
JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 150

Channel Equalization Based on Decision Trees
David Felice F. Baptista, Rafael Ferrari, Romis Attux.

Abstract—This paper analyzes the application of decision trees
to the problem of communication channel equalization. Decision
trees are interesting structures because they are nonlinear and
relatively simple from a computational standpoint. They are
tested for channel models that engender classification tasks of
different complexity and have their performance compared to
those of the optimal (Bayesian) equalizer and the Wiener linear
equalizer. The results are quite encouraging, as they show that
the tree-based equalizer reaches, in many cases, a performance
similar to that of the Bayesian filter with a computational cost
that tends to be lower as the duration of the channel impulse
response increases.

I. INTRODUCTION

In simple terms, a communication system is composed of a
transmitter, a channel and a receiver. The messages sent by the
transmitter are, as a rule, distorted by the channel. Therefore,
it is necessary to make use of countermeasures to preserve the
relevant information content [1].

One possible strategy is to use a filter – called equalizer
– to process the received signal with the aim of ”inverting”
the effects of the channel [2]. Naturally, this filter must be
carefully designed: it should be based on a structure with
enough complexity and a criterion for determining the parame-
ters thereof by making use of the available information. From a
structural standpoint, equalizers are typically thought of as be-
ing, for instance, linear / nonlinear or recurrent / feedforward.
As for the adaptation criterion, there are two fundamental
possibilities: it can be either supervised or unsupervised [3].
In the former case, there will be labeled training samples to
guide the parameter choice, whereas, in the latter, only general
statistical properties will be used [4] [5] [6].

The combination of channel, noise and equalization delay
may give rise to equalization tasks that demand nonlinear
filtering structures. In a supervised scenario, the optimal finite
memory equalizer in terms of symbol error rate is the Bayesian
equalizer [7]. Although it is theoretically possible to devise
design strategies within the Bayesian structural framework,
in general, it is simpler and more robust to employ general
nonlinear models. Neural networks and Volterra filters are
examples of models that were used with success [6].

Decision trees are promising options in nonlinear equaliza-
tion, but, to the best of our knowledge, there has not been a
systematic study concerning their use in this task. The work
of Gelfand et al. [8] is conceptually related to this context, but
their approach is essentially distinct in that a tree is employed

The authors are with Faculdade de Eng. Elétrica e de Computação -
UNICAMP. Emails: davidfelice.ba@gmail.com, rferrari@dca.fee.unicamp.br,
attux@dca.fee.unicamp.br. This work was partially supported by CNPq
under grant 305621/2015-7. David would like to thank CNPq for par-
tially supporting his work (134058/2016-0). Digital Object Identifier (DOI):
10.14209/jcis.2020.16

to partition the input space and select a linear equalizer in a
piecewise linear scheme, and not to classify the input signal
per se. In this work, we will analyze the use of decision trees
strictly in the role of equalizers for channel / noise models
of different complexity, so as to establish an initial corpus of
results and analyses.

In the next sections, we present a brief explanation of the
communication channel model, followed by the supervised
paradigm of the equalization problem. We also talk about the
concept and the induction of decision trees, the test scenario,
methodology and obtained results. Finally, we present our
conclusions and final remarks.

II. COMMUNICATION SYSTEM MODEL

A. Information Source

In this paper, the information source will be modeled as
a stochastic process generated by a uniform random distri-
bution, in which the symbols are independent and identically
distributed (i.i.d.) [5].

For the sake of simplicity, the chosen alphabet is A =
{−1,+1}, which corresponds to a 2-PAM (Pulse-Amplitude
Modulation) modulation scheme [1]. Nevertheless, the results
of this work are extendable to other modulation schemes.

B. Communication Channel Model

Channels are mathematical models of the physical medium
through which the modulated information is sent. They are
responsible for introducing distortions that affect the informa-
tion signal. Two of the most usual distortions are intersymbol
interference (ISI) and noise [6].

1) Intersymbol Interference: Intersymbol interference (ISI)
is caused by the temporal scattering of the transmitted symbols
due to structural limitations of the channel. In this work, we
will use a linear ISI mathematical model, which is the most
widely employed in practice [4] [6].

ISI can be modeled in terms of a linear combination of
delayed versions of the transmitted symbols. In other words,
ISI can be understood as the result of a Finite Impulse
Response (FIR) filtering process.

2) Noise: Noise is a random-like fluctuation to which
the signal is submitted mostly due to thermal agitation and
electromagnetic interference [4]. It can be modeled, in many
cases, with a signal ρk generated by a zero-mean Gaussian
stationary stochastic process with variance equal to σ2

ρ, which
is added to the FIR filter output [6].

C. Signal-to-Noise Ratio (SNR)

Signal-to-Noise Ratio (SNR) is a metric that quantifies the
relative power of the information signal and of the noise signal

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 151

present within it. Mathematically, it is possible to define the
SNR as the ratio between the power of the channel output
(minus noise) and the noise power (generally in decibels) [9].

III. COMMUNICATION CHANNEL EQUALIZATION

Communication channel equalization is a signal processing
technique that has the objective of reversing the distortions
introduced by the channel.

A. Channel States

In digital communications, we have the alphabet A of the
transmitted signal as finite and discrete, a fact that implies that
u – derived from the convolution u[k] = h∗[k] ∗ s[k], where
h[k] is the impulse response of H(z) – also assumes finite and
discrete values, since H(z) is a FIR filter. Given this result,
we will further investigate the U alphabet.

The m dimensional channel states – i.e. the states for a
s sequence with size ηc + m − 1 – consist on the C =
{u0, . . . , um−1} set, where dim(C) = l(ηc+m−1), considering
no coincident states. Since each state ci is related to a different
transmitted sequence – with a total of C states –, we can
identify the subset of states which is related to a s[k − d]
transmitted symbol.

