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Performance Evaluation of Low-Complexity
Algorithms for Orthogonal Time-Frequency Space

Modulation
Dayse G. C. Bandeira, Didier Le Ruyet, Mylene Pischella, and João Cesar M. Mota

Abstract—Data transmission in wireless systems brings nu-
merous challenges, especially when it involves propagating in a
multipath scenario over rapidly time-varying channels. In this
context, Orthogonal Time-Frequency Space (OTFS) modulation
has been recently proposed to work with time-frequency selective
channels with high Doppler. In this modulation, the symbols
are first multiplexed in a delay-Doppler domain rather than
in the time-frequency domain used by Orthogonal Frequency
Division Multiplexing (OFDM). The studies point out advantages
of OTFS performance over OFDM in many aspects, such as
data rate increase in high mobility. Another advantage is the
sparsity of the channel produced by OTFS that allows using low-
complexity algorithms for the detection of the data. In this paper,
the performance of OTFS modulation in a doubly dispersive
channel is evaluated with several low-complexity variants of the
message passing algorithm (MPA) in terms of complexity and
Bit Error Rate (BER) performance. The results show that MPA
and Approximate Message Passing simplified by Expectation
Propagation (AMP-EP) algorithms achieve higher performance.
However, when taking into account both complexity and BER
performance, AMP simplified by First-Order (AMP-FO) achieves
the best performance-complexity tradeoff.

Index Terms—OTFS, delay-Doppler domain, message passing.

I. INTRODUCTION

The increased demand for data rate and User Equipments
(UE) restricted to a limited electromagnetic spectrum for
wireless communications, make the project requirements along
the evolution of the generations more challenging. Fourth
generation (4G) networks have achieved a big success, due to
their ability to provide high data rates for a large number of
users using the Orthogonal Frequency Division Multiplexing
(OFDM) modulation [1][2].

OFDM is a special form of multicarrier modulation which
is particularly suited for transmission over a dispersive chan-
nel, where different subcarriers are orthogonal to each other.
OFDM is a wideband modulation scheme that is designed to
cope with the problems of the multipath channels. Here, the
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wideband frequency selective fading channel is divided into
many narrow-band subchannels. If the number of subchannels
is high enough, each subchannel may be considered as flat.

Although OFDM has been implemented in the 4G of
mobile systems, it is not robust to time-varying channels
with high Doppler spread (such as, high-speed rail mobile
communications) [3]. The Orthogonal Time-Frequency Space
(OTFS) modulation proposed by Hadani and et al. appears as
a solution [4], targeting for example applications in the fifth
generation (5G) of mobile systems, which requires a higher
data rate and a higher UE speed.

OTFS shows significant advantages in doubly dispersive
channels over OFDM [5], [6], [7]. The delay-Doppler domain
is an alternative representation of a Linear Time-varying (LTV)
channel modeling due to moving objects in the multipath
scenario. For this, the OTFS modulator spreads each infor-
mation (e.g., QAM) symbol over a set of two-dimensional
orthogonal basis functions, which span across the frequency-
time resources required to transmit a burst. The basis function
set is specifically projected to deal with the dynamism of the
time-varying multipath channel.

Using the technique of transformations in two dimensions,
OTFS converts a doubly-dispersive channel into an almost
non-fading channel in the delay-Doppler domain [8]. Hence,
each symbol in a frame suffers an almost constant fade,
thus achieving significant performance gains over existing
modulation schemes that are not robust to strong Doppler such
as OFDM. Moreover, since there are typically a small number
of physical reflectors with Dopplers and associated delays in
a multipath channel, few parameters are required for channel
modeling and estimation in the delay-Doppler domain.

The impulse response of the channel in delay-Doppler
domain is a sparse matrix [9], thus allowing to use low-
complexity detector algorithms, such as message passing al-
gorithm (MPA). It also has important implications for channel
estimation/prediction and tracking [4].

The aim of this paper is to study, evaluate and compare
different low-complexity MPA-based detectors for OTFS sys-
tems over time-frequency selective channel with high Doppler.
Both bit error rate (BER) performance and complexity analysis
are evaluated. The considered algorithms are the following: i)
Factor Graph with Gaussian Approximation of Interference
(FG-GAI) proposed in [10] whose linear complexity is attrac-
tive for detection in large-dimension channels, ii) Approximate
Message Passing using Gaussian Approximation (AMP-GA)
in which the calculations of the probability messages are
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updated by the calculations of means and variances between
the nodes, iii) AMP simplified by Expectation Propagation
(AMP-EP) and iv) AMP simplified by First-Order (AMP-FO),
proposed in [11].

The paper is organized as follows. Section II presents
the characteristics of OTFS system and the adopted channel
model. In section III the different detector algorithms based
on message passing are detailed. In section IV is presented
complexity analysis algorithms. In section V the coupling
of OTFS with MIMO systems is considered. In section VI
the results of the performance of algorithm simulations are
presented and discussed and section VII is dedicated to the
conclusions and perspectives.

II. GENERAL DESCRIPTION OF OTFS

Traditional OFDM modulation operates in the frequency-
time domain. An OFDM resource elements (RE) occupies
one subcarrier on one particular OFDM symbol. In contrast,
OTFS modulation operates in the Delay-Doppler domain,
which is related to frequency and time by the Symplectic
Finite Fourier Transform (SFFT), a two-dimensional Discrete
Fourier Transform (DFT) [4], [12]. The OTFS modulation
framework can be understood as a time-frequency multicarrier
modulation with an additional pre-processing transformation
from delay-Doppler domain to the time-frequency domain of
the information symbols, by Inverse Symplectic Finite Fourier
Transform (ISFFT). Hence, OTFS can be implemented as a
pre-processing step on top of an underlying OFDM signal [13].

