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Classifying cardiac rhythms by means of digital
signal processing and machine learning

N. Pinho, D. Azevedo, and A. Santos

Abstract—Electrocardiogram (ECG) measures the electrical
activity of the heart, which can be used in the diagnosis of
different heart diseases. In the scientific literature there are many
studies that have been applied machine learning for recognizing
ECG patterns, where most of them attempt to classify heart
beats. This paper presents a novel methodology for automatically
classifying seventeen cardiac rhythms by means of digital signal
processing and machine learning. The steps before the classifica-
tion include the mapping of ECG signal to the frequency domain
through power spectrum density, class balance with Adaptive
Synthetic Sampling algorithm, and statistical normalization. The
classifiers employed were Support Vector Machine, Multilayer
Perceptron Neural Network, k-Nearest Neighbors, and Random
Forest. The results showed accuracy, sensitivity, specificity, and
Fleiss’ kappa of up to 98.86%, 99.93%, 98.85%, and 89.68%,
respectively, which are relatively better than the performance
observed in the state-of-the-art works. In addition, this study
highlighted that when the class balance procedure is applied,
the classification step becomes less complex and can increase in
terms of performance.

Index Terms—ECG, Digital signal processing, Machine
learning, Cardiac rhythm

I. INTRODUCTION

ACCORDING to the World Health Organization, the car-
diovascular diseases are the main cause of death in the

world. These diseases caused the death of approximately 17.9
million people by year, i.e., about 31% of all deaths in the
world [1]. Incipient diagnosis is essential in the treatment of
these health problems, and the electrocardiogram (ECG) is an
effective tool in this context, which is also crucial in the normal
cardiac rhythm management. ECG is used in the diagnosis
of the cause of chest pain and suitable early intervention
in the myocardial infarction. It is a measure of the electric
pulse generated in the heart which propagates to the surface
of the skin, being its evaluation carried out based on pattern
recognition [2]. In general, the classification of an ECG signal
is accomplished by a cardiologist, but this task might be slow
and expensive. As an alternative, in the last decade has growth
the research of algorithms to automatize the ECG evaluation,
mainly by the application of methods related to the Artificial
Intelligence (AI) field [3]–[5].

In the AI field there is a research area called machine
learning, which aims to make a machine (or algorithm) to
detect and extrapolate new patterns, with the capability of
adapting to new circumstances. This area can be divided in
three branches: supervised, unsupervised, and reinforcement
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learning. The problem tackled in supervised learning is fo-
cused on learning a function from examples in its inputs and
outputs, while the unsupervised learning aims to learn patterns
in its inputs, but no outputs are specified. In the reinforcement
learning, an agent must learn to perform some task according
to the reward related to an input [6]. The classification of ECG
signals is mostly performed in the context of a supervised
learning problem.

In the literature, there are many works related to pattern
recognition on ECG signals, in which the heart beat type
recognition was explored, as in [7]–[9], for instance. There
are many approaches employed to identify the heart beats,
but the general methodology is: (1) Acquiring the database;
(2) Preprocessing the ECG signals; (3) Detecting the QRS
structure (the region around the periodic peaks in ECG signal);
(4) Performing signal segmentation; (5) Extracting features;
(6) Training the classifier; (7) Testing the classifier; and (8)
Evaluating and analyzing the results.

A methodology for classifying Normal Sinus Rhythm (N)
and heart arrhythmia by means of statistics in time domain
was presented in [3]. The methodology was divided in seven
steps: (1) database reorganization; (2) noise elimination; (3)
detection of the QRS structure; (4) computation of statistics;
(5) anomaly detection, (6) anomaly type identification; and (7)
estimation of the average accuracy. This approach yielded an
accuracy of 98.78%, but only a classifier and a single metric
to evaluate the classification performance were employed.

The classification of distinct heart rhythms was performed in
[5], such as: N, Atrial Fibrillation (AFIB), Acute Myocardial
Infarction (MI), and Congestive Heart Failure (CHF). For such
a task, in the first step, the time series based on RR intervals
(interval between R waves) of N, AFIB, MI, and CHF were
obtained from the Physionet database [10]. In the second step,
different characteristics from Poincare plot were extracted for
Heart Rate Variability Analysis. In the last step, these features
were used as input to a k-Nearest Neighbors (KNN) classifier.
An approach with more classifiers would be more interesting
for a comparison study. The results presented for the test stage
were sensitivity, specificity, and accuracy equal to 94.64%,
98.21%, and 97.31%, respectively.

