by tailoring
advanced (single-channel) NMF models, such as the deconvolutive
NMF, to the multichannel factorization setup. Further, a sparsity-
promoting scheme is proposed so that the underlying estimated
parameters better fit the time-frequency properties inherent
in some audio sources. The proposed parameter estimation
framework is compatible with previous related works, and can be
thought of as a step toward a more general method. We evaluate
the resulting separation accuracy using a simulated acoustic
scenario, and the tests confirm that the proposed algorithm
provides superior separation quality when compared to a state-
of-the-art benchmark. Finally, an analysis of the effects of the
introduced regularization term shows that the solution is in fact
steered toward a sparser representation.

Index Terms—Blind source separation, convolutive mixture,
NMF, deconvolutive NMF

I. INTRODUCTION

Blind source separation (BSS) is an extensively researched
topic with a wide variety of applications [2]. A celebrated ex-
ample is the use of independent component analysis (ICA) [3,
4, 5] to separate muscular activity interference from brain
activity in encephalographic scans [6]. Another interesting
example is the use of BSS in speech enhancement for hearing
aid devices [7].

Among traditional techniques for source separation, non-
negative matrix factorization (NMF) [8], a single-channel
method, has been successfully employed in the literature [9].
NMF factorizes an input matrix with non-negative entries into
two lower-rank matrices with non-negative entries, and is able
to extract the most significant components that explain the ob-
served data, i.e., a model and a set of parameters that produce
a satisfactory estimate of the data. In comparison with other
rank-reducing methods such as singular-value decomposition
(SVD), the fact of dealing only with non-negative quantities
is a distinctive feature of NMF: this is suitable for parameters
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that are non-negative by nature as is the case of magnitude or
power spectra, and prevents mutual cancelling of components
by destructive interference, since the model is strictly additive.

In the source separation scenario, the resulting NMF factors
from a mixture spectrogram can be thought of as a set of
spectral signatures and temporal activation patterns [10]. It is
expected that subsets of the extracted signatures explain each
source, and a typical challenge is how to assign which com-
ponents correspond to each source. Usually, this assignment
relies on some other prior information.

A more powerful way to perform source separation is to
exploit spatial information, as in the case of multichannel
processing methods. The complex-valued NMF (CNMF) [11]
is a development in this direction, with the introduction of Her-
mitian positive semidefinite matrices as data points, derived
from the measured signals’ complex-valued spectrograms.
Building on the CNMF model, an alternative factorization,
with geometric constraints, is proposed in [12], providing
spatially-coherent estimation, thus enhancing the separation
quality of the method.

In [11, 12, 13], the factorization models were based on the
standard NMF; by construction, the standard NMF model does
not take into account the temporal sequence of samples, that
is, a random shuffle in the time frames is irrelevant from the
decomposition viewpoint. This approach, therefore, disregards
useful continuity structures that can be observed in some data,
such as musical samples, and often, the emission signatures
cannot be efficiently represented by single NMF components.
In order to address this limitation, we propose using a decon-
volutive NMF (NMFD) scheme [14]. The extended NMFD
signatures have a user-defined span of time frames, opening
up the possibility for a more concise representation of some
musical emissions, and eventually enhancing the separation
quality.

In this paper we show that the deconvolutive NMF model
can be tailored to the CNMF framework with good results,
and that we may regularize the related cost function toward
a sparse solution. We start with the problem statement in
Section II, give a brief introduction to the NMF models
in Section III, describe the transformations of the original
data into the CNMF data points in Section IV, and the
constrained construction of channel matrices as well as the
application of the deconvolutive model in Section V. We derive
the estimation framework for a Euclidean cost function in
Section VI, and present the numerical results in Section VII.

A note on notation: In this paper, we denote scalars by reg-
ular lower-case letters, e.g. x, vector variables are lower-case
bold letters, e.g. x, matrices are upper-case bold, e.g. X , and
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higher-order tensors are calligraphic upper-case bold, e.g. X .
An indexed element from a higher-order tensor corresponds to
a slice of the original tensor, e.g. [Bk]it = [B]ikt. Conversely,
when some index is omitted and the variable gets promoted
to a higher-order form, we refer to the entire collection of
elements with the same name, that is, W = {Wio ∀i, o}.