In OTFS, the quadrature amplitude modulation (QAM)
symbols are indexed by points on a grid in the Delay-Doppler
domain. Through ISFFT, each QAM symbol weights a 2D
basis function defined in the Time-Frequency domain. The size
of the delay-Doppler resource grid is related to the size of the
frequency-time plane by the signal properties, i.e. bandwidth
(B), Transmission Time Interval (TTI), pulse time duration
(T ), sub-carrier spacing (∆f ), number of subcarriers (M ) and
symbol block length (N ).

Then, the delay-Doppler grid consists of M points (number
of subcarriers) along delay with spacing ∆τ = 1

M∆f and N
points (number of symbols) along Doppler with spacing ∆ν =

1
NT . The reciprocal time-frequency grid consists of M points
along frequency with spacing ∆f = B

M and N points along
time with spacing T = TTI

N [3]. Hence, the time-frequency
grid can be interpreted as a sequence of N multicarrier symbols
each consisting of M subcarriers, i.e. the bandwidth of the
transmission B is the inverse to delay resolution ∆τ and the
duration of the transmission TTI is inverse to the Doppler
resolution ∆ν. The two grids are shown in Figure 1.
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Fig. 1. OTFS Transform: Delay-Doppler grid x Time-Frequency

In summary, based on these definitions, it can be seen that
the time-frequency plane is discretized in the grid by sampling
the time and frequency axes in intervals of T (seconds) and
∆f (Hz), as:

Λ = {(m∆f, nT ), m = 0, ...,M − 1; n = 0, ..., N − 1} , (1)

Consequently, the delay-Doppler plane is discretized, as:

Γ =

{(
k

NT
,

l

M∆f

)
, k = 0, ..., N − 1; l = 0, ...,M − 1

}
. (2)

Basically, a 2D ISFFT maps the information symbols x[k, l]
of a grid Γ(2) in the delay-Doppler domain on a sequence of
complex numbers X[m,n] mapped in the grid Λ (1) in the
time-frequency domain, as follows:

X[m,n] =
1√
MN

M−1∑
l=0

N−1∑
k=0

x[k, l] ej2π(nkN −
ml
M ). (3)

After this step of pre and post-processing blocks, one can
implement the conventional OFDM modulation/demodulation.
Figure 2 shows the OTFS system diagram.
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Fig. 2. Block diagram of OTFS System

The OFDM modulator is applied to time-frequency symbols
X[m,n] to convert the time-frequency modulated symbols to
the time domain signal s(t) for transmission over the channel.
Hence, the signal output of OTFS transmitter will be:

s(t) =

M−1∑
m=0

N−1∑
n=0

X[m,n] ej2πm∆f(t−nT ) gtx(t− nT ), (4)

where gtx(t) is pulse shaping used in the transmitter. In the
following we will consider rectangular pulses of amplitude
equal to one and duration T .

From equation (4), it is observed that every OTFS QAM
symbol is spread over the full time-frequency grid and hence
it is possible to exploit all the channel diversity.

The s(t) transmitted signal propagates through a time-
varying channel with complex baseband channel impulse
response h(τ, ν) and noise w(t). After passing through the
channel, the received signal r(t) is given by:

r(t) =

∫
τ

∫
ν

h(τ, ν)s(t− τ) ej2πν(t−τ)dτdν + w(t). (5)
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The channel modeling can be characterized by obtaining the
Delay-Doppler Profile (DDP) of the channel [14], that contains
the delay and Doppler paths associated with each multipath
reflector. Given the sparsity of the channel representation, it
is convenient to express the response h(τ, ν) in the form:

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (6)

where P is the number of propagation paths, hi, τi and νi
represent the path gain, delay, and Doppler shift (or frequency)
associated with ith path, respectively, and δ(·) denotes the
Dirac delta function. The delay and Doppler taps for the ith

path are equal to:

τi =
lτi + l̃τi
M∆f

, νi =
kνi + k̃νi
NT

, (7)

where l̃τi denotes the fractional delay, k̃νi denotes the frac-
tional Doppler shift, NT and M∆f denote the total duration
and bandwidth of the transmitted signal frame, respectively,
with T.∆f = 1. The interference caused by fractional delay
and fractional Doppler shift is effectively suppressed when M
and N are sufficiently large to approximately achieve ideal
OTFS resolution. Then we can consider l̃τi = k̃νi = 0 [15].

The received signal r(t) is sampled at a rate fs = M∆f =
M
T and a signal r[n] is formed, whose entries, from eq. (5)
and eq. (6) are equal to:

r[n] =

P∑
i=1

hi e
j2π

ki(n−li)
MN (s[n− li]MN ) + w[n]. (8)

Then, at the receiver, the time domain received signal
can be mapped to the time-frequency domain by an OFDM
demodulator, and then to the delay-Doppler domain by SFFT.

Based on this mathematical description, in discrete domain
the authors in [16] have used properties and identities between
vectors to process the OTFS system. Following the same
notation as a for vector, A for matrix, and AH to represent
the Hermitian transpose, the transmitted signal can be written
as:

S = GtxF
H
M (FMXFHN ) = GtxXFHN , (9)

where X ∈ CM×N denote the two-dimensional information
symbols transmitted in the delay-Doppler domain; Fn ={

1√
n
e2πjkl/n

}n−1

k,l=0
and FHn = F−1

n is the n-point DFT

and the Inverse Discrete Fourier Transform (IDFT) matri-
ces, respectively, and Gtx is the diagonal matrix that has
transmission pulse samples with duration [0, T ] repeated N
times in the frame. Then, the column-wise vectorization of
the M × N matrix S in eq. (9) yields the MN × 1 vector
s = vec(S) = (FHN ⊗Gtx)x, where x = vec(X) and ⊗ is the
Kronecker product.

Consequently, the signal received vector r of size MN ×
1 can be written using samples of equation (8), r =
{r[n]}MN−1

n=0 , as:
r = Hs + w, (10)

where w is the noise vector and H is the following MN×MN
matrix:

H =

P∑
i=1

hiΠ
li∆ki , (11)

with Π the permutation matrix (forward cyclic shift),

Π =


0 . . . 0 1

1
. . . 0 0

...
. . . . . .