A robust methodology was proposed in [4] for recognizing
cardiac health, which was based on the steps presented previ-
ously, and evaluated the classifiers using the raw signal, and
scaled or normalized versions of the former. Support Vector
Machine (SVM), KNN, Probabilistic Neural Network, and
Radial Basis Function Neural Network were employed for the
classification task, in which the performance was evaluated
via nine metrics, and the number of classes evaluated was
seventeen. This approach yielded accuracy close to 99%, but
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the computational cost was high, mainly due to the use of a
genetic algorithm to adjust the parameters of the classifiers,
which required between 135 and 170 hours. Another drawback
was the very unbalanced number of segments per class, which
brought greater complexity to the searching for the optimal
parameters of each classifier.

This work presents a novel methodology to classify distinct
cardiac rhythms by applying the following steps: (1) segmen-
tation, (2) class balance with Adaptive Synthetic Sampling
(ADASYN), (3) statistical normalization, (4) feature extrac-
tion, (5) training, optimizing, and testing of classifiers, and (6)
evaluation of results. The applied classifiers are SVM, KNN,
Random Forest (RF), and Multi Layer Perceptron (MLP). Be-
sides, to evaluate the classification performance, four metrics
is taking into account, such as accuracy, sensitivity, specificity,
and Fleiss’ kappa. This methodology is less computationally
expensive and more simple when compared with the work
in [4], because the class balance procedure attenuates the
computational complexity required for the following steps,
without compromises the classification performance.

The remainder of this paper is organized as follows. In
Section II, the ECG signal, its main characteristics and how it
can be used to recognize patterns related to cardiac diseases are
highlighted. Section III comprises the aspects of the database
used in this study, as well as the parameters applied in the ECG
data acquisition. The whole methodology of this work is de-
scribed in more detail in Sections IV, V, and VI. The obtained
results, through the application of the proposed methodology
on the database that encompass seventeen different cardiac
rhythms, are shown and discussed in Section VII. Finally,
Section VIII synthesizes the main strengths and challenges
of this methodology.

II. ELECTROCARDIOGRAM

In this section the ECG signal, its main characteristics and
how it can be used to identify cardiac diseases are presented.

When the cardiac pulse passes through the heart, an electric
current flows from the heart to adjacent tissues, and a part of
this signal achieves the skin surface. The electric potential of
this signal can be measured with electrodes attached in skin
regions in which this pulse appears; the reason to call this
signal as electrocardiogram [11]. This signal is low frequency,
in general ranging from 0.05 Hz to 100 Hz, with the major
part of the energy up to 35 Hz, and its amplitude varies from
10 µV to 5 mV , being the typical value around 1 mV [12].
ECG has a standard structure with peaks and valleys, labeled
by the letters P, Q, R, S, and T. Fig. 1 depicts the typical
appearance of this structure.

In the normal ECG of an adult person, the P wave has
period from 0.12 s to 0.13 s; the PR interval, measured from
the begin of P wave up to the begin of the QRS complex, has
period from 0.12 s up to 0.20 s; and the QRS complex goes
from 0.07 s up to 0.10 s [14].

When a person is in normal rhythm, the P wave is a positive
deflection, the Q wave is a negative deflection followed by
the R wave with a relatively high positive amplitude and S is
a small negative deflection. After the ST interval, a positive

Figure 1. Standard structure of an ECG signal [13].

deflection of the T wave occurs. The normal time interval of
a PR is 0.12 s to 0.2 s, QRS is 0.12 s and QT interval is
up to 0.44 s. In the case of an atrial fibrillation, the ECG
indicates an irregular rhythm pattern and a very high heart
beat rate. The most significant indication of atrial fibrillation
is the absence of P waves and PR intervals in the monitored
ECG. On the other hand, Atrial Flutter (AFL) forms a unique
pattern in ECG, which comprises saw tooth waves along with
the absence of P waves [13].