In this paper, we will work with m = 2 and d = 0, that
is, we will use two samples of x =

[
x[k], x[k − 1]

]
as the

equalizer inputs to recover s[k].

B. Supervised Equalization

A supervised equalizer has access to the received symbols
x as well as the transmitted symbols s [6]. In practice, this is
usually done through a predefined training sequence or pilot
signal. Figure 1 shows a supervised equalizer block diagram
[6]. During the training phase, the equalizer is given the x

Fig. 1. Supervised equalizer block diagram.

signal and also the s signal to adapt its parameters so that the
error signal e[k], defined by 1, has a magnitude that is as small
as possible.

e[k] = s[k]− ŝ[k] (1)

During the operation stage, the equalizer only receives the
x signal and yields ŝ, which is the estimate of the s signal.

From the retrieved symbols, it is possible to calculate the
BER for this communication system – channel plus equalizer.

C. MAP Criterion and Bayesian Equalizer

The use of a maximum a posteriori (MAP) criterion to
determine the s[k] symbol given the x vector is optimal with
respect to the error probability. Thus, the so-called MAP /
Bayesian equalizer is the finite memory symbol-by-symbol
equalizer that retrieves the transmitted sequence with the least
possible number of classification errors compared to any other
equalizer under the same conditions [7].

The Bayesian equalizer can be seen as a classifier that
segments the space x = {x[k], . . . , x[k −m+ 1]} ∈ Rm into
l = dim(A) regions, each one corresponding to a A symbol.
For example, for the 2-PAM modulation scheme with A =
{−1,+1}, and considering a sequence x = {x[k], x[k − 1]}
with two delays (i.e. m = 2), we would have the x space
divided into two regions, one corresponding to s = −1 and
the other corresponding to s = +1. Note that the equalizer
output for a given x would not be exactly ŝ = −1 or ŝ = +1,
but a possible range of values to be discriminated through
a decisor, which sorts this output into A elements. For this
specific example, when we have ŝ = 0, the decision boundary
is obtained.

Considering the 2-PAM alphabet (as will be the rule in this
paper) and the defined linear channel model, we identify that
any equalizer makes a mistake when the noise is large enough
so that a received x sequence crosses the decision boundary
from the correct channel state into any wrong one. Therefore,
in order to minimize misclassification, we must then maximize
the a posteriori probability of the estimated symbol being the
correct one given the x ∈ Rm vector received. This assertion
can be summarized according to the mathematical expression
2 [7]

ŝ[k − d] = argmax
a∈A

P (s[k − d] = a|x), (2)

where d is a general equalization delay – which in this paper
was defined as d = 0. The choice of the delay has direct impact
on the difficulty of the equalization task for maximum, mixed
or minimum phase channels [7].

The optimal equalizer mapping is given by [7]

f(x) =

2ηc+m−1∑
j=1

wj exp

(
−||x− cj ||2

2σ2
ρ

)
, (3)

where cj is the j-th channel state for x ∈ Rm, wj = +1 for cj
where s[k−d] = +1 and wj = −1 for cj where s[k−d] = −1
– case of the 2-PAM alphabet.

A few points about the Bayesian equalizer are noteworthy.
As one can see, despite the fact that it has the best result among
all the equalizers concerning the error rate, for its calculation,
it is necessary to have knowledge of the channel states – and,
therefore, the hi coefficients. This is difficult to estimate and
often impractical given the eventual time-changing character
of the channel.

Another point to consider is the computational complexity.
Note that, in (3), the sum goes from 1 to 2ηc+m−1. That is, as
the channel size increases, or that of the x sequence considered
for equalization, the number of times that the summation
internal expression is calculated increases exponentially – this
for each ŝ[k] one wants to calculate. Moreover, with this

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 152

addition of ηc and/or m, the amount of C states also increases
exponentially (2ηc+m−1), which poses serious computational
issues. In fact, the Bayesian equalizer becomes impractical as
the length of the channel increases.

D. MMSE Criterion and Wiener Filter

The minimum Mean Square Error (MMSE) criterion is
based on the minimization of the average square error between
the equalizer output and the transmitted signal (aiming at
making these signals as similar as possible). It does not take
into account the error rate, like the MAP criterion, but, for a
linear structure, leads to a straightforward solution [5].

The MSE cost function is given in 4:

JMSE = E
[
(s[k − d]− ŝ[k])(s[k − d]− ŝ[k])∗

]
= E

[
|e(k)|2

]
(4)

For linear equalizers, the minimization of the cost function
4 leads to a single solution, known as Wiener solution [5].

This equalizer – which is termed Wiener Filter – does not
require prior knowledge of channel coefficients, as is the case
with the Bayesian Equalizer. This means that the technique
may lead to a lower computational cost and to a more organic
real-time operation.

IV. DECISION TREES

Decision Trees are Machine Learning methods based on
the idea of ramification [10]. The structure is named this way
because it is a graph that resembles the image of a tree.

Trees are commonly used for classification, but it is also
possible to find in the literature their use in regression tasks
[11]. Compared to some AI techniques, they present interest-
ing aspects, like a relatively simple operation and significant
interpretability [10] [12] [13]. In the following sections, we
will explain in detail how this technique works. In the scope
of this paper, we will not use Decision Trees as regression
models, so the explanations will be focused on the classifica-
tion problem.

A. Fundamentals

Trees are supervised machine learning methods, which
means that their training is based on labeled examples [12].

The operation of Decision Trees assumes that successive
divisions of the sample space performed by setting thresholds
for the input features are able to determine which class is
correct for that example [11]. To determine which attribute
will be used for division and its threshold, a classification
purity metric is used, which we are going to call purity gain
(section IV-C) [11].

