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Abstract— This work reports a coexistence analysis 

between 5G New Radio (5G NR) and Satellite Television 

Receive Only (TVRO) in C-Band. The coexistence 

experiments to detect 5G NR interference in TVRO systems 

are based on the two following approaches: broadcast of 

analog and digital TV channels, received by a 1.7 meters 

parabolic antenna pointed to the Star One C2 geostationary 

satellite from Embratel; 100 MHz-bandwidth 5G NR link 

at 3.55 GHz with two printed log periodic antennas. The 

performance analysis has been carried out as a function of 

the TV channel quality signal, by means of varying the 5G 

power level at vertical polarization. Measured spectra of 

either radiofrequency (RF) and intermediate frequency (IF) 

signals are presented for demonstrating a probable 

interference problem due to the installation of 5G base 

stations close to TVRO user homes. For instance, there are 

still 22 million TVRO users in Brazil and 120 million homes 

attended by C-Band satellites in United States for radio and 

TV services. Finally, two efficient technological solutions 

are proposed and theoretically validated, using SF.1486 

ITU-R recommendation, for mitigating 5G NR interference 

to TVRO and their results are properly compared to other 

techniques reported in literature.  

 
Index Terms—5G, C-Band, coexistence, satellite and TVRO. 

I. INTRODUCTION 

he C-Band satellites are typically used for large coverage 

areas in diverse applications, including broadcasting, 

telemetry, tracking and command [1]. On the other hand, at 

higher frequencies, such as Ku- and Ka-Bands, satellite beams 

are focused on smaller areas to overcome the high signal 

attenuation due to atmospheric effects [2]. According to the 

International Telecommunication Union (ITU), the C-Band is 

vital for many countries, especially for fixed satellite services 

(FSS) and broadband wireless access (BWA) [3-4]. Home users 
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use geostationary satellites to receive signals from TV 

broadcasts, using Satellite Television Receive Only (TVRO) 

systems [5-6]. C-Band satellites are mainly used to 

simultaneously transmit analog and digital programming from 

TV head-ends to the local TV broadcasters, which re-transmit 

the national and local contents to homes, using digital terrestrial 

transmissions. Those TV broadcast signals are open, thus the 

home users only need to point their satellite dishes to 

geostationary satellites. In parallel, many communications 

systems use TVRO adjacent channels of in C-Band, including 

5G New Radio (5G NR), which is the new radio access 

technology (RAT) developed by the 3rd Generation Partnership 

Project (3GPP) for the fifth-generation (5G) mobile network. 

5G NR is going to operate over two frequency ranges, namely: 

Frequency range 1 (FR1) from 410 MHz to 7.125 GHz with 

bandwidth up to 100 MHz; Frequency range 2 (FR2) from 

24.25 to 52.6 GHz with bandwidth up to 400 MHz.  

Particularly the C-Band region from 3300 to 3600 MHz has 

been chosen for many countries to cover urban areas, aiming to 

ensure a trade-off between high data rate and medium coverage 

[7-8]. 5G NR allows multiple services for different scenarios, 

such as enhanced mobile broadband (eMBB), a massive 

number of connected Internet of Things (IoT) devices and 

Machine-Type Communications (MTC) [9, 10].  

Recently, some works on coexistence between telecom 

(Long Term Evolution (LTE) and 5G) and satellite (TVRO and 

FSS) systems have been reported in the literature [11-15]. Their 

importance are due to the interference possibility between these 

technologies. In 2018, Son et al. [12] presented numerical 

analyses in a scenario of coexistence between 5G and FSS at 

3.8 GHz, resulting in a minimum distance of 15 km to obtain 

95% protection against interference. In parallel, Tan et al. [13] 

presented numerical and experimental analyses of coexistence 

between 5G and satellite reception systems, operating from 3.4 

to 3.6 GHz. The reception system proposed in [13] was 

composed of commercial filters and low noise blocks (LNBs) 

based on phased locked loop oscillators (PLL), aiming to 
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evaluate FSS protection, image quality and the interference 

origin. By means of a deterministic study, Yuan et al. [14] have 

analyzed the interference of the 4G / 5G signal in a mobile 

satellite data reception system, with the purposing of allowing 

a minimum protection distance between mobile communication 

system and FSS. Additionally, a spectrum sharing investigation 

has been carried out between 5G and a FSS operating at 28 GHz 

in the northern hemisphere [15]. 