...
0 . . . 1 0

 (12)

and ∆ the MN ×MN diagonal matrix:

∆ = diag[z0, z1, ..., zMN−1], (13)

where z = e
j2π
MN . The matrices Π and ∆ model the delays

and the Doppler shifts in eq. (5), respectively.
At the receiver, the received signal samples r are trans-

formed into the time-frequency domain symbols R =
vec−1(r), then into the delay-Doppler domain symbols Y =
FHM (FMGrxR)FN . To do this, an M -point FFT followed
by an SFFT is applied. Here, Grx ∈ CM×M is the diagonal
matrix of the receiver pulse. In vectored form the received
signal in the delay-Doppler domain can be written as:

y = (FN ⊗Grx)r. (14)

After substituting the transmitted signal vector s in eq. (10),
we obtain:

y = (FN ⊗Grx)(Hs + w)

= (FN ⊗Grx)H(FHN ⊗Gtx)x + (FN ⊗Grx)w

= Heffx + w̃,

(15)

where Heff = (FN ⊗Grx)H(FHN ⊗Gtx) is a sparse matrix
that denotes the effective channel matrix, w̃ = (FN ⊗Grx)w
is the noise vector with variance σ2

0 .
Due to the sparsity of Heff , it is possible to implement

low-complexity detector algorithms to obtain the estimated
symbols [17]. The algorithms based on message passing are
well-adapted for this. These algorithms use a representation of
the matrix Heff by a factor graph. The next section explains
the different variants of message passing algorithms used in
this paper.

III. DETECTOR ALGORITHMS BASED ON MESSAGE
PASSING

Most of the estimation and inference problems in the field
of digital communications can be described using a graphical
representation such as the bayesian networks or the factor
graphs [18]. A factor graph is a bipartite graph that specifies
the joint distribution of the random variables xi taking value
in a given domain. It is composed of two sets of vertices or
nodes and a set of branches or edges. The two sets of nodes
are :
• the variables nodes xi, graphically represented by circles

on Fig. 3
• the function nodes fj , represented by squares on Fig. 3
An example of factor graph is given in Figure 3
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Variable Nodes xi

Factor Nodes fj

µxi→fj (xi) µfj→xi
(xi)

n(i)

m(j)

Fig. 3. Factor graph to MPA

m(j) is the set of variable neighbors connected to factor
node fj and n(i) is the set of factor nodes connected to the
variable node xi.

Since the matrix Heff of size MN ×MN is sparse, we can
represent the equation (15) using a factor graph of MN = O
variables nodes and O factor nodes.

The number of branches df (j) = |m(j)| that converge on
a given function node is called the degree of the function
node fj . Similarly, the number of branches dx(i) = |n(i)|
that converge on a given variable node is called the degree
of the variable node xi. In our case, since the number of non
zero element of the lines and columns of Heff is equal to the
number of propagation paths P , the factor graph is regular
and we have df (j) = dx(i) = P ∀i, j.

In the next subsections, we will detail the following algo-
rithms based on MPA: the original MPA, the Approximate
Message Passing (AMP) in the version Factor Graph using
Gaussian Approximation of Interference (FG-GAI) [10], the
AMP using Gaussian Approximation (AMP-GA), AMP using
expectation propagation (AMP-EP) and AMP using first order
(AMP-FO) introduced in [11].

A. Message Passing Algorithm (MPA)

The aim of message passing algorithm is to estimate the
marginal probabilities µxi for all variables xi.

In the MPA, at each iteration, the algorithm computes
messages or beliefs from the variable nodes to the factor nodes
and then messages from factor nodes to the variable nodes.
The messages are propagated usually in parallel, to the next
factor node. This order, translated into the factor graph context
and the SPA (Sum-Product Algorithm), results in the message
update schedule.

The notations used to describe MPA based algorithms are
the following: µfj→xi are the messages from factor node fj
toward variable node xi and µxi→fj are the messages from
the variable nodes xi towards the factor nodes fj .

These messages or beliefs, are a function of a variable node
xi either in one direction or the other. The message from xi
to fj represents the probability that xi has a certain value,
given the observed value of this variable and given the values
it received from the other factor nodes linked to xi, except fj .
Using a Z-QAM (Z = constellation size), the messages have
Z distinct values, one for each possible value from xi.

Then, to initialize this algorithm, firstly the probability mass
functions to each factor node based on corresponding variables
node to each value of αs is computed as:

fj(yj |xi = αs) =
∏

l∈m(j)\i

P (yj |xl = αs,Heff )

∝
∏

l∈m(j)\i

exp

(
−|yj − hj,l αs|2

σ2
0

)
,

(16)

where αs belongs to alphabet A (|A| = Z), hj,l is the element
of the jth row and lth column of matrix Heff (channel transfer
matrix), σ2

0 is the noise variance, and yj is the correlated
received signal term.

The computation of all messages of the factor node fj to
the corresponding variables node xi starts considering that the
chances of the symbols of alphabet A are equality probable.
Then, each message is computed according to the sum-product
rule [18], where the previous product of all the messages sent
from the variable node xi are summarized for each associated
factor node fj , as follows:

µt
fj→xi(xi = αs) =

∑
x\xi

fj(yj |x)
∏

l∈m(j)\i

µt−1
xl→fj

(xl)

 . (17)

Then, the messages from variable node to factor node are
updated by the resulting product of messages from factor node
to variable node, as follows:

µtxi→fj (xi = αs) =
∏

b∈n(i)\j

µtfb→xi(xi). (18)

During message exchanges, a normalization process fol-
lowed by the application of the damping factor (∆) is used.
In this process, the values of the transferred messages from
variables node to factor node are normalized (µxi→fj ) by the
addition of the corresponding xi for each QAM symbol. Then,
the damping factor is calculated at each iteration (t) by total
the normalized messages with applying a weight, as shown by
eq. (19).