In the following, one can see a simple example of how a
decision tree works, and, in the following sections, we look
further into the metrics that can be used to determine, given
a tree node, what is the best input feature and what threshold
value brings the best sample space splitting.

B. Example

As an example, let us address the following problem: an
athletics team needs to select new members. As the number
of applicants is too high, they decided to look into the data
of their late selection process (table I), and then develop a
Decision Tree to make the selection automatically. After the
training process, the team arrived at the tree given by the figure
2, which uses as inputs the dominant age, weight, height and
dominant hand data of each candidate.

Candidate Age Weight Height Dom. Hand Selected?
A 25 65 kg 1.70 m Right YES
B 31 63 kg 1.74 m Left NO
C 27 51 kg 1.65 m Left YES
D 17 75 kg 1.80 m Right NO
E 20 60 kg 1.55 m Left NO
F 23 49 kg 1.64 m Right NO

TABLE I
TABLE FOR THE EXAMPLE IV-B

Fig. 2. Decision Tree for the example IV-B.

C. Purity Gain

As seen in the example IV-B, in some cases, it is possible
to obtain Decision Trees that perfectly split the samples
according to the correct classes. This can be verified by
submitting the candidates from the table I to the Decision Tree
in figure 2, confirming that all those candidates were correctly
classified. For these cases, we say that there is no impurity,
hence it is the ideal scenario – except in case of overfitting.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 153

Overfitting is a concept related to an excessive flexibility of
machine learning models in comparison with the generative
model of the examples presented to them. The more parame-
ters a model has – in the case of a Decision Tree, the more
divisions we allow it to perform – the more flexible it is, and
can adapt to different situations. Take for example polyno-
mials, which are parametric models. The more parameters are
available (degrees of freedom), the larger is the set of functions
it is able to approximate [12]. However, a model with many
free parameters tends, if proper precautions are not taken, to
be subject of overfitting. This corresponds to performing very
well for the examples that were used for training, but not for
test samples.

Hence, from these assertions, the question arises: how do
we choose Decision Trees so that we have the highest possible
purity in the final branches? We should then look for purity
metrics that allow us to evaluate, before and after the proposed
divisions, whether the obtained classification is better or worse
than that of the previous situation (whether we have more or
less pure sets).

1) Gini Impurity: The Gini Impurity is a metric of class
purity defined by the equation 5[14]:

Y =
∑
c∈C

P [c](1− P [c]), (5)

being S the dataset over which the index is going to be
calculated, C the set of available classes and P [c] is the
probability to be the class c given S.

The Gini Gain can be defined as in the equation 6[14]:

GY(S) = Yp(S)− Yf (S)

= Yp(S)−
1

N

∑
b∈B

nbYb(Sb), (6)

where Yp(S) is the Gini Index in the branch before the
splitting, Yf (S) is the total Gini Index of the S set (that
contains N elements) in the nodes after the branch, B is the
set of leaves originated by the splitting, being Yb(Sb) the Gini
Index for each leaf, taking into account Sb, with nb elements
directed to each leaf1.

Thus, it makes sense to choose decisions that yield a larger
Gini Gain over others that yield a smaller gain. It is the role
of the Decision Tree algorithm – presented in section IV-D
– to perform impurity gain optimization. As an example, we
can compare the Gini Gain for two distinct inputs from the
example IV-B, as seen in table II. The Gini Impurity calculated
for the root node is given by the equation 7.

1To better understand the meaning of these parameters, please refer to
the first division of Figure 2 and Table I. Yp(S) refers to the Gini Index
calculated over the set S = A,B,C,D,E, F , with N = 6; B corresponds
to number of new sets created, in this case, B = 2; Y1(S1) corresponds to
the Gini Index calculated over the set b = 1, originated after the division, i.e.,
S1 = A,C,D,E, F , with n1 = 5; Y2(S2) corresponds to the Gini Index
calculated over the set b = 2, originated after the division, i.e., S2 = B, with
n2 = 1.

Initial Branch 2 YES 4 NO
Gini Index Y = 0.444

Criterion: Age >=1.6m <1.6m

Total Elements 5 1
2 YES 3 NO 0 YES 1 NO

Gini Index Y = 0.48 Y = 0
Gini Gain GY = 0.044

Criterion: Dom. Hand Right Left

Total Elements 3 3
2 YES 1 NO 1 YES 2 NO

Gini Index Y = 0.444 Y = 0.444
Gini Gain GY = 0

TABLE II
COMPARATIVE GINI GAIN FOR THE PROPOSED 1.6M AGE AND DOMINANT

HAND DIVISIONS FROM THE EXAMPLE IV-B

.

Y =
2

6

(
1− 2

6

)
+

4

6

(
1− 4

6

)
= 0.444 (7)

As one can see, dividing the sample space according to the
age input leads to a better Gini Gain, while doing it according
to the dominant hand does not help the model to sort the
dataset in a purer way.

After this optimization criterion, it is expected that the
Decision Tree be able to solve the equalization problem.
This assertion is true due to the fact that the equalization
problem as stated in section III can be seen as a classification
problem, since the desired outcome is to identify which sent
symbol, belonging to the alphabet A, a received vector x is
associated with. As so, the BER can be seen as a measure
of classification purity, since a misequalized sample can be
seen as a misclassified element integrating a set of correctly
classified samples, thus, increasing the class impurity. In this
sense, the higher the BER, more misclassified elements in
the alphabet classes we have, which implies in a higher class
impurity.

Since one trains a Decision Tree aiming at the highest
possible classification purity – i.e. at the maximization of the
purity gain –, it is reasonable to expect that the BER be also,
to some extent, minimized. Hence, ideally, it can be expected
that the Decision Tree fairly approximate the performance of
the Bayesian Equalizer.