 

TVRO systems started in the seventies and reached 1.4 

million users in 1985 in the United States, mainly due to the 

deregulation of the telecommunications regulatory agency [16]. 

Currently, there are about 22 million TVRO users in Brazil [17] 

and 120 million homes attended by C-Band satellites in United 

States for radio and TV services [18], making the coexistence 

between TVRO and 5G a technical and social challenge, as 

illustrated in Fig. 1. Typically, TVRO downlink is from 3625 

to 4200 MHz, which is adjacent to the main FR1 band. 

Therefore, depending on the power level of the 5G NR access 

networks and distance from its base station to the TVRO home 

users, there is a serious risk of interference, making coexistence 

analysis necessary to maintain high-quality C-band TV and 

radio services. In parallel, diverse groups have widely applied 

the ITU-R recommendations to estimate possible interferences 

from diverse communication systems to FSS, operating in C-

Band [4][11-14][19-24]. The ITU-R Recommendations are 

approved by ITU Member States. Their implementation is not 

mandatory; however, as they are developed by experts from 

administrations, operators, the industry and other organizations 

dealing with radiocommunication matters from all over the 

world, they enjoy a high reputation and are implemented 

worldwide. 

 
Fig. 1.  Coexistence analysis between 5G NR and TVRO in C-Band. 

The current work main contributions are the following ones: 

to the best of our knowledge, our work is the first one in 

literature on coexistence analysis between 5G New Radio and 

Satellite TVRO system published in literature; an experimental 

investigation of the possible 5G impact on approximately 22 

million TVRO homes in Brazil, by means of varying the 

interference received power level and analyzing the TV image 

quality in analog and digital channels; an analytical analysis on 

the protection distance, by comparing different commercial low 

noise block feedhorn (LNBF); the proposal and theoretical 

validation of two technological solutions based on the use of RF 

filters and amplifiers with enhanced 1-dB compression point for 

mitigating the interference and, consequently, enabling a 

peaceful coexistence between 5G and TVRO systems. 

The manuscript is structured in four sections. Section II is 

concerning the experiment setup, whereas experimental results 

and the two proposed technological solutions are presented in 

Section III. Conclusions and final remarks are addressed in 

Section IV. 

II. EXPERIMENTAL SETUP 

Fig. 2 describes the coexistence experimental setup between 

TVRO and 5G NR in C-band. Two different vector signal 

generators from Rohde & Schwarz, SMW 200 and SMBV 

100A, have been used to create a 100 MHz-bandwidth 5G NR 

waveform at 3550 MHz, which was radiated by a Hyperlog 

6080 antenna from Aaronia using vertical polarization. All RF 

signals had been generated following the 3GPP TS 38.141-1 

and 3GPP TS 38.141-2 base station conformance testing [25, 

26]. The bandwidth and modulation have been chosen in 

accordance to the 3GPP maximum specifications from the 

Release 15 for C-Band, aiming to obtain the maximum 

throughput using FR1 [27]. The 7-meters distance between the 

5G signal generator and FSS has been chosen to guarantee a 

suitable dynamic range for the interference evaluation, as well 

as for ensuring far-field conditions. 

 
Fig. 2.  Experimental setup of the coexistence between 5G NR and TVRO. 

At the receiver side, a terrestrial earth station has been 

installed at -22.25780 latitude and -45.69570 longitude, in 

conjunction with a 1.7m C-Band parabolic antenna with a 

65 dB-gain LNBF. The TV system has been pointed to the 

Embratel Star One C2 satellite, located at 700 W orbital position 

to receive the satellite transponder signals. The resultant 

downconverted signal from LNBF in L-Band has been divided 

by using 1:2 splitter.  One cable was directly connected to the 

TV receiver and the other one to a spectrum analyzer, to 

evaluate the performance as a function saturation and distortion 

in the presence of the 5G NR signal at different power levels. 