P wave and QRS complex are depolarization waves in
a normal ECG, whereas the T wave is a re-polarization
wave [11]. Thus, the ECG signal is composed by segments
which represent depolarization and re-polarization.

Heart depolarization begins in the sinoatrial node. However,
in abnormal situations, this depolarization may begins in three
other locals: atrial muscle, region around the atrioventricular
node, or ventricular muscle. In the supraventricular rhythms,
the depolarization wave scatters to the ventricles normally,
and then the QRS complex presents its standard form. On
the other hand, in the ventricular rhythms the depolarization
wave scatters from the ventricles and then the QRS complex
becomes large, and consequently presents a abnormal form.
In this situation the T wave form is also abnormal [2].

In this work, seventeen different classes of ECG signals
are evaluated. Fig. 2 highlights three examples from classes
considered in this study: Atrial Fibrillation (AFIB), Atrial
Flutter (AFL), and Ventricular Bigeminy (B). In order to
improve the visibility of the three signals, they were shifted
vertically, with the addition of distinct averages.

For the AFIB signal, the ECG indicates a rhythm pattern
with a very high heart beat rate and the absence of P waves
and PR interval, while for the AFL signal, the sawtooth waves
are noted along with the absence of P waves [13].
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Figure 2. Examples of the cardiac rhythms: AFIB, AFL, and B.

III. DATABASE

This section covers the aspects related to the database used
in this study, as well as the parameters applied in the ECG
data acquisition.

The MIT-BIH Arrhythmia Database was used, which can be
accessed in the public repository PhysioNet [10]. This database
is composed by 48 records of two ECG channels, with duration
of 30 min, obtained from 47 people in the BIH Arrhythmia
Laboratory (Beth Israel Hospital), between the years 1975 and
1979.

The data acquisition was performed with sampling fre-
quency of 360 samples/s for each channel, with 11 bits
per sample, which yielded a resolution of 10 mV . Two or
more cardiologists verified the signals independently to assign
annotations for the parts of the signals, in a total of 110,000
annotations, which were included in the database [15].

The table of rhythms in [16] summarizes the period of each
rhythm in the acquisition process. A total of 45 records were
selected because the records 102, 104, and 232 do not present
the derivation modified limb lead II. As explained in section
II, seventeen rhythms were selected to validate the proposed
methodology.

IV. PREPROCESSING AND FEATURE EXTRACTION

This section presents the steps performed before the
classification process, which comprises training, valida-
tion/optimization, and test steps. The first step concerns to
the segmentation of ECG signals, because each record of the
database contains more than one type of arrhythmia. In the
second step, it is carried out the class balance. This step
is necessary due to the great difference in the number of
segments of each arrhythmia in the records. To minimize
problems arising from data values ranging between different
scales, it is necessary that multivariate data be standardized on
the same scale, thus the next step is a statistical normalization.
Finally, the last step of the preprocessing takes into account
the feature extraction from the signals in order to feed the
classification process.

Fig. 3 exhibits the steps involved in the whole methodology
used in this work. This approach includes the following steps:
(1) data acquisition; (2) data segmentation; (3) class balance;
(4) statistical normalization; (5) feature extraction; (6) training
and optimization; and (7) evaluation of results.

Figure 3. Block diagram of the proposed methodology.

A. Segmentation

The signals obtained from the PhysioNet repository can be
composed by more than one rhythm. For example, the record
119 has the occurrence of two types of rhythms: Ventricular
Bigeminy (B) and Ventricular Trigeminy (T). Thus, a data
segmentation is necessary to separate fragments of this record.

In the segmentation step is performed the selection of seg-
ments with only one rhythm, which are 10 s long. Considering
a sample rate of 360 samples/s, each segment is composed
by 3600 samples.

For this task the toolbox PhysioNet Toolkit [17] was em-
ployed, which allows one to annotate each segment. By means
of this annotation it is possible to identify the rhythm in each
part of the signal. After segmentation, the data described in
Table I were obtained.

Table I
DATA DESCRIPTION AFTER SEGMENTATION.