D. CART Algorithm

The CART [11] algorithm was developed to induce a
Decision Tree, choosing decisions that increase the purity gain
within the classification task.

Initially, it is important to define metrics for measuring
the performance of the decisions made by the tree. The Gini
Gain was taken as the cost function to be maximized, and
it was applied greedily through several evaluations performed
by the algorithm, which leads us to obtain the attribute – and
its respective decision threshold, when applicable – for each
division.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 154

The search for a decision threshold – performed when the
input variables are continuous – is made through a process of
choosing candidates for evaluation. From the dataset received
on a particular node, each feature value from all examples is
sorted. The candidates for decision threshold are then deter-
mined as the average between the values of two differently
classified examples (see figure 3). After it, the purity gain
metric is calculated for all candidates and the one with the
highest gain [11][12] is chosen. Finally, the feature – and its
threshold – that gave the highest purity gain is used as the
node splitter.

Fig. 3. Process of choosing splitting candidates for the example IV-B.

After a first version of the tree generated by the algorithm,
a pruning process is started, which evaluates the overall cost
function of the tree by removing each of the decisions made –
and its subsequent complete branch. If there is an improvement
in the cost function or if it remains the same after a pruning,
the decision canceling is effective, since it either implied in
an improvement or the model shows more parsimony than the
previous one – Occam’s Razor principle – that is, the model
presents a lower computational cost [11] [10] [12].

From the initial node, the Decision Tree divides each node
into two new child nodes – based on the division criteria
presented above – adding another layer of depth to that branch
of the tree. When, for any node, there is no division that
presents purity gain or some other criterion is met – such
as only one element in the node for new division – that node
is no longer divided and is considered as a leaf [11] [10].

A pseudocode of the CART algorithm – concerning the
equalization problem presented in this paper – is presented
in the algorithm 1, where U is the whole training data set.

E. Example: Application to the Channel Equalization Problem

In order to show the applicability of the Decision Tree to the
problem of channel equalization, a Decision Tree model will
be trained according to the presented CART algorithm (section
IV-D), to perform the equalization of a simple channel.

The process of obtaining the trained model aims at devel-
oping the reader intuition on the modus operandi in more
complex situations. Therefore, the channel h = [1 0.5] was
chosen, with a tiny amount of noise applied – just for the
sake of illustration, since in the test scenarios there was noise
applied according to the SNR scenario presented –, null delay
and the number of equalizer inputs equal to two (m = 2),
which generates the data set presented in the table III, to be
passed on to the model as inputs. For didactic purposes, the
presented examples are representative of all channel states,

Algorithm 1 CART Pseudocode
1: Initializing:
2: Start L as a FIFO stack
3: L ← U
4: Splitting:
5: while L is not empty do
6: pop B from L
7: for each feature Fi from the inputs in B do
8: sort Fi
9: find the threshold candidates T

10: for each Ti do
11: calculate the information gain after Ti division
12: Divide B into B1 and B2 according to the pair {Fi, Ti}

that provides the greater information gain
13: for each Bi do
14: calculate the purity metric for Bi
15: if stopping criteria is not met then
16: push Bi into L
17: prunning:
18: calculate the purity metric Pf for U subimmited to the

induced tree
19: for each division Di do
20: remove Di

21: calculate the purity metric Pg for U submitted to the
pruned tree

22: if Pg ≥ Pf then
23: make the removal Di definitive

x[k] x[k − 1] s[k]

-1.501 -1.497 -1
-1.499 -0.502 -1
-0.500 0.500 -1
-0.502 1.498 -1
0.503 -1.501 1
0.500 -0.500 1
1.504 0.498 1
1.500 1.502 1

TABLE III
INPUTS DATA SET TO THE DECISION TREE TRAINING.

and, therefore, also of the entire problem universe. In practice,
datasets often have more than one example for each state.
However, there may be some scenario in which the number of
examples is insufficient to represent all states, compromising
the quality of the model.

The CART stopping criteria defined here are pure leaves
(Gini Impurity equals Y = 0) or minimum number of samples
in node of one element.

Initially, it is important to calculate the Gini Impurity of the
root node (initial branch). After this value, we can calculate
the Gini Gain of each possible division made by the Tree,
allowing us to evaluate what are the optimal attributes and
their respective thresholds for each division. In equation 8,
we have the Gini impurity for the root node.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 155

Split Left Branch Right Branch Gini Gain
ŝ[k] = −1 ŝ[k] = 1 ŝ[k] = −1 ŝ[k] = 1

x[k] = 0
4 0 0 4

GY = 0.5
Yb = 0 Yb = 0

x[k − 1] = −1.499 1 0 3 4
GY = 0.255

Yb = 0 Yb = 0.490

x[k − 1] = −0.501 2 1 2 3
GY = 0.038

Yb = 0.445 Yb = 0.480

x[k − 1] = 0.499
3 2 1 2

GY = 0.038
Yb = 0.480 Yb = 0.445

x[k − 1] = 1.500
4 3 0 1

GY = 0.255
Yb = 0.490 Yb = 0

TABLE IV
GINI GAIN CALCULATIONS TO THE DIVISION CANDIDATES.

.

Yp =
4

8

(
1− 4

8

)
+

4

8

(
1− 4

8

)
(8)

= 0.5

The next step of the algorithm is to define what will be
the feature of the model first division and the corresponding
threshold. To perform this task, according to the CART
algorithm, one must sort the values of the input attributes
and choose as candidates for division the mean value between
differently classified adjacent samples (see figure 4). Knowing
the candidates, one should calculate the Gini Gain for each of
them and choose as the best division the one that brings the
highest purity gain. These calculations were performed and
are presented in table IV.

Fig. 4. Division candidates and their thresholds (red).