The application of the damping factor is a technique that
helps minimizing the BER when evaluating the best number of
iterations for the decoding algorithm, depending on the density
on Heff matrix.

µt
xi→fj (xi = αs) = (1−∆).µt−1

xi→fj
(xi) + ∆.µt

xi→fj (xi).
(19)

At iteration t we can estimate the marginal distribution
µtxi(xi = αs) using the set of incoming messages µtfb→xi(xi)

µtxi(xi = αs) =

∏
b∈n(i) µ

t
fb→xi(xi = αs)∑

xi∈A
∏
b∈n(i) µ

t
fb→xi(xi)

. (20)

Next, the Log Likelihood Ratio (LLR) calculation is applied
to perform a test based on the probabilities ratio and thus infer
about the detection of the received bit sequence. The LLR
calculation Λb→l from the transferred messages from the bth

factor node to the lth variable node (b, l→ fj , xi) is based on
the fundamentals of [20] and considering QAM symbols. The
MPA is detailed in pseudo-code in Algorithm 1.
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Algorithm 1 MPA algorithm
Initialization
Set µfj→xi(xi = αs) = 0,∀xi ∈ A
Compute fj(yj |xi) using (16), ∀i ∈ m(j), ∀xi ∈ A
for t = 1 to T do {Number of iterations}

for j = 1 to O do {Computation of messages from FN
(Factor Node) to VN (Variable Node)}

Compute µtfj→xi(xi) using (17), ∀i ∈ m(j), ∀xi ∈ A
end for
for i = 1 to O do {Computation of messages from VN

to FN}
Compute µtxi→fj (xi) using (18), ∀j ∈ n(i), ∀xi ∈ A

end for
for i = 1 to O do {Normalisation of messages from VN to

FN}
µxi→fj (xi) =

µxi→fj (xi)∑
αs∈Z µxi→fj (xi=αs)

, ∀j ∈ n(i), ∀xi ∈ A
Damping calculation by using equation (19)

end for
Decision calculation

B. Gaussian Approximation of Interference (FG-GAI)
In FG-GAI [10], the messages µtfj→xi(xi) are replaced

with Gaussian approximation of the interference. The received
signal yj is given by:

yj = hj,ixi +
∑

l∈m(j)\i

hj,lxl + wj︸ ︷︷ ︸
wfj→xi

, (21)

and the interference term wfj→xi will be modeled as a
Gaussian variable with mean zfj→xi and variance νfj→xi .

As in MPA, the iteration starts with the calculation of the
messages from the factor node fj to the variable nodes xi. The
means zfj→xi and variances νfj→xi are calculated as follows:

ztfj→xi = E(wfj→xi)

=
∑

l∈m(j)\i

hj,lE(xl)

=
∑

l∈m(j)\i

hj,l

Z∑
s=1

µ t−1
xl→fj (xl = αs)αs, (22)

νtfj→xi =
∑

l∈m(j)\i

|hj,l|2σ2(xl) + σ2
0 , (23)

where αs ∈ A, hj,l is the element of the jth row and lth

column of matrix Heff , E(x) the expectation of x and σ2(xl)
is equal the variance of xl, defined as:

σ2(xl) =

Z∑
s=1

µ t−1
xl→fj (xl)|αs|

2 −

∣∣∣∣∣
Z∑
s=1

µ t−1
xl→fj (xl)αs

∣∣∣∣∣
2

. (24)

Then the variables node xi updates its probability function
that is conditioned to the corresponding value of y vector
(yb) to each xi that belongs to a valid symbol in constellation
(alphabet A) and send to fj that responds with the mean and
variance of the others xi.

Then the messages from the variables node to factor node
are updated. The probabilities for each possible symbols
µ t
xi→fj (xi = αs) is calculated from the means and variances

that correspond to the factor nodes linked to xi as follows:

µ t
xi→fj (xi = αs) ∝

∏
b∈n(i)\j

exp

(
−|yb − ztfb→xi

− hb,iαs|2

νtfb→xi

)
.

(25)
The marginal distribution µ t

xi(xi) can be calculated taking
into account all the incoming messages:

µ t
xi(xi) ∝

∏
b∈n(i)

exp

(
−|yb − ztfb→xi − hb,iαs|

2

νtfb→xi

)
. (26)

Algorithm 2 FG-GAI algorithm
Initialization
Set

{
µxi→fj (xi) = 1/Z, zfj→xi = 0, νfj→xi = 0

}
for t = 1 to T do {Number of iterations}

for j = 1 to O do {Computation of messages from FN
to VN}

Compute ztfj→xi using (22), ∀i ∈ m(j)

Compute νtfj→xi using (23), ∀i ∈ m(j)
end for
for i = 1 to O do {Computation of messages from VN

to FN}
Compute µ t

xi→fj (xi) using (25), ∀j ∈ n(i)
Damping calculation by (19)

end for
for i = 1 to O do {Normalisation of messages from VN

to FN}
µxi→fj (xi) =

µxi→fj (xi)∑
αs∈Z µxi→fj (xi=αs)

, ∀j ∈ n(i)

end for
end for
Computation of LLR
Decision calculation

C. Approximate Message Passing using Gaussian Approxima-
tion (AMP-GA)

Another simplification of MPA using Gaussian Approxi-
mation is presented by [11]. It is called the Approximation
Message Passing Using Gaussian Approximation (AMP-GA).
In AMP-GA, basically the messages of mean and variances of
the variable nodes are updated from messages of factor nodes
by the calculation of a complex Gaussian function.

Let us denote µtxi→fj (xi) the message sent from the vari-
able node xi to factor node fj in the tth iteration, and let us
denote µtfj→xi(xi) the message from the factor node fj to
variable node xi. Then, the message update rules are given by
eq. (17) and eq. (18).