II. PROBLEM STATEMENT

We state our problem as that of separating meaningful
acoustic sources captured by a microphone array with known
geometry placed in a reverberant environment. Meaningful in
this case means a source that is spatially concentrated, and
emissions from different positions are considered as being
from different sources. We consider that the propagation media
is linear and time-invariant, and effects such as reverberation
and multipath-propagation are then modeled by the unknown
source-sensor channel impulse responses.

Under such considerations and assuming an array with M
microphones, the acquired signals can then be described by
the following model:

xm(t) =

Q∑
q=1

(hqm ∗ sq)(t), (1)

where Q is the true number of sources, xm(t) is the mth sensor
measurement, hqm(t) is the impulse response relative to the
channel between the source-sensor pair (q,m), sq(t) is the true
emission of source q, and ∗ denotes the convolution operation.
We would then like to be able to reconstruct estimates for the
individual source images ŷqm(t) = (hqm ∗ sq)(t), as captured
by the array.

We now describe the basic NMF formulations, and the steps
toward integrating Eq. (1) into the non-negative framework.

III. NMF BASICS

Non-negative matrix factorization is, at its core, the factor-
ization of a matrix of non-negative entries into two reduced-
rank matrices with non-negative entries.

In its most basic formulation [15], we have a data matrix
X ∈ RI×L+ , and want to find a K-rank approximation of the
original matrix according to a suitable criterion, subject to a
non-negative constraint on the components; the approximation
is given by matrices B ∈ RI×K+ and G ∈ RK×L+ such that

X ≈ BG =

K∑
k=1

bkg
T
k , (2)

as illustrated in Fig. 1.

X

≈

B

G

Fig. 1. Simple NMF model.

Usually, the approximation criterion is described by some
cost function L(X,BG), and the factors are obtained by
jointly minimizing the overall cost:

min
B,G

L(X,BG)

subject to non-negative constraints.
(3)

A useful interpretation of the extracted factors is the fol-
lowing: if the rows of X are features, and each column of
X represents the set of features from a given observation;
then, after a successful factorization, the columns of B can
be thought of as recurrent signatures, forming a basis for the
observations, and the rows of G as coefficients denoting the
activation of each corresponding signature [9]. The presence of
a given signature could then be related to some hidden factor
of the underlying data; for instance, in a spectrogram factor-
ization, an extracted signature can be linked to a particular
emission from a musical instrument.

Often, however, the problem is so underdetermined that
simply relying on the fit yielded by the minimization of L
is not satisfactory. A common solution is then to restrict the
model, imposing extra constraints on the obtained factors, such
as sparsity, smoothness, or orthogonality [16, 17, 18].

One particular limitation of the simple NMF model is the
fact that the extracted patterns are static, that is, the shape of
the estimate provided by each component bk is equal across all
observations. Taking temporal continuity into consideration,
such that the sequence of observations (columns of X) are
in fact a time sequence, a more powerful model can be
designed, allowing the patterns to be longer in length than a
single observation. The deconvolutive-NMF is a generalization
that provides such features by extending the basis vectors
bk to matrices Bk ∈ RI×T+ , for some user-chosen T ; the
corresponding activation vector gk is then time-shifted by t
and applied to each subcomponent bkt:

X ≈
K∑
k=1

T∑
t=1

bkt

t−1→
gT
k ; (4)

the dataflow for the deconvolutive NMF is illustrated in Fig. 2.

G B1
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BT

→1

[·]

→1

[·]

→1

[·]

→
[·]

∑
X̂

Fig. 2. Deconvolutive NMF model generating the approximation X̂ . Here,
the overall basis tensor B is sliced across the deconvolutive mode, indexed
by t.
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The right-shift operator
t→
[·] is such that for a given vector

1→
[g1, g2, . . . , gL] = [0, g1, . . . , gL−1];

for t = 0, the operator reduces to identity, and with t > 1, it
is equivalent to t successive applications of the operator with
unit shift. The left-shift operator is defined analogously, and
the extension to matrices and tensors follows naturally, shifting
over some specified dimension.

The main idea behind deconvolutive-NMF in musical anal-
ysis is that longer musical note profiles can be efficiently
modeled by the framework, leading to an increase in separation
accuracy.