As follows from table IV, the division with the highest Gini
Gain is x[k] = 0, leading to two pure leaves, which meets one
of the established stopping criteria.

Thus, we have, as a final version, the tree in figure 5.
In order to demonstrate the reliability of the example to the

implemented CART algorithm, a Decision Tree was trained for
the same channel, with 100,000 randomly generated samples,
without noise, obtaining the model shown in figure 6.

As one can notice, the tree model obtained by the CART
algorithm is equivalent to the one discussed in the example
IV-E.

V. METHODOLOGY

In this paper, we will use the Decision Tree – as described
in section IV – as an equalization method expected to perform
better than the Wiener Filter and, hopefully, analogously to the
Bayesian Equalizer.

Fig. 5. Final version of the trained Decision Tree to the example IV-E.

X0 ≤ 0.0
gini = 0.5

samples = 100000
value = [49893, 50107]

gini = 0.0
samples = 49893
value = [49893, 0]

True

gini = 0.0
samples = 50107
value = [0, 50107]

False

Fig. 6. Decision Tree presented by the implemented CART algorithm, where
x0 represents x[k].

As already stated, the alphabet chosen is 2-PAM and all
techniques will constitute supervised equalizers with null delay
(d = 0) and m = 2 – i.e., the inputs are x = [x[k], x[k − 1]]
aiming to recover s[k] – so it is possible to compare them
directly between themselves.

For the Decision Tree and Wiener filter, 85,000 examples
were presented for training each SNR scenario, and 15,000
examples for test. To avoid the effect of suboptimal solutions,
10 trials of these models were considered; the Bayesian
Equalizer is deterministic and does not require any training;
the methods were evaluated until at least 100 errors were
committed. The BER was calculated over all test examples
presented to the methods.

The SNR values will be defined for each test scenario
individually, since the state topology has high influence in the
noise immunity for each case.

VI. TEST SCENARIO

In this section, we discuss the characteristics of the channels
we presented to the techniques proposed. It was chosen four
representative scenarios, such as minimum-phase, maximum-
phase and mixed-phase channels, also varying the length (ηc)
of them.

Table V shows the main attributes of each scenario and the
configuration of their channel states is presented in figure 7.

A. Channel 1 - Minimum-phase

Channel 1 represents a minimum-phase short scenario,
which implies that all its zeros are inside the Unit Radius

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 156

Channel Coefficients ηc No. of States
1 h = [0.894 0.447]T 2 8
2 h = [0.447 0.894]T 2 8
3 h = [0.5 0.71 0.5]T 3 16
4 See eq. 9 10 2048

TABLE V
CHARACTERISTICS OF THE PROPOSED TEST SCENARIOS.

Channel 1 Channel 2

Channel 3 Channel 4
Fig. 7. States of the channels proposed as scenarios. The states represented
with ’×’ corresponds to s[k] = +1 and the ones represented with ’◦’
corresponds to s[k] = −1. The Channel 4 figure is replicated in figure 8
for better visualization.

Circle. For the equalization topology and delay chosen, this
channel has linearly separable states (see figure 7-(Channel
1)), which is expected to present satisfactory results for all
equalizers, including the Wiener Filter, as a linear technique.
For this case, it is going to be tested a SNR scenario as follows:
SNR = [13dB, 10dB, 7ddB, 4dB, 1dB].

B. Channel 2 - Maximum-phase

Channel 2 represents a maximum-phase short scenario, with
all its zeros outside the Unit Radius Circle. This channel has
the same amount of states of Channel 1, but not linearly
separable (check figure 7-(Channel 2)), implying that it is
impossible for the Wiener Filter to achieve BER=0, even in
a noiseless situation – it requires a nonlinear equalization
boundary. For Channel 2, the SNR scenario will be SNR =
[16dB, 13dB, 10dB, 7dB, 4dB, 1dB].

C. Channel 3 - Mixed-phase shorter-term

Channel 3 is a mixed-phase scenario, with 16 states. The
equalization boundary required to perfectly separate is non-
linear (see figure 7-(Channel 3)), and its zeros are located
on the Unit Radius Circle, which makes the equalization
task considerably more difficult than the past two scenarios.
Channel 3 will be tested for a SNR scenario as follows:
SNR = [16dB, 13dB, 10dB, 7dB, 4dB, 1dB].

D. Channel 4 - Mixed-Phase longer-longer
We define Channel 4 as a longer-term channel, since its

length ηc is large enough so that the computational cost of
the Bayesian equalizer may be prohibitively high for real time
applications. It is a mixed-phase channel, with 2048 states and
a highly nonlinear boundary is required for its equalization. In
equation 9, it is presented its coefficients and figure 8 shows
the configuration of its channel states.

h =
[
0.0114693 − 0.0802852 0.2565113 − 0.4875893

0.6008345 − 0.4947074 0.2725110 − 0.0972204

0.0206233 − 0.0021290
]T
.

(9)

Fig. 8. This figure represents the Channel 4 states. The states represented with
’×’ corresponds to s[k] = +1 and the ones represented with ’◦’ corresponds
to s[k] = −1.

As can be seen in figure 8, for this scenario, there are
several adjacent clusters of states with different classifications,
implying that the equalizer decision boundary must be flexible
enough to make the necessary folds.

A larger m may improve the performance of the equalizer
when the channel response is longer, as more information may
be required for the model to perform well. Despite of that, as
mentioned in the section V, m = 2 is going to be constant for
all test scenarios, for the sake of comparability between the
analyzed methods.

This scenario is of special interest since its features, the
high amount of states and their topology, are expected to
be challenging for the Wiener filter and will lead to a high
computational cost for the Bayesian Equalizer. It is expected
that the Decision Tree may stand out as a technique with
satisfactory performance and acceptable computational cost,
especially in online applications. The SNR scenario presented
will be SNR = [70dB, 60dB, 50dB, 40dB, 30dB].