An N9912A FieldFox handheld RF and microwave analyzer 

from Keysight has been used to monitor the 5G NR power level.  

III. EXPERIMENTAL RESULTS 

Initially, the intermediate frequency (IF) components in L-

Band, after the LNBF down-conversion, have been measured 

without the 5G NR signal (Fig. 3) for comparison purposes. The 
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transponder signal in C-Band has been mixed with the 

5150 MHz local oscillator from LNBF, which is responsible to 

downconvert the C-Band transponder frequencies to L-Band. 

One can clearly observe the transponder satellite frequencies 

without any interference. The marker 1 (Mkr 1) depicts a 

Globosat channel tuned at the 3720 MHz transponder, implying 

in IF = 1430 MHz. The frequency shift of 1.5 MHz was due to 

the LNBF local oscillator instability. 

 

 
Fig. 3.  IF components without the 5G NR signal. 

The next step was turning the 5G NR signal generator on for 

experimentally evaluating its coexistence with TVRO. The 5G 

transmitted power has been varied from 0 to 18 dBm for 

obtaining the maximum power level that would not interfere in 

the TVRO system. The transmitting 5G antenna had been 

placed at 7.0 m distance to the TVRO receiving antenna, which 

implied in received channel power from -53 to -37.5 dBm at 

3550 MHz. An example of the obtained IF spectrum in the 

presence of a 5G NR signal is reported in Fig. 4 for -41 dBm 

received channel power. One can note the impact of the 

spectrum persistence mode from 5G NR at 1.65 GHz 

(continuous green line), originally at 3550 MHz before down-

conversion, which implied in high-level interference to TVRO. 

Fig. 5 displays TV images for different power levels, including 

a good image without any distortion or saturation from Fig. 5a 

for -48 dBm channel power. The Globosat analog TV channel 

at 3720 MHz has been interfered by the 5G NR system for 

power levels higher than –46 dBm, as demonstrated in Fig. 5b. 

Particularly for -41 dBm, there was no discernible image on the 

TV screen, as shown in Fig. 5c, due to the IF signal high 

distortion and saturation, giving rise to a poor-quality image.  

As expected, this situation has been always noticed for even 

higher power levels. 

 

Fig. 4. IF components in the presence of the downconverted 5G NR signal 

(green continuous line). 

 
(a)  

 
(b)  

 
(c)  

Fig. 5. TV images for different 5G signal channel power levels: (a) -48 dBm; 

(b) -46 dBm; (c) -41 dBm.  

The ITU-R SF.1486 methodology for a fixed wireless access 

(FWA) system in FSS [29] has been applied to sort the TVRO 

interference problem out due to the 5G NR system. The 

minimum protection distance is defined as how physically close 

a new entrant might be in space to an incumbent’s receiver. 

Particularly for the 5G and TVRO coexistence analysis, the 

minimum protection distance represents the minimum 

separation between FSS (TVRO user home) and FWA (5G base 

station) that not results in performance degradation for TVRO 

users, evidenced by image distortion and blocking in analog and 

digital channels, respectively.  Considering there is no clutter 

loss in our setup, due to the line-of-sight (LOS) scenario, one 

can calculate the required protection distance (d) by using the 

following equations [29]:  

 
                             𝑃𝑠𝑎𝑡 = 𝐸𝐼𝑅𝑃𝐹𝑊𝐴 − 𝐿 + 𝐺 − 𝑅 ,                    (1) 

 
𝐿 = 92.5 + 20 log(𝑓) + 20 log(𝑑),                (2) 

 
where G is the reference radiation pattern gain that should be 

adopted for frequencies  from 2 to 31 GHz [28],  
 

𝐺 =  32 − 25 log 𝜑 𝑑𝐵𝑖 for 𝜑𝑚𝑖𝑛 ≤ 𝜑 ≤ 480         (3) 

or 

𝐺 =  −10 𝑑𝐵𝑖          for 480 ≤ 𝜑 ≤ 1800,              (4)  
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in (3) and (4), 𝜑 is the elevation position of the FSS. In (2), f is 

the frequency (GHz) and d is the protection distance (km). From 

(1), 𝑃𝑠𝑎𝑡  is the TVRO 1 dB compression point (P1dB), EIRP is 

the 5G NR effective isotropic radiated power, G = -10 dBi is 

the TVRO antenna gain [28] for 520 of elevation in our scenario, 

L is the free-space loss and R is the isolation protection, which 

might be shielding, RF filters or separation distance between 

stations in decibel.  