IV. SIGNAL REPRESENTATION

We now describe the steps toward a phase-aware non-
negative multichannel representation, aimed at the decomposi-
tion in non-negative factors. The first thing to do is to extend
the basic data matrix X , introduced in Section III, to the mul-
tichannel case. One way to do this is by associating each entry
of this data matrix with an M ×M matrix modeling relations
between pairs of sensors; but then we also have to extend the
notion of non-negativeness. When dealing with real numbers,
being non-negative means belonging to the convex cone1 R+.
Positive-semidefiniteness is the matrix counterpart of the scalar
non-negativeness property; indeed, positive-semidefiniteness is
preserved under conical combination of positive-semidefinite
(PSD) matrices.2

Translating the relationship of Eq. (1) to the short-time
Fourier transform (STFT) domain, each (complex) frequency-
time point measurement is

xilm =

Q∑
q=1

hiqmsilq, (5)

where i denotes the frequency bin, l is an index for the time
frame, hiqm is the frequency response at bin i of the channel
relative to the source-sensor pair (q,m), and silq is the STFT
of the emission of source q at frequency-time point (i, l).

In order to represent the overall measurements as Hermitian
PSD matrices, Sawada et al. [11] take the outer product of the
vector xil—formed by the measurements across all sensors
at a single frequency-time point—with itself, obtaining the
matrices

Pil = xilx
H
il =

Q∑
q=1

Q∑
q′=1

hiqh
H
iq′silq s̄ilq′ , (6)

where vH is the Hermitian of v and z̄ is the complex conjugate
of z. Additionally, assuming that different sources q and q′ are
orthogonal, and then transposing the correlation property to the

1A subset C of a given vector space is a cone if αx ∈ C for any x ∈ C and
any α ≥ 0. It is a convex cone when it is closed for conical combinations,
i.e., when α1x1 + α2x2 ∈ C for any x1,x2 ∈ C and any α1, α2 ≥ 0.

2The space of PSD matrices, S+, is itself a cone, that is, any element
S ∈ S+ can be written as a conical combination of some basis matrices.

STFT coefficients, a useful approximation can be obtained by
neglecting the crossed terms:

Pil ≈
Q∑
q=1

hiqh
H
iq|silq|

2
. (7)

Lastly, in order to factor a magnitude instead of a power
spectrum, the STFT coefficients are mapped through a mag-
nitude square-root function applied elementwise, as proposed
in [11]: φ(z) = z√

|z|
. In this new context, equation (6) is

replaced by the corresponding expression

Xil = φ(xil)φ(xil)
H ≈

Q∑
q=1

ηiqη
H
iq|silq|, (8)

where ηiq is a factor similar to hiq , allowing to define Hiq =
ηiqη

H
iq as a matrix that encodes the phase properties of source

q at bin i. The entries of Hiq encode the phase difference
between the responses of each channel pair. By the outer
product construction,Hiq preserves phase information without
actually modeling the absolute phase of the measurements.
Expression (8) then motivates a joint factorization of the
sources’ magnitude spectra and spatial-property matrices.

V. FACTORIZATION MODEL

We now describe the steps toward the factorization of
the multichannel model in (8) into non-negative factors. The
standard CNMF [11] simply attaches to each NMF component
some phase information in the form of a set of PSD matrices,
as will be described in Subsection V-A. A limitation of this
approach is that no structure is imposed on the family of
PSD matrices associated with each component; we intend
to separate sources based on spatial cues, and one could
expect some form of coherence in terms of how the spatial
information is encoded within a single component, as shown
in [12]. In Subsection V-B, prior knowledge about the sensor
array geometry is incorporated into the process in the form
of beamforming kernels, from which the spatial matrices
associated with each component are derived from. Finally,
in Subsection V-C, the complete factorization model is glued
together, defining some useful additional constraints, and in
Subsection V-D the process of recovering the source image
spectrograms from the CNMF parameters is described.

The main idea of factorization model is to explore the
compressibility of the magnitude representation in order to
find K components that best explain the measurements. In the
context of CNMF [11], we seek to explain the measured data
points Xil as non-negative combinations of positive semidef-
inite matrices. We assign to each NMF component a family
of spatial-property matrices, and cluster components based on
their spatial properties when reconstructing the sources. The
phase-magnitude model for the measured data points can be
written as

Xil ≈
K∑
k=1

Hikšilk, (9)

where Hik encodes spatial properties for a component and
šilk is a magnitude estimate that shall be computed through
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the NMF framework. In the following, we detail how the
parameters are obtained.