Knowing that symbols belong to a discrete set QAM sym-
bols (αs ∈ A) , the calculation of the messages requires
considerable complexity to marginalize a random vector x\xi.
To deal with such complexity, as in [11] the minimum of
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Kullback-Leibler divergence criterion is applied in the AMP-
GA to calculate parameters x̂txi→fj (mean of projection distri-
bution) and τ̂ txi→fj (variance of projection distribution). The
message updated from the factor nodes to variable nodes are
equal to:

x̂txi→fj =
∑
αs∈A

αsµ
t
xi→fj (xi = αs). (27)

τ̂ txi→fj =
∑
αs∈A

|αs|2µtxi→fj (xi = αs)− |x̂txi→fj |
2. (28)

Considering xi as a continuous random variable and ap-
proximating the message into a complex Gaussian function,
µtfj→xi(xi) can be calculated by integration in (17), as fol-
lows:

µt
fj→xi(xi) =

∑
x\xi

fj(yj |x)
∏

l∈m(j)\i

NC

(
xl; x̂

t
xl→fj , τ̂

t
xl→fj

)
≈ NC

(
hj,ixi; z

t
fj→xi , ν

t
fj→xi

)
,

(29)
where NC(x; x̂; τ̂) , (πτ̂)−1 exp(−|x − x̂|2/τ̂) denotes a
complex Gaussian function. The parameters ztfj→xi (mean
messages from factor nodes to variable nodes) and νtfj→xi
(variance messages from factor nodes to variable nodes) are
given by:

ztfj→xi = yj −
∑

l∈m(j)\i

hj,lx̂
t
xl→fj .

(30)

νtfj→xi = σ2
n +

∑
l∈m(j)\i

|hj,l|2τ̂ txl→fj . (31)

Now, substituting µtfj→xi(xi) =

NC

(
hj,ixi; z

t
fj→xi , ν

t
fj→xi

)
in (18), the messages

µtxi→fj (xi) can be normalized as follows:

µtxi→fj (xi) =
NC

(
xi; ζ

t−1
xi→fj , γ

t−1
xi→fj

)
∑
xi∈ANC

(
xi; ζ

t−1
xi→fj , γ

t−1
xi→fj

) , (32)

where γt−1
xi→fj (variance messages from variables nodes to

factor nodes) and ζt−1
xi→fj (means messages from variables

nodes to factor node) are given by:

γtxi→fj =

 ∑
b∈n(i)\j

|hb,i|2

νtfb→xi

−1

. (33)

ζtxi→fj = γtxi→fj

∑
b∈n(i)\j

h∗b,iz
t
fb→xi

νtfb→xi
. (34)

The marginal distribution µ t
xi(xi) can be calculated as

follows:

µtxi(xi = αs) ∝ exp

(
−
|αs − ζtxi |

2

γtxi

)
, (35)

where γtxi and ζtxi are the estimated mean and variance of
xi:

γtxi =

 ∑
b∈n(i)

|hb,i|2

νtfb→xi

−1

. (36)

ζtxi = γtxi

∑
b∈n(i)

h∗b,iz
t
fb→xi

νtfb→xi
. (37)

Algorithm 3 AMP-GA algorithm
Initialization
Set

{
ζ0
xi→fj (xi) = 0, γ0

xi→fj = 1000
}

Set
{
x̂0
xi→fj = 0, τ̂0

xi→fj = 0, z0
fj→xi = 0, ν0

fj→xi = 0
}

for t = 1 to T do {Number of iterations}
{Computation of messages from VN to FN}

for i = 1 to O do
Compute µtxi→fj (xi) using (32), ∀j ∈ n(i)

Compute x̂txi→fj using (27), ∀j ∈ n(i)

Compute τ̂ txi→fj using (28), ∀j ∈ n(i)
end for{Computation of messages from FN to VN}
for j = 1 to O do

Compute ztfj→xi using (30), ∀i ∈ m(j)

Compute νtfj→xi using (31), ∀i ∈ m(j)
end for
{Computation of messages from VN to FN}

for i = 1 to O do
Compute γtxi→fj using (33), ∀j ∈ n(i)

Compute ζtxi→fj using (34), ∀j ∈ n(i)
Damping calculation by (19)

end for
end for
Computation of LLR
Decision calculation

D. AMP simplified by Expectation Propagation (AMP-EP)

The AMP-EP proposed by [11] arises as an alternative to
reduce the computational complexity of AMP-GA introduced
in the calculation of the messages from the variable nodes to
factor nodes µtxi→fj (xi) in (32). These messages are replaced
by the so-called symbol belief (βt(xi)) that is approximated
by a Gaussian probability density function (PDF) as follows:

βt(xi) ,

∏
b∈n(i) µ

t−1
fb→xi(xi)∑

xi∈A
∏
b∈n(i) µ

t−1
fb→xi(xi)

≈

∏
b∈n(i)NC

(
hb,ixi; z

t−1
fb→xi , ν

t−1
fb→xi

)
∑
xi∈A

∏
b∈n(i)NC

(
hb,ixi; z

t−1
fb→xi , ν

t−1
fb→xi

) .
(38)
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Thus, in this approach, the message µtxi→fj (xi) is replaced
by the symbol belief that is based on a Gaussian PDF, i.e.,
in this case we have an approximate message µtxi→fj (xi)

calculated from an approximate belief of the symbol βt(xi).
After calculating the symbol belief for each variable node,
starts the calculation of parameters x̂txi (means messages) and
τ̂ txi (variance messages) and then the exchange of messages
of the variable nodes to factor nodes (x̂txi→fj and τ̂ txi→fj ). To
compute these parameters, firstly the values of x̂txi and τ̂ txi are
updated using the calculated belief symbols, as follows:

x̂txi =
∑
αs∈A

αsβ
t(αs). (39)

τ̂ txi =
∑
αs∈A

|αs|2βt(αs)− |x̂txi |
2. (40)

Finally, x̂txi→fj and τ̂ txi→fj , the mean and variance mes-
sages from the variable nodes to the factor nodes are obtained
as follows:

τ̂ txi→fj =

(
1

τ̂ txi
− |hj,i|

2

νt−1
fj→xi

)−1

. (41)

x̂txi→fj = τ̂ txi→fj

(
x̂txi
τ̂ txi
−
h∗j,iz

t−1
fj→xi

νt−1
fj→xi

)
. (42)

Now, the messages from the factor nodes to the variable
nodes are updated with the values of τ̂ txi→fj and x̂txi→fj
previously computed. As a result, the messages of variance
(νtfj→xi ) and means (ztfj→xi ) will be used as input parameters
for the calculation of the Gaussian PDF and thus will update
the symbols belief βt(xi) that will be the basis of calculation
of the next iteration. The messages ztfj→xi and νtfj→xi are
computed by equation (30) and (31).

