
JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 86

Robust time delay estimation based on
non-Gaussian impulsive acoustic channel

Danilo S. Pena, Arthur D. L. Lima, Vicente A. de Sousa Jr., Luiz F. Silveira and Allan M. Martins

Abstract—The aim of this letter is to propose a new robust
method for time delay estimation over impulsive noise and
investigate its practical implications. The method uses a non-
linear data transformation associated with the generalized cross-
correlation technique. Hence, simulations and experiments show
better performance than traditional methods without increasing
the computational cost. Our practical experiments indicate the
possibility of obtaining a correlated impulsive noise, in which the
proposed method is still presenting accurate estimations.

Index Terms—direction-of-arrival estimation, acoustic noise,
acoustic signal processing.

I. INTRODUCTION

The time delay estimation (TDE) for speech and audio
signals is crucial to many applications and some emerging
technologies, for instance, to the smart speakers, robots, inte-
grated media, and assistive technologies. Thus, research con-
ception of such technologies must consider realistic acoustic
channel models. Notably, the channels subject to impulsive
noise are more accurately characterized as non-Gaussian pro-
cesses [1], [2], although many TDE methods assume implic-
itly or explicitly that the signal observations are Gaussian
distributed. This assumption is found in generalized cross-
correlation (GCC) techniques, and their different frequency
domain weighting such as phase transform (GCC-PHAT) [3],
Roth weighting (GCC-ROTH), and smoothed coherence factor
weighting (GCC-SCOT). As a result, these classical methods
experience severe degradation in the spatial resolution [4]
when the Gaussian assumption does not work.

A non-Gaussian channel could be modeled with a symmet-
ric α-stable (SαS) distribution. The SαS has heavier tails than
the Gaussian distribution, giving a much better approximation
to real-world audio signals [1], [2]. Although an approach
based on fractional lower order statistics (FLOS) available
in α-stable noises is proposed [4], this method relies on the
estimating of the characteristic exponent of the model.

In this letter, we develop a straightforward and robust
solution for TDE in acoustic channels subject to non-Gaussian
impulsiveness noise. Particularly, we propose the use of a non-
linear data-based transformation [5], which we call non-linear
transformation (NLT) method, to allow the use of classical
TDE methods even in channels where noise has unbounded
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variance. Our main contribution is a method based on the
traditional GCC technique, enabling its uses in non-gaussian
impulsive noise. Moreover, the performance of the proposed
architecture is evaluated through simulation and experimental
data, comparing the proposed method to classical and robust
techniques. Our proposed method significantly increases the
estimation accuracy in the presence of non-Gaussian SαS
noise. Finally, we also discuss the influence of the noise
correlation between the received signals from our real mea-
surements.

This paper is organized as follows. In Section II, we describe
the signal model and the state-of-the-art solution, presenting its
benefits and limitations. Our method is proposed in Section III.
In Section IV, the main results are presented and discussed,
comparing the performance of the proposed and the reference
TDE algorithms by simulations. In Section V, we present our
final remarks.

II. PROBLEM FORMULATION

Assuming microphone receivers in the acoustic field of a
single speech source, the signal received in the presence of
additive noise, in the instant n, can be expressed as

x1(n) = s(n) + u1(n)

x2(n) = as(n− τ) + u2(n),
(1)

where s(n) represents the speaker’s signal, τ represents the
time delay, u1(n) and u2(n) are background noise sources, a
is a random complex-valued gain. We assume that u1(n), and
u2(n) are SαS uncorrelated processes.

As previously mentioned, we consider the FLOS as our
reference case regarding a robust method to impulsive noise.
The fractional lower-order covariance, which mitigates the
effects of heavy-tailed noise model, is defined by [4] for an
α-stable process as:

Rx1x2(τ) = E[x1(n)
<A>x2(n+ τ)<B>], (2)

for 0 ≤ A,B < α/2. Consequently, it is necessary a
parametrization of the method. Due to the lack of finite
variance, we use covariation [6] (instead of covariance):

Rx1x2
(τ) =

E[x1(n)x2(n+ τ)<p−1>]

E[|x2(n+ τ)|p]
, (3)

for any 1 ≤ p < α. For 1 < α < 2, the α-stable distributions
have finite first-order moments and all the fractional moments
of order p. It is worth mentioning that the covariation is not
linear regarding the second variable x2, and it is difficult to
calculate analytically. Its estimation can be obtained by [6]
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R̂x1x2
(τ) =

∑N
i=1 x1(n)|x2(n− τ)|p−1sign(x2(n− τ))∑N

i=1 |x2(n− τ)|p
.