A. Magnitude activation model

In the single channel case, the standard NMF finds a low-
rank approximation to some data matrix X ∈ RI×L+ as the
product of two smaller non-negative matrices B ∈ RI×K+ and
G ∈ RK×L+ , where, usually, K � Rank(X). If the input
data matrix consists of a magnitude spectrogram, with bins as
rows and time frames as columns, a useful interpretation of
the extracted matrices arises: the columns bk ∈ RI+ of B are
spectral signatures present in the measurements, and the rows
gk ∈ RL+ of G are activation patterns for such signatures
across time frames. The application of the simple NMF to
the CNMF model would lead to the magnitude estimate
šilk = bikgkl. We propose the estimation of šilk through a
deconvolutive NMF model as presented in Section III. Using
the deconvolutive model, the estimate of the instantaneous
magnitudes due to the kth component is

šilk =

T∑
t=1

bitk[
t−1→
gk ]l. (10)

In fact, the standard form of the CNMF with the deconvo-
lutive model can be written as

X̂il =

K∑
k=1

Hik

T∑
t=1

bitk[
t−1→
gk ]l, (11)

and this model shares the single-channel deconvolutive NMF
properties of being able to efficiently extract spectral patterns
that vary with time. Considering that continuous emissions
occur in many audio signals, this model is appropriate when
moving toward a more powerful separation model.

B. Spatial covariance model

We apply the direction-of-arrival (DoA) based factoriza-
tion method introduced by Nikunen and Virtanen [12] to
the channel matrices Hik. An issue with the unconstrained
estimation of matrices Hik is that there is no guarantee that
the set of matrices Hk (all matrices Hik with fixed k) actually
encodes a single coherent single-input multiple-output channel
between some component and the sensor array. Instead, the
set Hk is constructed as a non-negative linear combination of
geometrically-defined beamforming kernel matrices Wio.

Consider the scheme depicted in Fig. 3: for a sufficiently
far emission source somewhere along the direction of ko (a
unit-length vector), such that the wavefronts can be considered
planar, the relative time delay between sensor acquisitions
can be defined in terms of the sensor array geometry, wave
propagation velocity, and incidence direction. In fact, the
difference in propagation length can be calculated as the inner
product 〈pm′ −pm,ko〉 so that the relative time-difference of
arrival (TDoA) is simply

τmm′(ko) =
〈pm′ − pm,ko〉

c
, (12)

where c denotes the wave propagation velocity.

pm

pm′

ko

φ

d d sinφ

Fig. 3. TDoA as function of array geometry and wave incidence direction.

It is straightforward to find the frequency-dependent phase
lag using Fourier transform properties, and from the non-
normalized STFT bin frequencies, the per-bin phase lag can
be calculated as

θmm′(fi,ko) = −2πfiτmm′(ko). (13)

The idea for modeling H is to sample O directions from
the unit sphere around the array and form the beamforming
kernels Wio for all STFT bins for each DoA sample. The
beamforming kernels are M × M Hermitian matrices con-
taining the relative phase shifts (for a set frequency fi and
direction ko) as complex factors:

Wio =


1 ejθ12(fi,ko) · · · ejθ1M (fi,ko)

ejθ21(fi,ko) 1 · · · ejθ2M (fi,ko)

...
...

. . .
...

ejθM1(fi,ko) ejθM2(fi,ko) · · · 1

 .
Finally, the channel matrices Hik can be described in terms
of the DoA kernels as conic combinations

Hik =

O∑
o=1

zkoWio, (14)

where the factors zko ∈ R+ are shared across all frequencies
for a given component, making this a spatially coherent factor-
ization. Additionally, this model allows the spatial properties
encoded by the vectors zk to be clustered, since it is expected
that components with similar spatial signatures belong to the
same source.

C. Complete model

The complete model for the measured covariance matrices
in terms of deconvolutive CNMF parameters can be written as

X̂il =

K∑
k=1

O∑
o=1

zkoWio

T∑
t=1

bikt[
t−1→
gk ]l . (15)

This factorization has a possible scaling ambiguity, so ad-
ditional constraints are introduced, namely

∑
o z

2
ko = 1,∑

l g
2
kl = 1, and ‖Wio‖F = 1, where ‖M‖F =

√
tr(MHM)

denotes the Frobenius norm of a matrix M . In order to find
the best estimates for the parameters, a statistical model can
be employed, and an estimation framework can be built—see
Section VI.
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D. Source reconstruction