Id Rhythm #segments
1 Atrial Fibrillation (AFIB) 135
2 Atrial Flutter (AFL) 20
3 Atrial Premature Beat (APB) 66
4 Ventricular Bigeminy (B) 55
5 Fusion of Ventricular and Normal Beat (Fusion) 11
6 Idioventricular Rhythm (IVR) 10
7 Left Bundle Branch Block Beat (LBBBB) 103
8 Normal Sinus Rhythm (N) 283
9 Pacemaker Rhythm (PR) 45
10 Premature Ventricular Contraction (PVC) 133
11 Right Bundle Branch Block Beat (RBBBB) 62
12 Second-degree Heart Block (SDHB) 10
13 Supraventricular Tachyarrhythmia (SVTA) 13
14 Ventricular Trigeminy (T) 13
15 Ventricular Flutter (VFL) 10
16 Ventricular Tachycardia (VT) 10
17 Pre-excitation (WPW) 21

B. Class Balance

This step is carried out to make the number of segments
per class as similar as possible, because high differences
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in the number of segments among the classes might im-
pair the performance of the classifiers [18], mainly in the
optimization step in terms of the searching for optimal pa-
rameters. The algorithm employed to perform the balanc-
ing was ADASYN [19], which is an implementation of
the Synthetic Minority Over-sampling Technique (SMOTE).
ADASYN makes the new (synthetic) segments be located
mainly in the board between the classes, and generates more
synthetic data for the minority classes, because the learning
might be compromised when performed with few segments.
This algorithm includes the following steps:

• Evaluating of the degree of class imbalance, i.e., how
much the majority class is greater than the minority ones;

• Calculating the number of synthetic segments to be
created;

• Evaluating of the difficulty to learn each segment in mi-
nority classes, based on the proximity of these segments
with segments from the majority class;

• Calculating the number of synthetic segments to be cre-
ated for each original segment from the minority classes,
based on the aforementioned metric, in which the seg-
ments with more segments in their neighborhood receive
more synthetic segments. This step makes ADASYN to
generate segments on the boundary of the classes, and to
improve the overall learning;

• Generating of the synthetic segments such that

x̂i = xi + (xi − xn)λ, (1)

where xi is the current segment from a minority class
being evaluated, xn is a randomly chosen segment of
the minority class in the neighborhood of xi, and λ is a
random number such that λ ∈ [0, 1].

ADASYN was designed to balance classes in binary pro-
blems, but the database considered in this study has seventeen
classes. Then, an one against all strategy was employed to
circumvent this issue. In this strategy, one class representing
the minority one was chosen, and all the others composed the
majority one. It was performed for all classes, with exception
for the original majority class, Normal Sinus Rhythm (N).

C. Feature extraction

Frequency domain allows one to analyze many signal fea-
tures, which in time domain might be difficult. One of these
features is the Power Spectral Density (PSD). Through PSD
one can infer how the signal energy is distributed in the
frequency domain. This is specially crucial, as the PSD is
essential to identify cardiac rhythm, as shown in [20], [21].

In this study, the method used to estimate the PSD was
Welch [22]. In the time domain, this method divides the
signal into successive blocks, forming a periodogram for each
block, and then calculates the average of these periodograms.
In other words, it is an average of periodograms over time.
The advantages of the Welch’s method include: the dimension
reduction of the input of the classifiers, due to the final length
of the spectrum to be defined by the window length; and the
minor impact of the noise from the acquisition process, which
is circumvented by the averaging of the segments.

The estimation of PSD via Welch’s method was performed
by considering three widths of Hamming’s windows: 256, 512,
and 1024 samples. Afterwards, the data were partitioned into
three disjointed sets. This data split process was considered
for each window width. The first set was used to train
the classifiers, with 70% of total segments. Other data set
comprised 15% of segments and was employed as a validation
set to estimate the optimal parameters for each classifier.
Finally, the last set with the remaining data was used to test
the generalization performance of each classifier when new
data were considered.