(4)
In order to ensure the existence of second-order statistics,

the generalized FLOS (GFLOS) has been shown as a smaller
variance than the FLOS method [7]. It is defined as

Rx1x2
(τ) = E[g(x1(n))g(x2(n− τ))], (5)

where g(·) is a class of non-linear transform functions. This
function may be the characteristic exponent like the FLOS, or
other functions as the logarithm, sign, or arctangent.

Although the maximum value of Rx1x2(τ) corresponds to
the robust estimated TDE for a particular function, it may not
be possible to use the fast algorithms from Fourier convolution
computing or it may require some parametrization, depending
on the function chosen. The failure of the method to use
optimized algorithms makes it an inappropriate method in the
case with speed constraints.

III. PROPOSED METHOD

In the acoustic signals, external noises may consist of
impulsive electrical noises, human-made audio noises, and
uncalibrated sensors. In our proposed method, named non-
linear transform (NLT), the TDE is estimated by a nonlinear
transformation followed by the GCC method.

Based on the GFLOC method [7], we compute the covari-
ance using a set of functions from a class called sigmoid
functions. Those functions present essential characteristics,
such as monotonically increasing, and symmetry. We com-
pared the modulus, algebraic, gudermannian, and hyperbolic
tangent functions, with the hyperbolic tangent reaching a lower
RMSE than other functions.

Therefore, the non-linear data transformation of the ith
signal received is a generalized sigmoid function, wherein a
practical case, we use the hyperbolic tangent as a shifted and
scaled version of the sigmoid, described by

yi(n) =
exi(n) − e−xi(n)

exi(n) + e−xi(n)
= tanh(xi(n)). (6)

In the NLT, we use the following covariance:

R̂y1y2(τ) = F−1(Y1(k)Y
∗
2 (k)φ(k)), (7)

where φ(·) is a weighting function, and Yi(k) are the fre-
quency domain of the transformed signals yi(n). It may
implement any frequency domain weighting of the cross-
correlation according to a specific problem, producing the
variations as NLT-PHAT, NLT-ROTH, and NLT-SCOT. Finally,
the delay between the channels can be estimated by

τ̂NLT = argmax
τ0

(Ry1y2(τ)). (8)

IV. RESULTS AND DISCUSSION

Proof-of-concept computer simulations evaluated the NLT-
PHAT against GCC-PHAT, and FLOS-PHAT methods, as
shown in Figures 1 and 2. We configured two simulation
scenarios concerning the α-stable noise. We modeled the noise
using the direct integration method for the SαS model [8]
with α = 1.9 and α = 1.3 for low and high impulsiveness,
respectively. Numerical results are provided by 10000 Monte
Carlo runs.

The angle estimation accuracy is assessed by the root-
mean-square error (RMSE) in degrees and the probability
of resolution (PR) versus the signal-to-noise ratio (SNR).
However, the infinite variance of non-Gaussian SαS processes
prevents the signal-to-noise ratio to be used as a measurement
of signal quality. In this letter, we use the geometric signal-
to-noise ratio (GSNR) [9] instead of the SNR. The GSNR is
given by

GSNR =
1

2Cg

(
A

S0

)2

, (9)

where the normalization constant Cg = eCe ≈ 1.78 is the
exponential of the Euler constant (Ce), used to ensure that
GSNR corresponds to SNR when the channel is Gaussian (α =
2); S0 is the geometric power of a SαS random variable; and
A is the root-mean-square value of the audio signal.

The PR is a performance measure based on asymptotic
analysis able to evaluate the resolution capability and its
statistical performance. It is known that the direction of arrival
methods is given by the positions of the spectral peaks and
the TDOA methods by their cross-correlation peaks. However,
the PR allows us to evaluate the direction of arrival (and time
delay estimation) accuracy statistically with respect to SNR.
Therefore, it is useful when we are comparing two methods
or evaluating methods in relation to critical conditions.