VII. RESULTS

A. Performance of the Methods
1) Channel 1: In the figure 9 and table VI are presented

the results of the proposed equalizers to Channel 1.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 157

Fig. 9. Performance of the methods for the Channel 1 (BERxSNR).

SNR (dB) Bayesian Wiener Decision Tree
13 0.0007 0.001 0.0009
10 0.007 0.011 0.011
7 0.035 0.042 0.055
4 0.095 0.100 0.140
1 0.174 0.174 0.244

TABLE VI
MEAN ERROR RATE FOR CHANNEL 1, EXPRESSED IN ERRORS BY SENT

SYMBOL.

As expected, the Wiener Filter presents good results. The
method approximated the Bayesian Equalizer, that, as pre-
viously mentioned, is the optimal finite memory method
concerning the bit error rate (BER). The Decision Trees also
present applicability, since approximated the Bayesian Results
as well, especially concerning the high SNR scenarios.

For the noisier scenarios (7dB, 4dB and 1dB), the Wiener
Filter outperformed the Decision Trees results, fact that can be
explained due to the overfitting that affect the Decision Trees,
as stated in the section IV-C. In a noisy scenario, the proposed
Decision Tree tends to select a high amount of outliers at
the expense of learning a general rule for separating the state
clusters, loosing performance.

2) Channel 2: For Channel 2, the performance of the
analysed equalizers can be seen in the figure 10 and table
VII.

SNR (dB) Bayesian Wiener Decision Tree
16 0.002 0.332 0.004
13 0.024 0.344 0.038
10 0.092 0.357 0.140
7 0.210 0.355 0.292
4 0.319 0.357 0.394
1 0.363 0.369 0.438

TABLE VII
MEAN ERROR RATE FOR CHANNEL 2, EXPRESSED IN ERRORS BY SENT

SYMBOL.

Since this scenario requires a nonlinear equalization bound-
ary due to the states topology, as showed in figure 7-(channel

Fig. 10. Performance of the methods for the Channel 2 (BERxSNR).

2), the linear Wiener filter presents poor performance, even
for the least noisy scenario (16 dB).

On the other hand, the Decision Tree approximated the
Bayesian Equalizer results. It is possible to notice the same
tendency for both methods, and the characteristic loose of
performance in the noisy scenarios due to the overfitting. One
more time, the Wiener Filter outperformed the Decision Tree
in the lowests SNR scenarios.

3) Channel 3: In figure 11 and table VIII are presented the
results of the equalizers for the Channel 3.

Fig. 11. Performance of the methods for the channel 3 (BERxSNR).

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 158

SNR (dB) Bayesian Wiener Decision Tree
16 0.048 0.217 0.069
13 0.098 0.212 0.139
10 0.169 0.224 0.229
7 0.237 0.255 0.313
4 0.288 0.294 0.375
1 0.328 0.333 0.417

TABLE VIII
MEAN ERROR RATE FOR CHANNEL 3, EXPRESSED IN ERRORS BY SENT

SYMBOL.

As stated in the VI-C, Channel 3 is a difficult scenario
to perfectly equalize, since its zeros are on the Unit Radius
Circle, which implies in a intricate state topology (see figure
7-(channel 3)), requiring a nonlinear separation boundary for
the chosen equalization delay. In this sense, as happens for
Channel 2, the Wiener Filter linear equalization boundary is
not well suitable for the present scenario. Its results were
around BER=0.22 and BER=0.33, being outperformed in
almost 315% more errors than the Decision Tree for the least
noisy scenario (16dB).

Due to its lower noise immunity, the BER attained by
the nonlinear methods for Channel 3 is considerably higher
comparing to Channels 1 and 2. The Decision Tree presents
poorer results than the Wiener Filter in the three lowests SNR
values. The low noise immunity implies in a higher amount
of outliers, increasing the effect of overfitting for the Decision
Trees. Despite of this fact, it once more approximated the
Bayesian Equalizer results for the higher SNR scenarios.

4) Channel 4: The channel presented here is of special
interest, since it has ten coefficients (longer-term) and is
of mixed phase. Finding techniques that perform well on
difficult scenarios and still can be computed with relatively
low computational cost is an interesting subject for real-time
systems. In the figure 12 and table IX, we present the results
for this scenario.

Fig. 12. Performance of the methods (BERxSNR).

SNR (dB) Bayesian Wiener Decision Tree
70 0.0005 0.488 0.002
60 0.005 0.490 0.009
50 0.013 0.491 0.021
40 0.148 0.487 0.213
30 0.393 0.491 0.465

TABLE IX
MEAN ERROR RATE, EXPRESSED IN ERRORS BY SENT SYMBOL.

Analyzing the Wiener Equalizer performance, its unsuitabil-
ity to this scenario is patent. Regardless of the low SNR,
the method presented BER close to 0.5, the worst possible
result. Once again, the performance can be explained by the
fact that the linear equalizer can produce only linear decision
boundaries while the problem requires a nonlinear boundary
to classify the signal appropriately.

In the analysis of the proposed method – Decision Tree –,
the results are quite reasonable. The Decision Tree approxi-
mated the optimal equalizer trend. As the noise increases, the
gap between the performance of the Decision Tree and the
Bayesian equalizer increases, but the Decision Tree has better
results than those of the Wiener Filter for the the entire SNR
range considered in the experiment.

B. Decision Tree Computational Complexity

From the previous results indicating the good performance
of the Decision Tree, it is important to evaluate the difference
in computational cost between the tested algorithms, aiming to
identify if computational advantages arise by employing one
over the other. If it is the case, this information will allow us
to understand the applicability of the Tree in online contexts.