V. TRAINING, VALIDATION/OPTIMIZATION, AND TEST OF
CLASSIFIERS

Four classifiers were chosen for this study. The first choice
was a Neural Network (NN), the type of NN selected was
the MLP. This technique is one of the most popular machine
learning algorithms used in many different real-world appli-
cations. MLP is part of a general class of structures called
feed-forward neural networks [23], and have been used in
many problems involving modeling and optimization. In its
structure, neurons are grouped into different layers. The first
layer is called input, while the last layer is called output. The
rest of the layers that lie between the input and output layers
are called hidden layers. MLP can model complex non-linear
functions in the training and validation steps, and generalize
accurately new and unseen data in the test step.

The second choice was the SVM, another nonlinear al-
gorithm by Cortes and Vapnik [24], [25]. The basic idea
of the SVM’s working principle is to find the hyperplane
that can separate the data belonging to two classes with
maximum margin; this is called the ideal hyperplane. The
advantages of SVM over conventional classification methods
are its greater generalization capability, its adaptability to
various classification problems by changing kernel functions,
and its optimal global solution.

The third choice involves an approach with working prin-
ciple distinct from the previous two. The RF was proposed
by Breiman based on the Decision Tree algorithm [26] and
have been widely applied in the area of pattern recognition
[27]. This technique is a machine learning method which
is composed of many decision trees for classification and
prediction. Features are randomly chosen for each decision
tree to be trained, and the overall RF outputs are the result of
voting by all decision trees.

The kNN is one of the well-known classification methods,
becoming one of the ten most widely used data mining
algorithms [28]. This algorithm requires the calculation of
the distance of the unlabeled data for all labeled data in the
training set. The kNN arose in 1951 from the need to perform
a discriminant analysis when reliable parametric estimates of
probability density were difficult to determine [29]. Over the
years other kNN-based approaches have emerged [30]–[32].

As four different algorithms and three distinct widths of
Hamming’s windows were used, the total number of classifiers
was twelve. In the validation step, the k-fold technique [33]
was applied with ten folds, which generates ten distinct subsets
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for training and test from the validation data set. This step
was crucial to select the optimal parameter for each classifier.
Afterwards, each classifier configured with its optimal para-
meter was trained on the training data set. Then, the trained
classifier/model can be employed to classify new data from
the test data set.

Note that, when the classes are balanced, one can expect
that the validation step should be less complex in terms
of computational effort to optimize a given parameter of a
classifier, because there are more data examples to learn and
extract relevant patterns.

VI. EVALUATION CRITERIA

To evaluate the classifiers, there are metrics often applied
in many works [4], [34], [35]. In this paper, the following
methods were chosen:

• Accuracy (AC): It determines how close the output of
the classifier can be to the ground truth. The formulation
is based on true-positive (TP), false-negative (FN), true-
negative (TN), and false-positive (FP), such that:

AC =

(
TP + TN

TP + FP + TN + FN

)
× 100%. (2)

• Sensitivity (SEN): It relates the segments correctly clas-
sified belonging to a class and the sum of these segments
with the segments classified incorrectly belonging to
another class, such that:

SEN =

(
TP

TP + FN

)
× 100%. (3)

• Specificity (SPE): It presents the fraction of true-
negatives, that is, the segments correctly classified as not
belonging to a class in relation to the sum of these seg-
ments with the segments classified incorrectly belonging
to another class, such that:

SPE =

(
TN

TN + FP

)
× 100%. (4)

• Fleiss’ kappa κ [19]: It is a coefficient used to evaluate the
efficiency of a given classifier, its application is justified
in problems of many classes. This coefficient is used
when it is desired to discover the agreement between
several classifiers, such that:

κ =


M

L∑
j=1

mj,j −
L∑

j=1

GjCj

M2 −
L∑

j=1

GjCj

× 100%, (5)

where L is the number of classes; M is the total number
of segments classified which are compared to the ground
truth; mj,j is the number of segments belonging to the
true class j that are also classified as class j (diagonal of
the confusion matrix); Cj is the total number of segments
classified belonging to the class j; and Gj is the total number
of ground truth segments belonging to the class j.

Table II
CLASSIFIERS’ SETTINGS.