Then, the marginal distribution µtxi(xi) is obtained directly
from the belief symbol βt(xi) and the LLR can be obtained
as in the MPA.

Algorithm 4 AMP-EP algorithm
Initialization
Set

{
z0
fj→xi = 0, ν0

fj→xi = 1000
}

Set
{
x̂0
xi = 0, τ̂0

xi = 0, x̂0
xi→fj = 0, τ̂0

xi→fj = 0
}

for t = 1 to T do {Number of iterations}
{Computation of messages from FN to VN}

for i = 1 to O do
Compute βt(xi) using (38), ∀j ∈ n(i)

end for
for j = 1 to O do

Compute x̂txi using (39), ∀i ∈ m(j)
Compute τ̂ txi using (40), ∀i ∈ m(j)
Compute x̂txi→fj using (41), ∀i ∈ m(j)

Compute τ̂ txi→fj using (42), ∀i ∈ m(j)
end for
{Computation of messages from VN to FN}

for i = 1 to O do
Compute ztfj→xi using (30), ∀j ∈ n(i)

Compute νtfj→xi using (31), ∀j ∈ n(i)
Damping calculation by (19)

end for
end for
Computation of LLR
Decision calculation

E. AMP simplified by First-Order (AMP-FO)

Further simplification AMP-EP, the last alternative of MPA
for the reduction of complexity proposed by [11] is the
AMP-FO. In this algorithm, the messages are rewritten after
recursive updates and the negligible terms are omitted in the
large system limit.

To adapt to OTFS decoding, we first rewrite the standard
messages in (32) as follows:

µtxi(xi) =
NC
(
xi; ζ

t−1
xi , γt−1

xi

)∑
xi∈ANC

(
xi; ζ

t−1
xi , γt−1

xi

) , (43)

where γt−1
xi (variance messages variables nodes) and ζt−1

xi
(means messages variables nodes) which are the messages
exchanged from variables nodes to factor nodes are given by:

γtxi =

 ∑
b∈n(i)

|hb,i|2

νtfb

−1

. (44)

ζtxi = x̂txi + γtxi

∑
b∈n(i)

h∗b,i z
t
fb

νtfb
. (45)

with ztfb and νtfb the means and variance messages from
factor nodes to variable nodes, respectively. To initiate the
exchange of messages from factor nodes to variable nodes,
eq. (43) is updated for all variable nodes and then the mean
and variance of projection distribution for each symbol of the
QAM alphabet is calculated as:

x̂txi =
∑
αs∈A

αsµ
t
xi(xi = αs). (46)
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τ̂ txi =
∑
αs∈A

|αs|2µtxi(xi = αs)− |x̂txi |
2. (47)

Then, all the means and variances of the messages ex-
changed from factor nodes to variables nodes are calculated
as follows:

ztfj = yj −
∑
l∈m(j)

hj,l x̂
t
xl

+ zt−1
fj

∑
l′∈m(j) τ̂

t
xl′
|hj,l′ |2

νt−1
fj

. (48)

νtfj = σ2
n +

∑
l∈m(j)

|hj,l|2 τ̂ txl . (49)

Algorithm 5 AMP-FO algorithm
Initialization
Set

{
z0
fj→xi = 0, ν0

fj→xi = 1000
}

Set
{
ζ0
xi = 0, γ0

xi = 1000
}

for t = 1 to T do {Number of iterations}
{Computation of messages of FN}

for i = 1 to O do
Compute µt

xi
(xi) using (43)

Compute x̂txi using (46)
Compute τ̂ txi using (47)

end for
{Computation of messages of VN}

for j = 1 to O do
Compute ztfj using (48)
Compute νtfj using (49)

end for
{Computation of messages of FN}

for i = 1 to O do
Compute γtxi using (44)
Compute ζtxi using (45)
Damping calculation by (19)

end for
end for
Computation of LLR
Decision calculation

IV. COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the considered
algorithms by counting their required number of floating-
point operations (FLOP). Flop counts are obtained by adding
the arithmetic operations associated with the most deeply
nested statements in an algorithm [19]. In the previous section
we have presented the simplifications introduced by each
algorithm in order to reduce the complexity starting from the
MPA, followed by FG-GAI, AMP-GA AMP-EP and AMP-FO
(from the most complex to the less complex algorithm).

All the message passing algorithms have a preprocessing
step to compute the square norms |hj,l|2 that requires 3PO
FLOPs.

The complexity of MPA and FG-GAI is mainly due to the
message exchange from VN to FN and from FN to VN. How-
ever MPA has an additional preprocessing step for calculating

fj(yj |xi) that needs (14P − 15)ZO FLOPs. Processing the
µtfj→xi messages requires (Z(P−1) − 1)(P − 1)ZPO FLOPs
while the calculation µtxi→fj requires (P − 2)ZPO FLOPs
for each iteration. The FG-GAI needs [6Z2 − 4Z + (2Z +
2)P − 7]PO FLOPs to calculate ztfj→xi and νtfj→xi and
[(15P − 1)Z − 1]PO FLOPs to compute µtxi(xi).