Due to comparisons with the most common GCC method,
the GCC-PHAT, we use the same phase transform (PHAT)
weighting function in the robust methods such as FLOS-PHAT
and NLT-PHAT, given by [2]

φPHAT (k) =
1

|Y1(k)Y ∗
2 (k)|

. (10)

We evaluate the FLOS-PHAT with different values of pa-
rameter p based on scenarios with different impulsiveness
level (α = 1.9 and α = 1.3). Then, we adopt the parameter
A = B = 0.15 in FLOS-PHAT method, since it achieves its
best performance [2]. Our results corroborate with the best
performance of FLOS-PHAT against the classic GCC-PHAT.
However, FLOS-PHAT requires previous knowledge of the
noise. On the other hand, our proposed method (NLT-PHAT)
does not require any parameter, providing better performance
than others over impulsive noise even for low GSNR values.

According to our previous work [1], the noise characteriza-
tion is presented as an impulsive noise in outdoor and indoor
scenarios using fitting for SαS distributions. The outdoor
environment experiences a noise with severe impulsiveness
(α = 1.3), and the indoor environment with less impulsiveness
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Fig. 1. Comparison between TDE methods subject to α-stable noise with
α = 1.3 (high impulsiveness).

-5 0 5 10 15

GSNR

10¹

10²

R
M

S
E

 (
) d

B

 GCC-PHAT

 FLOS-PHAT

 NLT-PHAT

Fig. 2. Comparison between TDE methods subject to α-stable noise with
α = 1.9 (low impulsiveness)

(α = 1.9). Thus, we also present a performance evaluation of
the proposed NLT-PHAT with the signal measurements.

Our experimental analysis is based on a setup with a circular
array using four microphones. We collected 240000 signal
samples in the indoor and outdoor scenarios. The spacing
between the microphones is 5.75 cm and sampling frequency
is 48 kHz. The audio source is a speech signal with 1.5 meters
and 20 degrees from the first microphone. All experiments are
obtained by hand and subject to limited accuracy on the order
of centimeters.

Table I shows the RMSE and PR for our experimental data.
We separated the evaluation in two signal windows: first, using
all 240000 samples (scenarios Indoor 1 and Outdoor 1); after
that, a window with 100000 samples where the speech signal
(scenarios Indoor 2 and Outdoor 2) occurs. The second case
was obtained manually, and the same window was used in
all methods. Although the lower sampling frequency implies
lower resolution, causing an increase of lowest achievable
RMSE (RMSEmin = 4.7), we use the PR with ξ = 6◦ to
ensure a proper evaluation. The loss of performance in the
full-sized window occurs due to the absence of source signal
in some regions of the window.

Analyzing the results from Table I, the FLOS-PHAT al-
gorithm exhibits lower RMSE than the classic GCC-PHAT
solution, although the FLOS-PHAT has lower resolution. On
the other hand, the NLT-PHAT has the lower RMSE and higher
probability of resolution in comparison to other methods.
Using our proposed approach, one can reach the minimum

TABLE I
RMSE AND PROBABILITY OF RESOLUTION OF THE METHODS.

GCC-PHAT FLOS-PHAT NLT-PHAT
Scenario RMSE PR RMSE PR RMSE PR
Indoor 1 33.2 61% 21.3 43% 26.6 73%
Indoor 2 7.7 89% 7.7 89% 7.7 89%
Outdoor 1 24.7 52% 18.9 39% 15.8 70%
Outdoor 2 11.9 89% 9.7 89% 4.7 100%

Fig. 3. Correlated impulsive noise.

RMSE and maximum PR in the outdoor scenario with an
appropriate window.

A careful observation of the algorithms is performed to
investigate the reason for similar performance among the
methods. The signal analyzed suggests that the impulsive
noise is occasionally correlated in the channels because it is
produced by an acoustic source, as illustrated in Figure 3.
In this case, the methods have similar performance due to
the inappropriate model considered, in which the noise is
uncorrelated in each signal received. Thus, the performance
of non-robust estimators increases in the presence of the
correlated impulsive noise. Nevertheless, these results reveal
a better performance of the robust methods even for the case
of an occasional presence of the correlated impulsive noise.

V. CONCLUSION

The proposed method exhibits the same low computational
cost than the classical solutions presented in the literature.
The solution shows some advantages compared to the robust
approaches for TDE such as enhanced performance with im-
pulsive noise (even when correlated), computational feasibility
(with no need of parametrization), and the availability to use
second-order statistics even in unbounded variance scenarios.
Our method would be a beneficial complementary approach
in the current day attempts to solve the position location issue
in the non-Gaussian noise scenarios. It is a feasible solution
in the trade-off between model complexity and performance.
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