Classifier Parameter description Parameter values
SVM Type C-SVM

Kernel Type Radial base function
γ (kernel bandwidth) From 10−5 to 10−3 with

step of 10−6

kNN Distance Euclidean
#neighbors From 1 to 100
Method Classification

RF Method Classification
#trees From 1 to 300

MLP Training algorithm Scaled conjugate gradient
backpropagation

#neurons in the hidden layer From 5 to 100 with step
of 5

#neurons in the output layer 17
Input size 257, 513, and 1025

VII. RESULTS AND DISCUSSION

In this section, the obtained results are presented and
discussed by applying the SVM, kNN, RF, and MLP, con-
sidering three widths of Hamming’s window, on balanced and
unbalanced databases composed of PSDs. The evaluation of
the results was fair, according to section VI, by means of AC,
SEN, SPE, and Fleiss’ kappa κ employed on the test data set.

The results were generated using a notebook with Intel
Core i5-8250U processor, 8GB RAM, MATLAB R2018a and
LIBSVM library [36]. Scripts in MATLAB were developed for
segmenting the ECG data, performing class balance by genera-
ting synthetic segments, normalizing the segments, extracting
the PSDs, training, optimizing and testing the classifiers, and
finally evaluating the results.

The techniques described in section V were configured as
shown in Table II. Furthermore, the range of values considered
for the parameters optimized in the validation step is also
highlighted for each classifier.

A. Preprocessing Results

In relation to the class balance step, firstly the number of
segments in class N (the original class with more segments)
was fixed to 283 segments before the application of the
ADASYN algorithm, in order to minimize the amount of
synthetic segments created at the end of this step. Fig. 4
highlights the number of segments in each class along with
the window width. One can note how the databases remained
after the application of the class balance step. In general,
there was an increase in the total number of segments in the
databases, since as shown in Table I, the previous total number
of segments was 1000. For each width of Hamming’s window,
the total number of segments were different; for windows of
256, 512, and 1024 samples, a total of 4617, 4689, and 4668
segments were reached. Besides, except class N that had no
synthetic segment created, all other classes had the number of
segments ranging between 241 and 282.

After class balance, the PSDs were extracted from the
segments. Fig. 5 shows examples of PSDs for window of 1024
samples. The parameters used in the generation of these PSDs



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020. 30

220

230

240

250

260

270

280

290

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

256 253 276 258 265 281 280 266 283 274 241 267 280 278 279 280 280 276

512 270 275 270 277 280 280 258 283 272 281 270 280 278 277 281 281 276

1024 262 279 269 273 280 281 263 283 270 265 266 280 279 279 282 280 277

Figure 4. Number of segments in each class after class balance step. The blue,
red, and yellow bars denote the segment obtained with the window widths of
256, 512, and 1024 samples, respectively, according to the Ids in Table I.
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Figure 5. Examples of PSDs for classes AFIB and N, with the window width
of 1024.

were: sampling frequency of 360 Hz and number of DFT
points equal to 2048.

From Fig. 5, one can infer that the energy from the ECG
signal is concentrated in low frequencies, which matches
the literature observation. Thereby, 99.55% of the power is
concentrated below 40 Hz, which can indicate the possibility
of reducing the evaluated frequency band. It is also possible
to identify two spikes at 60 Hz and 120 Hz, which probably
represent the power line interference [37]. This interference
might impairs the time domain evaluation of the ECG, but
in the PSD it acts like bias for the ML algorithms, and does
not reduce the classification performance. One can note that
the PSD from class AFIB has more energy in the frequencies
of up to 10 Hz in comparison with the PSD from class N,
whereas in all the rest of the frequency range, the former has
less energy than the last. For instance, this can contribute to
differentiate these two PSD examples through the classifiers.

B. Classification Results

Tables III, IV, V, VI, VII, and VIII reveal the classification
results obtained with the application of the selected four
machine learning algorithms in the test step, considering or
not ADASYN for class balance. The most important results are

accuracy and sensitivity, as stated in [4], but another coefficient
that is analyzed in this work is κ.

Table III
CLASSIFICATION RESULTS OBTAINED FOR WINDOW OF 256 SAMPLES

WITH ADASYN.

Classifier AC SPE SEN κ
SVM 97.11% 99.82% 97.06% 73.90%
kNN 96.68% 99.79% 96.59% 69.98%
RF 97.54% 99.85% 97.54% 77.81%
MLP 98.15% 99.88% 98.23% 83.32%

Table IV
CLASSIFICATION RESULTS OBTAINED FOR WINDOW OF 256 SAMPLES

WITHOUT ADASYN.