The algorithms AMP-GA, AMP-EP and AMP-FO have
three steps following the preprocessing step. In the VN mes-
sages step, AMP-GA requires 15ZPO FLOPs to compute
{µtxi→fj , x̂

t
xi→fj , τ̂

t
xi→fj}, AMP-EP requires (16P +Z−1)O

FLOPs to compute β(xi)
t and AMP-FO needs (15Z + 2)O

FLOPs to compute {µxi(xi)t, x̂txi , τ̂
t
xi}. In the FNs step,

to calculate {ztfj→xi , ν
t
fj→xi} the AMP-GA needs (10P −

10)PO FLOPs, to compute {x̂txi , τ̂
t
xi , x̂

t
xi→fj , τ̂

t
xi→fj} AMP-

EP needs (16P +Z − 1)O FLOPs and AMP-FO (12P + 4)O
FLOPs to calculate {ztfj , ν

t
fj
}. In the update of messages

from VNs AMP-GA needs (12P − 12)PO FLOPs to com-
pute {γtxi→fj , ζ

t
xi→fj}, AMP-EP (10P − 10)PO FLOPs to

evaluate {ztfj→xi , ν
t
fj→xi} and AMP-FO (12P + 2)O FLOPs

to calculate {γtxi , ζ
t
xi}.

Table I shows the number of total FLOPs per iteration of
each algorithms as a function of the size of the used Z-QAM
modulation, the number of paths P and the number of VNs
and FNs O.

TABLE I
COMPLEXITY BY TOTAL NUMBER OF FLOPS PER ITERATION

Algorithm FLOPs
MPA [(ZP−1)(P − 1) + P + 12]ZPO − 15ZO

FG-GAI [6Z2 + (15P − 5)Z + (2Z + 2)P − 5]PO
AMP-GA (15Z + 22P − 19)PO
AMP-EP (7Z + 16P )O + (10P + 11)PO
AMP-FO (15Z + 24P + 8)O + 3PO

Based on the expressions of Table I, Figure 4 presents the
complexity in terms of FLOPs as a function of the constella-
tion size Z for each algorithm. We have considered the case
P = 4 paths, 64 subcarriers with 64 symbols (O = 4096). We
will use the same set of parameters to evaluate the bit error
rate performance in this study.
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Fig. 4. Complexity Evaluation of the Studied Algorithms
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As expected, we can see in Figure 4 that the MPA algorithm
is the most complex and its complexity increases considerably
when increasing Z, while AMP-FO is the less complex and
its complexity increases more slowly when increasing the
constellation size. In FG-GAI, replacing µfjxi with means
and variances reduces the complexity by a factor of 75 at
Z = 16 compared to MPA. By replacing the messages by
means and variances, the complexity of the AMP algorithms
is further reduced. A complexity reduction factor of 10 is
obtained between FG-GAI and AMP-EP. Finally, the AMP-FO
algorithm achieves the lowest complexity since its complexity
is about 30% of the one of the EP algorithm by computing
only the mean and variance information at the VNs and FNs
nodes.

V. EXTENSION TO MIMO SYSTEMS

The input-output relation of a SISO-OTFS system given in
equation (15) will be replace by MIMO input-output relation
taking into account the multiple transmit and receive antennas
[14]. Let us define the vectorized received signal at the jth
antenna as yj and xi as the vectorized signal at the ith
transmit antenna. We assuming a MIMO system composed
of nt transmit antennas and nr receive antennas. Then, from
equation (15), we have the following set of input-output
equations:

y1 = H11x1 + H12x2 + ...+ H1ntxnt + w̃1,

y2 = H21x1 + H22x2 + ...+ H2ntxnt + w̃2,

...
ynr = Hnr1x1 + Hnr2x2 + ...+ Hnrntxnt + w̃nr ,

(50)

where Hji is the effective channel vector between the ith
transmit antenna and the jth received antenna.

We can rewrite equation (50) in a compact form as follows:

yMIMO = HMIMOxMIMO + w̃MIMO, (51)

where HMIMO is the MIMO effective channel matrix

HMIMO =


H11 H12 . . . H1nt

H21 H22
. . . H2nt

...
. . . . . .

...
Hnr1 Hnr2 . . . Hnrnt ,

 , (52)

and xMIMO = [xT1 ,x
T
2 ...,x

T
nt ]

T is the vectorized symbols
transmitted vector, yMIMO = [yT1 ,y

T
2 ...,y

T
nr ]

T is the vector-
ized received signal vector and w̃MIMO = [w̃T

1 , w̃
T
2 ..., w̃

T
nr ]

T

is the noise vector of MIMO-OTFS systems.
According to this context, extending the study to MIMO-

OTFS systems implies a substantial increase in the complexity
of the algorithms of the Section III, mainly of the MPA that
takes into account each edge between variable node and factor
node which depends on the number of paths. Besides that,
in a multipath scenario each antenna of the MIMO system
configuration will suffer with the fading of each path.

VI. SIMULATION RESULTS

In this section, we will evaluate the Bit Error Rate (BER)
performance of the OTFS system considering the different
low-complexity algorithms presented in Section III (MPA,
FG-GAI, AMP-GA, AMP-EP and AMP-FO) over a delay-
Doppler channel model in a multipath scenario. The simulation
parameters are given in Table II.

TABLE II
SIMULATION PARAMETERS

Parameter Value
Carrier frequency (fc ) 4 GHz
Subcarrier spacing (∆f ) 15 kHz
Number of subcarriers (M ) 64
Number of OTFS symbols (N ) 64
Number of paths (P ) 4
Modulation scheme 4-QAM
UE speed 60, 120, 180 km/h
Channel estimation ideal
Doppler shift 234 Hz
Delay shift 1 µs

The channel model is the delay-Doppler Profile multipath
model [14]. Based on the parameters given in Table II, we have
considered two different scenarios, both with four paths, where
each reflector has delay shift multiple of 1 µs and Doppler
shifts multiple of 234 Hz. The delay and Doppler shifts for
each path in the two considered scenarios are provided in
the Table III and Table IV, respectively. In Scenario 1, all
reflectors have different Doppler shifts but they are all in
the same direction while in Scenario 2 the reflectors are in
different directions (two positive and two negative Doppler
shifts).