Since the Decision Tree is a nonparametric method, whose
decision structure is built after an optimization process that
only uses examples from the presented data set (and some
structural assumptions), for each set of samples – even consid-
ering the same channel and parameters –, a different tree can
be developed, implying in a distinct computational cost for its
execution. However, it is possible to define some hypotheses
of correlation between the tree execution complexity and some
aspects of the channel equalization problem.

Since it is likely that some parameters of the channel
equalization problem – as channel length and state distribution
– affect the computational complexity of the Decision Tree,
it is necessary that different communication channels, with
different characteristics, be evaluated. Hence, for these tests,
the scenarios presented in section VII-A will be evaluated.

In this work, the decision tree maximum depth is going
to be used as the evaluation cost criterion. The maximum
depth consists on how many comparisons are needed to
classify an input vector that travels the longest path within
the model structure. Hence, it is possible to guarantee that
any other samples presented to the Tree are calculated with
less comparisons, implying a faster execution.

It is due to the decision tree model structure that the
more fragmented the Tree decision boundary is – i.e. the
more segmented the input space is – the more comparisons
are necessary for its execution. This statement follows from
the fact that a greater boundary segmentation implies on

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 159

Channel 1 Channel 2

Channel 3 Channel 4
Fig. 13. Mean of the maximum number of comparisons for the Decision Tree
evaluation.

more non-contiguous regions of classification, requiring more
comparisons to discriminate which region an input vector
belongs to.

It is expected that a higher number of channel states,
associated with its zeros distribution and an equalization delay
that implies a complex decision boundary, cause a higher
computational cost for the tree.

Also, due to the segmentation of the Tree decision boundary,
it is possible that there may be a relation of its higher
computational cost with the noise power increase. As follows
from model performance results, the Decision Tree tends to
overfit in noisy scenarios. Its flexibility and non-parametric
characteristics are essential to this phenomenon, allowing the
model to select outliers and segment the input space in a way
that those specific samples are classified according to their
correct class.

As one can notice, the Decision Tree evaluation cost has
the potential to be quite casuistic and dependent on factors
other than just the channel length – as it is determinant
for the Bayesian Equalizer – or the power of noise. Thus,
some computational simulations are presented to assess the
hypothesis described above. In the experiments, the mean and
standard deviation of the maximum number of comparisons
were calculated concerning a hundred different Tree evalu-
ations, each of them trained with at least 250 samples per
channel state.

Regarding the amount of comparisons vs. the order of the
channel, it is observed in Figure 13 that the results confirm
the hypothesis. Observing the less noisy scenario, it can be
noted that channel 4 had the highest number of comparisons,
followed by channel 3, channel 2 and, finally, channel 1. Also
as presented, despite the fact that both channels 1 and 2 had
the same number of states, the first one is linearly separable,
favoring a smaller number of comparisons in relation to
channel 2, which has a more complex decision boundary and
a higher maximum number of comparisons for its evaluation.

Analyzing the noise influence on the computational cost,
it can be noticed that, as expected, the maximum tree depth
becomes larger as the noise power increases. However, as also
suggested, depending on the noise power and the arrangement
of channel states, there may be a decrease in the Decision Tree
cost with the noise increase. This is observed when calculating
the evaluation cost for channel 4, with noise scenarios such as
SNR = 70dB (less noisy), resulting in 167.9 ± 13.2 compar-
isons and SNR = 30dB (more noisy), resulting in 90.7 ± 8.4
comparisons. From the experiments, it is not possible to
categorically state the cause for this phenomenon, assuming
that it is due to a better adjustment of the optimization
algorithm, resulting in less segmented decision regions given
the higher noise power. For a safer statement concerning the
reasons for this event, further study concerning the Decision
Tree optimization algorithms in different channel and noise
scenarios are required.

The Bayesian Equalizer computational cost is proportional
to the number of channel states which, in turn, increases
exponentially with the channel length and with the number
of filter inputs, as discussed in section III-C. Therefore, the
computational cost of the Bayesian Equalizer is related to the
evaluation of 8 exponentials in Channels 1 and 2, 16 expo-
nentials in Channel 3 and 2048 exponentials in Channel 4. In
some cases, mainly for lower SNR values in shorter channels,
the maximum number of comparisons of the tree is larger than
the number of channel states. However, it is important to note
that, especially for channel 4, the Decision Tree evaluation
cost is considerably lower than the Bayesian Equalizer. In the
worst case, the maximum number of comparisons for the tree
was around 128.3 ± 1.0 calculations. When considering the
Bayesian Equalizer equation (eq. 3), for the same scenario, its
computational cost is dominated by the calculation of 2048
exponentials, which computation is individually already more
expensive than a comparison.

Also, from the evolution of the most costly scenarios for
each channel, it is possible to suggest that the maximum num-
ber of tree comparisons does not appear to be exponentially
related to the order of the equalized communication channel
– as it is the case for the Bayesian – since from channel 3
to channel 4 we increased 128 times the number of states,
and only about three times more comparisons were required
to evaluate the largest branch of the Tree. This phenomenon
can be due to the Decision Tree topology: at each branch,
it subdivides the input space into two, and so it is possible,
concerning a linear depth, to analyze an exponential space of
possibilities.

Concerning the Wiener Filter, it can be stated that this
technique is computationally cheaper than both the Decision
Tree and Bayesian Equalizer. Its evaluation is dominated by
as many multiplications as the filter order. For the cases here
presented, its evaluation is made after two multiplications and
one sum, being the least expensive of all.

VIII. CONCLUSION

The present paper results from the perspective of using De-
cision Trees to solve the problem of Communication Channel

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 160

Equalization. As proposed, it was thought that this technique
could be an alternative to the optimal equalizer with lower
computational cost, to be used in online systems.