We propose to use low-cost planar RF filters with low 

insertion loss before the low noise amplifier (LNA) stage of the 

LNBF for avoiding interference from 5G NR in TVRO systems. 

Tab. I summarize the protection distance for 𝐸𝐼𝑅𝑃𝐹𝑊𝐴 =
75 𝑑𝐵𝑚, L is calculated by (2), for  f = 3550 MHz to find the 

protection distance d, R = 35 dB (RF filter rejection) and 𝑃𝑠𝑎𝑡 

varying from – 60 to -45 dBm (P1dB enhancement). As a result, 

the proposed filter enables to significantly reduce the required 

separation distance between the 5G NR base station and TVRO 

users from 12.02 km to 672.6 m. Additionally, the TV signal 

saturation can be alleviated and, consequently, the protection 

distance can be further lessened,  by improving the LNBF 

P1dB, which was refereed in Tab. I as the “Proposed solution 

2”. As a consequence, the calculated enhanced protection 

distance is only 111 m, which could make the 5G deployment 

viable in C-band. In this way, the two important systems could 

coexist without imposing interference with each other.  

TABLE I.  COMPARISON OF THE PROTECTION DISTANCE INCLUDING AN 

RF FILTER BEFORE THE LNBF FIRST AMPLIFICATION STAGE. 

LNBF  RF filter LNBF P1dB 
Protection 

distance 

Comercial no -60 dBm 12.02 km 

Proposed 

solution 1 
yes -60 dBm 672.6 m 

Proposed 
solution 2 

yes -45 dBm 111 m 

Finally, a comparison result is reported in Tab. II, illustrating 
the type of analysis, proposed solution, type of interferer, 
protection distance and the solution proposed. 

TABLE II. COMPARISON AMONG OUR APPROACH WITH THE STATE-FO-
THE-ART [11-14]. 

Ref.  
Interference 

Signal 
Analysis Type 

Proposed 

solution 

Obtained 

result 

[11] 

Emulated 

LTE signal 

from 3.4 to 
3.6 GHz 

Analytical 
Commercial 

filter  
50 m 

[12] 
Emulated 5G 
signal at 3.5 

GHz 

Analytical 
Commercial 

filter  
100 m 

[13] 

Emulated 5G 

signal at 3.8 

GHz 

Analytical - 15 km 

[14] 

Emulated 

4G/5G in the 
2.0 GHz 

band  

Analytical and 
Experimental 

- - 

Current 

Work 

Real 5G NR 

at 3.55 GHz 

Analytical and 

Experimental 

New RF filter  

and increasing 
LNBF P1dB  

111 m 

 

IV. CONCLUSIONS 

A coexistence analysis between the 5G NR and TVRO 

systems in C-band has been reported and properly discussed for 

different power levels and as a function of TV quality image of 

analog and digital channels, transmitted in horizontal 

polarization. Experimental results demonstrated interference 

problems and even image cancellation, due to the installation of 

5G base stations close to TV user homes, for downconverted 

5G channel powers higher than –46 dBm. Two efficient 

strategies have been proposed for minimizing the saturation and 

distortion problems and addressing the coexistence between 5G 

and TVRO systems. The first approach relies on adding low-

cost planar RF filters with low insertion loss before the LNBF 

first amplification stage. Our first idea has been validated  by 

using the ITU-R SF.1486 recommendation, which has also been 

applied in the references from 11 to 14 and from 19 to 29, 

enabling to positively reducing the required separation distance 

between the 5G NR base station and TVRO users from 

12.02 km to 672.6 m. Furthermore, increasing the TVRO  

LNBF 1 dB compression point by 15 dB might further lessen 

the protection distance to only 111 m. Future works regard the 

development and implementation of the proposed RF filter, as 

well as carrying out new experiments based on the M.2101-0 

ITU-R recommendation to experimentally validate the current 

theoretical predictions. 
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