TABLE III
DDP FOR MULTIPATH CHANNEL MODEL - SCENARIO 1

Path index (i) 1 2 3 4
Delay (τi) 0 µs 1 µs 2 µs 3 µs
Delay tap (li) 0 1 2 3
Doppler (νi) 0 Hz 234 Hz 468 Hz 702 Hz
Doppler tap (ki) 0 1 2 3

TABLE IV
DDP FOR MULTIPATH CHANNEL MODEL - SCENARIO 2

Path index (i) 1 2 3 4
Delay (τi) 0 µs 1 µs 2 µs 3 µs
Delay tap (li) 0 1 2 3
Doppler (νi) -234 Hz 468 Hz 234 Hz -234 Hz
Doppler tap (ki) -1 2 1 -1

We have first performed a study of the BER performance
as a function of number of iterations for each algorithm to
establish which value is the more appropriate for the presented
system. The results for the scenario 2 and considering SNR =
12 dB are shown in Figure 5.
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Fig. 5. Analysis of number of iterations for Scenario 2

According to Figure 5, we can infer that, for the considered
DDP model, the required number of iterations for FG-GAI
algorithm is 10, AMP-GA is 15, AMP-EP is 20 and AMP-
FO is 15 iterations. The MPA algorithm converges faster and
consequently requires only 5 iterations. Once the required
number of iterations has been determined, we have studied
the impact of the damping factor for scenario 2 using eq. (19)
on the BER performance in the range of 0.45 to 0.75. The
influence of the damping factor is given on Figure 6.
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Fig. 6. Analysis of damping factor for Scenario 2

Figure 6 shows that the damping factor does not bring
significant gains with regard to BER. The best damping factor
for FG-GAI algorithm is 0.55, for AMP-GA is 0.5, AMP-EP
is 0.65 and AMP-FO is 0.6. The MPA algorithm showed no
variations in BER for the considered range. The same number
of iterations and damping factors have been obtained when
considering the scenario 1. Table V presents a summary of
the damping factors and number of iteration that will be used
in the next simulations.

TABLE V
DAMPING FACTOR AND ITERATIONS VALUES

Algorithm Iterations damping Factor
MPA 5 0.6

FG-GAI 10 0.55
AMP-GA 15 0.5
AMP-EP 20 0.65
AMP-FO 15 0.6

Using the above parameters, we have simulated the BER
performance of the OTFS system for each low-complexity
algorithm detector in a SNR range of -13 to 17 dB and both
scenarios presented in tables III and IV. Figure 7 and Figure
8 present the BER performance as a function of the SNR for
Scenario 1 and Scenario 2 respectively.
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Fig. 7. BER Performance of OTFS with Scenario 1
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Fig. 8. BER Performance of OTFS with Scenario 2

We used the channel model defined by equation (6), then
all graphs are based on the same Heff matrix.

As shown on Figures 7 and 8, all algorithms have similar
performance at low SNR, however we can observe differences
from 12 dB. In Scenario 1, the MPA algorithm, which is the
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most complex algorithm, achieves the best BER performance.
At BER= 10−3 the performance losses of AMP-EP and AMP-
FO are 1.25 dB and 2.25 dB respectively with respect to
MPA. On the other hand, in Scenario 2 the AMP-EP achieves
the same performance than the MPA. At BER= 10−3 the
performance loss of AMP-FO is 0.8 dB with respect to the
MPA. In both scenarios, AMP-GA has the worst performance,
followed by FG-GAI and AMP-FO.

In both scenarios, the BER performance of the AMP-
FO algorithm is relatively closed to the one of the AMP-
EP while AMP-FO is significantly less complex. We can
conclude that AMP-FO in both studied scenarios provide a
good compromise between its complexity and its achieved
BER performance.

In relation to the MIMO-OTFS, due to the considerable
increase in the complexity of the algorithms, we chose the
three least complex algorithms based on AMP: AMP-GA,
AMP-EP and AMP-FO to analyze the performance for the
second scenario considering a set of two transmit antennas
and two received antennas. Thus, according to (52), HMIMO

will have a dimension of 2MN × 2MN (8192 × 8192) and
therefore we will have now 8 non-zero elements in each row
and in each column of the factor graph associated to the
effective channel matrix since each antenna will suffer from
the fading of each of the 4 paths of the considered multipath
scenario. The Figure 9 shows the result for the MIMO-OTFS
case:
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Fig. 9. BER Performance of 2x2 MIMO-OTFS to Scenario 2

As expected, the MIMO-OTFS scheme performs better than
the SISO-OTFS, where a gain of 5 dB is observed at BER =
10−1. Due to the spatial diversity, the detector algorithms
presented a similar performance behavior, diverging a little at
10 dB. In other words, the less complex algorithm AMP-FO
also has the best performance-complexity tradeoff for MIMO-
OTFS.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper we have studied, evaluated and compared four
low-complexity MPA-based detectors for OTFS systems over

time-frequency selective channel with high Doppler in term
of BER performance and complexity analysis. As expected,
the MPA and AMP-EP algorithms achieve the best BER
performance. However, the complexity AMP-FO algorithm
is significantly lower since it is only about 30% of the
complexity of the AMP-EP algorithm. The AMP-FO algorithm
is the less complex studied algorithm and it allows a BER
performance degradation of less than 1 dB and 2.25 dB at BER
= 10−3 compared to the AMP-EP and the MPA algorithms
respectively in SISO-OTFS. Indeed, the AMP-FO algorithm
gives the best performance-complexity tradeoff in both the
SISO-OTFS system and the MIMO-OTFS system

As future works, we will study applications of channel
estimation techniques in OTFS and consider the extension to
massive MIMO systems.
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