Classifier AC SPE SEN κ
SVM 80.66% 98.61% 71.49% 42.73%
kNN 82.66% 98.85% 78.06% 36.12%
RF 80.67% 98.64% 76.27% 42.73%
MLP 88.46% 99.11% 83.53% 14.21%

For the window of 256 samples, as shown in Table III,
the results with better performance in the classification were
obtained using the MLP, although the other classifiers achieved
acceptable results in terms of AC, SPE, and SEN. From the
optimization step, the parameter γ for the SVM classifier
was 9.39 × 10−4, for the kNN classifier the number of
neighbors was 1, for the RF classifier the number of trees
that generated the best results was 185, and for the MLP the
number of neurons in the hidden layer was 95. On the other
hand, one can note a clear decrease in performance from the
results synthesized in Table IV, where there were no segments
generated via ADASYN. With the absence of ADASYN, the
metrics AC, SEN, and κ were mainly affected, being reduced
approximately at least by 10%, 15%, and 35%, respectively.

The results for the windows of 512 samples are shown in
Table V. The increase of the window width to 512 samples
showed that, in a general perspective, this increase improved
the classification performance for all algorithms. For this win-
dow width, the RF classifier performed as the best algorithm,
with the number of trees as 134. The results from MLP
were marginally greater than those obtained with the former
window width and competitive with those from the RF. One
can note that the kNN classifier had the worse performance,
being the optimal number of neighbors equal to 1. The SVM
classifier showed an improvement with the increase of the
number of samples used in this window, but its results in
terms of AC, SEN, and κ were relatively far from the best
ones. The parameter γ needed to achieve this performance was
6.21 × 10−4. For the MLP classifier, the number of neurons
in the hidden layer was 70 after the optimization step. Again,
a poor performance can be highlighted in Table VI, without
the application of ADASYN. Despite some improvements in
AC and SPE, the drawbacks yielded from the unbalance of
the original data emerged when SEN and κ were estimated.

The classification results obtained for the window of 1024
samples are highlighted in Table VII. The best results were ob-
tained by employing the SVM classifier, with γ as 1.6×10−4.
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Table V
CLASSIFICATION RESULTS OBTAINED FOR WINDOW OF 512 SAMPLES

WITH ADASYN.

Classifier AC SPE SEN κ
SVM 97.72% 99.86% 97.74% 79.44%
kNN 97.29% 99.83% 97.30% 75.59%
RF 98.72% 99.92% 98.73% 88.44%
MLP 98.42% 99.90% 98.35% 85.74%

Table VI
CLASSIFICATION RESULTS OBTAINED FOR WINDOW OF 512 SAMPLES

WITHOUT ADASYN.

Classifier AC SPE SEN κ
SVM 85.33% 98.95% 62.77% 24.50%
kNN 87.33% 99.14% 85.76% 12.58%
RF 87.33% 99.06% 80.68% 12.58%
MLP 89.53% 99.19% 82.32% 31.21%

This window width yielded the best performance for the
SVM, which can be explained by the improvement in the
frequency resolution [38]: ∆f1024 ≈ 0.175 Hz/bin, against
∆f512 ≈ 0.351 Hz/bin and ∆f256 ≈ 0.703 Hz/bin. With the
improvement in the frequency resolution, more discriminant
the extracted feature can be, which tends to aid the SVM
classifier in separating the segments per classes correctly,
at the cost in the increase of the input dimension for this
algorithm. The MLP obtained average results for the window
of 1024 samples in comparison with the other two window
widths, the number of neurons in the hidden layer was 55 after
the optimization step. For the kNN and RF, the best results
were obtained with the number of neighbors and number of
trees equal to 1 and 208, respectively, and in this manner
it is possible to observe that an increase of the window
width negatively influences their performances. Without the
application of ADASYN, Table VIII provides the better results
reached in terms of AC and SEN, which were yield by the
MLP and kNN, respectively. However, even though these
results were better, they still fall behind the results supported
by ADASYN for this window, with differences approximately
ranging between 8% and 12%.