Given the CNMF parameter estimates, the per-source spec-
tral images can be reconstructed through a Wiener filter

yilq = xil

∑
k,o βqkzko

∑
t bikt[

t−1→
gk ]l∑

q,k,o βqkzko
∑
t bikt[

t−1→
gk ]l

, (16)

where βqk are learned membership coefficients relating a
given component k to source q. The membership coefficients
can be obtained through a regular clustering algorithm, such
as k-means, c-means, or even NMF (considering that the
spatial factors zko are also non-negative). The overall effect
is to multiply the input spectrograms by a mask of ratios of
estimated spectral magnitudes, preserving the original phase.
Finally, the discrete-time version of ŷqm(t) can be retrieved
from the inverse-STFT of the coefficients.

VI. PARAMETER ESTIMATION

Following previous works [11, 12], the generative model
adopted for the entries of the data matrices Xil is that of
independent complex Gaussian variables with unit variance,
which allows to recast the likelihood estimate as a squared
error minimization problem. In fact, the likelihood function
for the parameters, considering the overall measurements, can
be written as

L(Z,W ,B,G) ∝
I∏
i=1

L∏
l=1

exp
(
−‖Xil − X̂il‖2F

)
, (17)

leading to the alternative cost function

`(Z,W ,B,G) =

I∑
i=1

L∑
l=1

‖Xil − X̂il‖2F, (18)

related to the colog-likelihood. It can be useful to embed
some prior on the parameters. This knowledge can be directly
related to a regularization factor, steering the algorithm toward
a solution with some desirable properties. In this paper we
consider the generative model for the spectral signatures bikt as
a one-sided exponential distribution with some scaling factor
αB, leading to the regularized likelihood3

LR ∝ exp (−2αB‖B‖1)L(Z,W ,B,G) (19)

and a regularized cost function

`R(Z,W ,B,G) = 2αB‖B‖1 +

I∑
i=1

L∑
l=1

‖Xil − X̂il‖2F, (20)

where the tensor `1-norm is defined as
∑
i,k,t |bikt|. This

is inspired by a LASSO [19] regression, aiming to enforce
the selectivity of signatures Bk and, consequently, produce a
sparser representation, suitable to pitched audio signals.

3We extract a factor 2 from αB for convenience.

A. Minimization procedure

To obtain the maximum a posteriori estimate, one must
minimize the regularized cost (20). The convoluted interdepen-
dence among the parameters Z,W ,B,G in this cost function
hinders its direct (gradient-based) minimization, calling for
alternative procedures. A possible alternative would be to
minimize an auxiliary function, related to the actual cost
function, that depends on an extra set of parameters while
being, in some sense, smoother. The individual gradients
w.r.t. the CNMF parameters of the auxiliary function can be
straightforwardly derived, and the extra set of parameters can
be chosen in a way that explicit computation is avoided. In this
subsection, we shall describe a convenient auxiliary function,
along with the specific choice of additional parameters as
well as the update rules for the non-negative tensors. At last,
the update for the kernel matrices, which requires additional
projection and normalization steps, is described.

While (20) is non-convex relative to the CNMF parameters,
it is individually convex over Z,W ,B, and G. Thus, a
block relaxation minimization scheme [20] may be employed
with good results. We consider an auxiliary function to (20),
namely:

`+R = 2αB‖B‖1+
∑

i,l,k,o,t

1

rilkot
‖Silkot−zkoWiobikt[

t−1→
gk ]l‖

2
F, (21)

where rilkot are any positive variables satisfying∑
k,o,t rilkot = 1, and Silkot are Hermitian matrices

satisfying
∑
k,o,t Silkot = Xil, for which we derive the

following proposition:

Proposition 1. For all Silkot ∈ S and rilkot ∈ R+ such that∑
k,o,t Silkot = Xil and

∑
k,o,t rilkot = 1, then

`+R(S,Z,W ,B,G) ≥ `R(Z,W ,B,G) and (22)

min
S
`+R(S,Z,W ,B,G) = `R(Z,W ,B,G). (23)

Furthermore,

S∗ilkot
∆
= arg min

Silkot

`+R(S,Z,W ,B,G)

= zkoWiobikt[
t−1→
gk ]l − rilkotEil. (24)

Proof. See Appendix A.