To comparatively analyze the tree performance, the Wiener
Filter was employed as a benchmark technique, with low
computational cost and usable in online systems. A great
advantage of it is the lack of prior knowledge of the channel
coefficients, parameters that are difficult to estimate, specially
for time-variant channels. For the presented channels and
equalization delay, its performance was poor for the majority
of the scenarios, except for Channel 1, which is suitable for
its approach.

Another proposed comparison method was the Bayesian
Equalizer. Being the optimal finite memory method concerning
the bit error rate, it actually presented the best results for all
tested SNRs scenarios. Acting as the theoretical lower limit for
other techniques, the Bayesian Equalizer has two major disad-
vantages that prevent it from being used in practical scenarios:
it has high computational complexity – non-polynomial – and
also requires estimation of channel coefficients. As the channel
has a longer temporal response, the number of calculations to
be done for each output grows exponentially – see equation 3
– quickly becoming unfeasible.

The Decision Tree performance for the equalization problem
can be considered quite satisfactory. Given the simplicity of
training, low computational complexity and no prior knowl-
edge of channel coefficients, its usage is quite appropriate
for online systems. When it comes to performance, especially
considering the higher SNR scenarios, its performance was
encouraging. With results close to the Bayesian Equalizer –
and far better than the Wiener filter –, the Decision Tree can be
considered as a tool with potential for effective use. As for the
scenarios with lower SNRs, the technique tends to overfitting
and lose performance.

Especially considering the longer-term channel as test sce-
nario, the Decision Tree exhibited excellent results. Chan-
nels like this are difficult to solve, especially in a real-time
paradigm. As noted by the channel states, the complexity
of the decision boundary topology that reasonably separates
the states is highly nonlinear, leading the Wiener method
to yield results very close to the worst possible. The fact
that the Decision Tree performs considerably better than this
technique – approaching the Bayesian Equalizer result – with
low computational complexity shows an important advance in
the search for long channel equalization methods.

Yet, it is important to notice that the computational com-
plexity of the Decision Tree (as a channel equalizer) is
somehow casuistic, but, apparently, there is no exponential
relationship between the number of channel states, or equalizer
inputs, and the number of comparisons required to evaluate the
Tree – as it does for the Bayesian Equalizer. In order to confirm
such assertion, further studies are needed. Nevertheless, the
Monte Carlo simulations performed in the session VII-B in-
dicate that the tree may approximate the optimal performance
with reduced computational cost.

ACKNOWLEDGMENT

The authors thanks the Prof. Dr. Roberto A. Lotufo for the
support and insight in the usage of Decision Trees in the Long-
Term Equalization problem. This work was partially supported
by CNPq (305621/2015-7 and 134058/2016-0).

REFERENCES

[1] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication:
3rd Edition. Springer Science & Business Media, 2003.

[2] R. W. Heath Jr., Introduction to Wireless Digital Communications, 1st ed.
Prentice Hall, 2017.

[3] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implemen-
tation. Springer, 2012.

[4] S. Haykin and M. Moher, Communication Systems, 5th ed. Wiley,
2009.

[5] S. Haykin, Adaptive Filter Theory: 4th Edition. Prentice Hall, 2001.
[6] J. M. T. Romano, R. Romis Attux, C. C. Cavalcante, and R. Suyama,

Unsupervised Signal Processing: Channel Equalization and Source
Separation, 1st ed. CRC Press, 2016.

[7] S. Chen, B. Mulgrew, and S. McLaughlin, “Adaptive bayesian equalizer
with decision feedback,” IEEE Transactions on Signal Processing,
vol. 41, no. 9, pp. 2918–2927, 1993.

[8] S. B. Gelfand, C. Ravishankar, and E. J. Delp, “Tree-structured piece-
wise linear adaptive equalization,” IEEE transactions on communica-
tions, vol. 41, no. 1, pp. 70–82, 1993.

[9] J. M. Wozencraft and I. M. Jacobs, Principles of Communication
Engineering, 1st ed. Waveland Pr Inc, 1990.

[10] R. O. Duda, D. G. Stork, and P. E. Hart, Pattern Classification, 2nd ed.
Wiley-Interscience, 2000.

[11] L. Breiman, Classification and regression trees. Routledge, 2017.
[12] C. M. Bishop, Pattern recognition and Machine Learning. Springer,

2006.
[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.
[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn v0.21.3: Machine learning in python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

David Felice F. Baptista PhD candidate in Energy
Regulatory Affairs in University of Campinas (UNI-
CAMP). Electrical Engineer (2015) and Master in
Electrical Engineering focused in Computer Engi-
neering (2019) from University of Campinas (UNI-
CAMP). Law School student in Campinas Catholic
University.

Rafael Ferrari Rafael Ferrari received his B.S.
(2001), M.Sc.(2005), and Ph.D. (2011) degrees in
Electrical Engineering from the University of Camp-
inas (UNICAMP). From 2011 to 2015, he has been
a researcher at the Center for Petroleum Studies
(CEPETRO-UNICAMP). Currently, he is an As-
sistant Professor at the School of Electrical and
Computer Engineering (FEEC) of UNICAMP. His
main research interests include computational in-
telligence and digital signal processing, especially
their application to communication systems and to

seismic data analysis.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 161

Romis R. de F. Attux Romis Attux was born in
Goiânia in 1978. He received the titles of Electrical
Engineer (1999), Master in Electrical Engineering
(2001) and Doctor in Electrical Engineering (2005)
from the University of Campinas (UNICAMP). He
is currently an associate professor at the same in-
stitution. His research interests are: adaptive sig-
nal processing, machine learning, brain-computer
interfaces, chaotic systems and ethics in artificial
intelligence.