The reason related to the general lower performance of kNN
would be the fact this is not a good classifier for data with
nonlinearities. On the other hand, the superior performance
reached by the other algorithms, with distinct window widths,
can be explained by the fact that their capabilities do not
decline for high-dimensional data, as demonstrated in [39].
With the exception of kNN, the other classifiers can perform
very well for nonlinear data, the RF’s performance was lower
than MLP and SVM in some cases because its classification
approach is more suitable for categorical data and the problem
addressed in this work did not favor this characteristic. A
possible explanation for the difference in performance between
MLP and SVM is the fact that MLP has many parameters
which might be optimized and in our approach only the
number of neurons in the hidden layer was optimized, which
may have contributed to its performance being marginally
lower than SVM for the window of 1024 samples.

A comparison between the results of this paper and other

Table VII
CLASSIFICATION RESULTS OBTAINED FOR WINDOW OF 1024 SAMPLES

WITH ADASYN.

Classifier AC SPE SEN κ
SVM 98.86% 99.93% 98.85% 89.68%
kNN 96.00% 99.75% 96.08% 63.88%
RF 97.14% 99.82% 97.18% 74.20%
MLP 98.31% 99.90% 98.31% 84.78%

Table VIII
CLASSIFICATION RESULTS OBTAINED FOR WINDOW OF 1024 SAMPLES

WITHOUT ADASYN.

Classifier AC SPE SEN κ
SVM 84.66% 98.83% 67.88% 27.78%
kNN 86.67% 99.07% 86.52% 16.95%
RF 83.33% 98.68% 76.61% 33.56%
MLP 90.26% 99.17% 83.15% 38.06%

works from the scientific literature is carried out in Table IX.
It is clear that the SVM has been the most employed classifier
for arrhythmia recognition. According to the results of this
work and [4], the SVM and MLP proved to be superior to the
other techniques tested. It is also evident that the application
of ADASYN can improve the classification performance of
unbalance problems, even though this technique generates
more data to be classified. Nevertheless, in relation to the
computational cost, the work [4] adjusted the parameters of
the classifiers with a genetic algorithm, which caused the
consumption of several hours in the optimization step, whereas
our approach consumed only few minutes per classifier. This
fact elucidates that the proposed methodology has the potential
to achieve a satisfactory performance with less computational
resources. It is also important to emphasize that all works
in Table IX used the data available in the Physionet repos-
itory [10], which indicates that the signals treated in these
works were acquired in the same conditions.

VIII. CONCLUSIONS

In this paper, a novel methodology based on digital signal
processing and machine learning was proposed for automa-
tically classifying different cardiac rhythms. This approach
comprised the following steps: (1) segmentation, (2) class ba-
lance with ADASYN, (3) statistical normalization, (4) feature
extraction, (5) training, optimizing, and testing of classifiers,
and (6) evaluation of results. The main characteristic of this
methodology was the application of ADASYN algorithm to
balance the number of segments between the classes in order
to simplify the parameter optimization of kNN, SVM, RF, and
MLP. This procedure impacted positively the classification per-
formance as the addition of more segments in a minority class
became it more representative in terms of a distinct pattern.
Besides, this methodology also demonstrated promising results
when compared with the state-of-the-art works.

As future works, the proposed methodology will be applied
in databases with more classes, different types of features will
be extracted with the aim of minimizing the input size of the
classifiers, and nonparametric statistical tests will be conducted
to attest the significance in the classification performance.
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Table IX
A COMPARISON WITH RELATED WORKS.

Authors Classifiers #classes AC SPE SEN κ
Butt, Akram and
Khan [3]

SVM 15 98.78% - - -

Rezaei et al. [5] kNN 4 97.31% 98.21% 94.64% -
Pławiak [4] SVM, kNN, Probabilistic

Neural Network and Radial
Basis Function Neural
Network

13, 15
and 17

98.85% for
17 classes

99.39% for
17 classes

90.20% for
17 classes

88.49% for
17 classes

Pinho, Gomes
and Santos

SVM, kNN, Random Forest
and MLP

17 98.86% for
1024 samples

99.93% for
1024 samples

98.85% for
1024 samples

89.68% for
1024 samples
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