Through the majorizer conditions (22) and (23), the indi-
vidual minimization of (21) across the CNMF variables with
S set as the optimal S∗ is guaranteed to be non-increasing.
With the auxiliary definition

x̂il =
∑
k,o,t

zkobikt[
t−1→
gk ]l, (25)

a useful way to define rilkot arises, namely

rilkot =
zkobikt[

t−1→
gk ]l

x̂il
. (26)



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 108

Although this definition is not strictly positive, it is safe to
ignore the zeroed values, since

lim
rilkot→0

1

rilkot
‖S∗ilkot − zkoWiobikt[

t−1→
gk ]l‖

2
F = 0,

and this definition allows for implicit computation of the S∗ilkot
factors.

Replacing S∗ and rilkot with their definitions, the multi-
plicative rules for non-negative factors can be obtained (see
Appendix B):

zko ←− zko

∑
i,l,t (x̂il + tr (EilWio)) bikt[

t−1→
gk ]l∑

i,l,t x̂ilbikt[
t−1→
gk ]l

 , (27)

bikt ←− bikt

∑
l,o (x̂il + tr (EilWio)) zko[

t−1→
gk ]l

αB +
∑

l,o x̂ilzko[
t−1→
gk ]l

 , (28)

gkl ←− gkl


∑

i,o,t([

t−1←
x̂i ]l + tr([

t−1←
Ei ]lWio))zkobikt∑

i,o,t [

t−1←
x̂i ]lzkobikt

 . (29)

The update process for the kernel matrices is slightly
different, since only magnitude optimizations are allowed,
and the positive semidefinite constraint must be accounted
for. What follows is an optimization scheme similar to a
projected gradient algorithm: the possibly unfeasible point that
minimizes the cost function is calculated as (see Appendix C)

Ŵio ←−
∑
l,k,t zkobikt[

t−1→
gk ]l[x̂ilWio +Eil]∑

l,k,t x̂ilzkobikt[
t−1→
gk ]l

; (30)

this point is projected onto the positive semidefinite cone by
rectification of its eigenvalues:

VioΛioV
H
io ←− Ŵio (31)

Ŵ+
io ←− VioΛ

+
ioV

H
io ; (32)

finally, only the entries’ magnitudes are updated, as the true
update is obtained as

Wio ←− abs(Ŵ+
io )� sign(Wio), (33)

where abs(·) and sign(·) both operate elementwise on their
arguments, and � denotes the matrix Hadamard product.
Concerning the scaling factors, after each update, zk and gk
are normalized to unity, while the reciprocal correction factor
is applied to Bk, that is:

vk ←− ‖zk‖2 : zk ←−
zk
vk

Bk ←− vkBk, and

vk ←− ‖gk‖2 : gk ←−
gk
vk

Bk ←− vkBk.

Similarly, Wio is rescaled to unity Frobenius norm, but no
rescaling of other parameters is needed:

Wio ←−
Wio

‖Wio‖F
.

VII. NUMERICAL RESULTS

The program developed to assess the accuracy of the
proposals was coded in Python, using TensorFlow v1.14,
and executed on an Intel Xeon Gold 5120. We attempt the
separation of two sound sources positioned 90 degrees apart,
from four mixtures synchronously captured by omnidirectional
microphones placed approximately 8 cm apart from each other,
in the form of a tetrahedron. The audio tracks are two musical
samples about 20 s long, sampled at 22.05 kHz. A closed
room of dimensions 5 m× 4 m× 3 m (length, width, height)
with RT60 ≈ 450 ms was simulated using CATT-Acoustic
v9.0c [21], with the microphone array at the center and the
sources on the horizontal plane 1.5 m away from it, as depicted
in Fig. 4. The DoA vectors were randomly sampled from the
unit sphere in a way to approximately maximize the cosine
distance between the closest vectors, with O = 110 directions.
An illustration of the DoA coordinates is shown in Fig. 5.
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Fig. 4. Top-down view of the source-sensors arrangement inside the room.
The array is indicated by orange cross markers, and the two sources by blue
dots. The reference axes are aligned with the walls of the room.
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Fig. 5. Coordinates of the DoA samples on the sphere.

Square-rooted Hanning windows were used for STFT analy-
sis and synthesis, with 50% overlap. Frame length was chosen
as 1024 samples, corresponding to approximately 46 ms, I =
513 bins, and L = 978 frames. We considered three scenarios:
a baseline run, with (K = 60, T = 1, αB = 0), equivalent
to [12]; a deconvolutive run, with (K = 60, T = 5, αB = 0)
testing the proposed extension; and a sparsity-promoting run,
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with (K = 60, T = 5, αB = 0.5). The algorithm was run for
500 iterations in all cases.

We performed weighted k-means on the vectors zk, with
weights corresponding to the component energy ‖Bk‖2F. The
source-component membership coefficients βqk were set to 1
or 0 based on the obtained clustering.

First, we analyze the directional sensitivity of the method.
With k-means clustering, it is possible to retrieve the centroids
corresponding to the spatial signatures for each source; based
on the spherical coordinates of the DoA vectors and the
obtained centroid coefficients, a bivariate spherical spline
interpolation was used to create a visualization of the spatial
properties for each source. The results are depicted in Figs. 6
and 7. The true positions are depicted with blue dots.
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Fig. 6. Visualization of spatial signature for the first source. A main lobe is
clearly discernible, aligned with the source’s true direction (blue dot).
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Fig. 7. Visualization of spatial signature for the second source. A main lobe
is clearly discernible, closely matching the source’s true direction (blue dot).

The centroids’ peak activations closely match the true
directions for each source, such that a rough estimate of the
sources directions can be obtained from the method, although
the estimate is likely to deteriorate in heavily reverberant
environments.

The separation quality [22, 23] was measured using the
mir_eval suite [24, 25]. From the suite’s provided image
evaluation function, we obtain the source-to-distortion ratio
(SDR) and source-to-interference ratio (SIR) for each source,
and the results are depicted in Fig. 8. SDR encompasses
several types of distortions into a single metric, being a robust
form of evaluation for BSS techniques; SIR, on the other hand

measures only the overall crosstalk between estimated sources,
being another useful metric for separation evaluation.

SDR SIR
0
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dB

S1 baseline

S2 baseline

S1 deconv
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S1 deconv+reg

S2 deconv+reg

Fig. 8. Separation metrics for the three tests. Both deconvolutive and
regularized tests obtained superior averages than the baseline, while the
regularized factorization was slightly worse than the non-regṫest.

Due to the stochastic nature of the fit, an unbalance between
sources can be noted in all scenarios, but a slight advantage can
be noted in the deconvolutive case. The regularization slightly
degraded the overall measures in comparison to the unregu-
larized deconvolutive test, although they are still superior (on
average) to those of the baseline case.

We would like to investigate the sparsity-inducing properties
on the extracted signatures B. While the factors obtained by
fitting the data using the Euclidean cost are often sparse, they
are not the sparsest possible representation. Due to the nature
of the range of the values assumed by bikt, we ploted the
histogram of log10(bikt) using 50 bins as shown in Fig. 9.
A considerable increase in frequency of the lowest bin can be
observed: the count on the lowest bin for the unregularized run
was 84991 hits, while the regularized test had 145982 hits, a
71% increase. It is then clear that the regularizing component
of LR steered the factor search toward a solution with higher
selectivity.
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Fig. 9. Histogram of B coefficients. Due to numerical issues, coefficients
lower than some ε = 10−7 were clipped to ε.

In general terms, one desires sparse signatures if the data
have a sparse nature; this property is usually manifested in
tonal emissions, where the emitted energy is well localized in
the frequency domain. In this sense, the imposed regularization
is expected to enhance the precision of the algorithm for tonal
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emissions, while some degradation can occur in percussive or
other atonal emissions. In our test scenarios, the regularization
did result in some slight degradation in separation, suggesting
that the tonal assumption is not strictly valid—which is not sur-
prising in real-life composed signals. Nevertheless, `1 penalty
parameters are ubiquitous in regular NMF algorithms [26, 27],
so that the added model flexibility is welcome.

VIII. CONCLUSIONS

We proposed an extended version [1] of the CNMF algo-
rithm [11], leveraging the efficient representation from the
deconvolutive NMF model. We also provided the user with
control over the distribution of the extracted signatures through
regularization, which steers the method toward a sparse solu-
tion. Our proposed method is a generalization of the baseline
algorithm, with added flexibility, able to efficiently factorize
signals with complex spectral signature.

Although testing was not exhaustive, due to the large num-
ber of user-chosen parameters and different possible configu-
rations, our simulations corroborated the method’s capabilities
in the separation task.

Future works include the application of these ideas using
different generative models for the matrices Xil, as the Gaus-
sian assumption and the associated Frobenius norm method
are not entirely adequate for distance measures on the PSD
cone; however, the fact that, by construction, Xil is rank-
1 and lives on the boundary of S+ imposes challenges on
the application of traditional measures, such as log det di-
vergences [28], which are only defined in the interior of the
cone. Also, application of other NMF frameworks, such as
multi-layer NMF, could improve the accuracy and consistency
of the method. Proper initialization is also a critical point
in traditional NMF methods [29], and the design of a smart
initialization routine is likely to have a considerable effect on
convergence time and accuracy.

APPENDIX A
PROOF OF PROPOSITION 1

First, the Lagrangian function for Eq. (21) w.r.t. Silkot
restriction is computed:

ψil =
∑
k,o,t

‖Silkot − zkoWiobikt[
t−1→
gk ]l‖2F

rilkot

− tr(Mil(Xil −
∑
k,o,t

Silkot)
H

), (34)

where the regularization term was omitted for brevity. The
partial derivative w.r.t. Silkotis given by

∂ψil
∂Silkot

=
2(Silkot − zkoWiobikt[

t−1→
gk ]l)

rilkot
−Mil. (35)

Summing over k, o, and t after equating to 0 results in∑
k,o,t

rilkotMil = 2(
∑
k,o,t

Silkot −
∑
k,o,t

zkoWiobikt[
t−1→
gk ]l)

Mil = 2(Xil − X̂il) = 2Eil.

(36)

Finally, backsolving Eq. (35) for Silkot yields

S∗ilkot = zkoWiobikt[
t−1→
gk ]l − rilkotEil; (37)

replacing S∗ilkot in Eq. (21) leads directly to the equality in
Eq. (23), and the fact that Eq. (21) is quadratic in Silkot, with a
single global minimum, is sufficient to satisfy inequation (22).

APPENDIX B
DERIVATION OF EQUATIONS (27), (28), AND (29)

The partial derivatives of `+R w.r.t. the non-negative param-
eters are:

∂`+R
∂zko

=
∑
i,l,t

−2

rilkot

[
−bikt[

t−1→
gk ]l tr (SilkotWio)

+zkob
2
ikt[

t−1→
gk ]2l

]
, (38)

∂`+R
∂bikt

= 2αB +
∑
l,o

−2

rilkot

[
−zko[

t−1→
gk ]l tr (SilkotWio)

+z2
kobikt[

t−1→
gk ]2l

]
, (39)

∂`+R
∂gkl

=
∑
i,o,t

−2

[
t−1←
rikot]l

[
−zkobikt tr

(
[

t−1←
Sikot]lWio

)

+ z2
kob

2
iktgkl

]
, (40)

(note that the left-shift operator appears in (40)), where the
fact that tr(WioW

H
io) = 1 was used.

Applying the definition of rilkot in terms of zko, bikt, gkl,

and x̂il, expressions of type bikt[
t−1→
gk ]l

rilkot
are replaced with x̂il

zko
,

and those of type zkob
2
ikt[

t−1→
gk ]2l

rilkot
with x̂ilbikt[

t−1→
gk ]l; solving for

the respective variables yields:

z∗ko =

∑
i,l,t x̂il tr (SilkotWio)∑

i,l,t x̂ilbikt[
t−1→
gk ]l

, (41)

b∗ikt =

∑
l,o x̂il tr (SilkotWio)

αB +
∑
l,o x̂ilzko[

t−1→
gk ]l

, (42)

g∗kl =

∑
i,o,t [

t−1←
x̂i ]l tr

(
[

t−1←
Sikot]lWio

)
∑
i,o,t [

t−1←
x̂i ]lzkobikt

. (43)

Finally, replacing S with S∗ leads to the multiplicative
updates.
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APPENDIX C
DERIVATION OF EQUATION (30)

The gradient of `+R w.r.t. Wio is

∂`+R
∂Wio

=
∑
l,k,t

2

rilkot

[
−zkobikt[

t−1→
gk ]lSilkot

+z2
koWiob

2
ikt[

t−1→
gk ]2l

]
. (44)

Once more, applying the choice of rilkot, and solving for
∂`+R
∂Wio

= 0 yields

Ŵio =

∑
l,k,t x̂ilSilkot∑

l,k,t x̂ilzkobikt[
t−1→
gk ]l

. (45)

Replacing S with S∗ leads to the multiplicative update.
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