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Abstract—In this paper, we formulate and solve two En-
ergy Efficiency (EE) problems, namely the Power Minimization
Problem (PMP) and the Maximization of Energy Efficiency
Problem (MEEP), for a wireless system using power and fre-
quency resource allocation considering Quality of Service (QoS)
requirements and multiple services. Despite those problems are
nonlinear, they can be converted into Integer Linear Problems
(ILPs). Therefore, the optimal solution for both PMP and MEEP
can be obtained by well-known methods. Additionally, we propose
two fast suboptimal algorithms as to avoid the high computational
complexity of obtaining optimal solution for MEEP. Our results
show that the MEEP has a better trade-off between transmitted
data rate and power saving than the PMP solution. Moreover,
the suboptimal algorithms present good performance compared
to the optimal solution for moderated loads but with a much
lower computational complexity, thus achieving a remarkable
trade-off between performance and computational complexity.

Index Terms—Radio Resource Allocation, Energy Efficiency,
Quality of Service, Multiple Services.

I. INTRODUCTION

Mobile communications have been experiencing an in-
credible development from the analog First Generation (1G)
until the commercial deployment of Fourth Generation (4G)
systems. Currently, industry and academia have been focusing
its research on the Fifth Generation (5G) of mobile commu-
nications [1]. With the advent of 5G and its stringent require-
ments, we expect networks with higher data rates and Energy
Efficiency (EE), improved Quality of Service (QoS) and more
powerful devices boosted by the evolution/massification of
the digital technology [2] Nowadays, industry forecasts [3]
point out an exponential increase in data traffic and for the
number of devices connected to the mobile networks daily,
thus providing a challenging scenario for the 5G (r)evolution.

It is shown in [4] that there will be a great increase in
the devices connected to mobile communications at the end
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of this year, mainly due to the advent of Internet of Things
(IoT), where several kinds of equipment (e.g., cars, drones,
portable devices and clothes) will be connected to a cellular
network [5]. Therefore, network capacity will need a boost
in order to satisfactorily serve all these devices. However, the
increase in the network capacity does not come for free: it
will be necessary the use of more and more energy resources
and this could lead to unacceptable operation costs. Therefore,
it will be necessary to use the energy wisely, i.e., EE will be
one of the pillars of the future networks [6]. Besides that,
since technology and information systems account for about
5% of the global carbon dioxide emission [5], [7], increasing
EE is crucial for environmental sustainability. Indeed, energy
costs and contributions to global carbon dioxide emissions are
emerging major concerns in several areas, including 5G [8].

Technological advances in architecture and radio access
technologies able to meet the network requirements are needed
to cope with this challenging scenario, among which we
highlight Radio Resource Allocation (RRA) as a relevant
network functionality. RRA has been successfully used to
optimize mobile networks in terms of spectral efficiency,
fairness, QoS satisfaction, etc. [9], [10] Herein, we employ
RRA algorithms to manage the scarce radio resources (power
and frequency spectrum) in order to improve the system EE
while guaranteeing QoS. Therefore, we deal with the challenge
of improving the Spectral Efficiency (SE)-EE trade-off [9].

A. Literature Review

EE can be improved using different strategies such as
network planning and development, energy harvesting and
RRA [5]. With network planning and development, infras-
tructure changes are done to maximize the covered area per
consumed energy instead of just maximizing the coverage.
As an example, power consumption can be reduced through
switch-on/switch-off algorithms, where during low traffic peri-
ods the system can turn off underutilized Base Stations (BSs)
and transfer their loads to neighboring BSs [11]. With energy
harvesting, transceivers collect (harvest) energy from the envi-
ronment, including radio signals, wind and solar energy, and
use it for information processing and transmission [7]. Thus,
energy harvesting can contribute to EE since it adds new extra
source of energy instead of optimizing its use. Finally, RRA
is capable of managing the use of radio resources so as to
save energy or optimize its use while respecting other system
constraints. In this article we focus on RRA solutions for EE
optimization.
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In [12], RRA is analyzed from the perspective of data rate
maximization considering QoS requirements and satisfaction
guarantees. Therein, a percentage of the terminals from each
service should be satisfied in terms of data rate requirements.
However, only frequency resource assignment is optimized
while the transmit power is equally divided among frequency
resources. In [13], the RRA problem of [12] is extended to a
more challenging setting with the simultaneous optimization of
transmit power and frequency resource assignment. Nonethe-
less, the proposed transmit power optimization in [13] aims at
maximizing the spectral efficiency and not EE.

One of earliest efforts towards more efficient use of energy
in wireless systems consisted in the power minimization
problem subject to QoS constraints, presented in the seminal
work of Wong et al. [14]. More recent studies on EE have
considered other metrics depending on the system and its
characteristics [8]. In urban scenarios, where the data traffic
is considerably high, the most appropriate metric of EE is
the ratio between transmit data rate and the average trans-
mit power. Regardless of the EE metrics, QoS constraints
that ensures an adequate provision of multimedia services
should be considered. Depending on the considered metrics
and radio resources to be optimized, RRA problems have
different degrees of complexity. For example, transmit power
optimization considering a link adaptation based on continuous
Signal to Noise Ratio (SNR) applied over the Shannon’s
capacity formula can be solved efficiently and optimally via
convex optimization for which many polynomial-time algo-
rithms can be found. The Water Filling power allocation
is a representative approach where basically more transmit
power is allocated to the channels with better conditions [15].
However, assuming discrete transmission levels or Modulation
and Coding Schemes (MCSs), as in practical systems, we
may have nonlinear combinatorial optimization problems that
are mostly NP-Hard [16]. An exception to this context is
the transmit power allocation problem of a point-to-point
connection with discrete MCSs, which can be almost optimally
solved with Hughes-Hartogs (HH) algorithm [17].

In [18], the EE maximization of a multi-relay Orthogonal
Frequency Division Multiple Access (OFDMA) network is
studied and a low-complex solution based on Dinkelbach
(DKB) and Lagrange Dual Decomposition (LDD) algorithms
is provided. The main limitations of [18] are the dependence
of the proposed solution on the initial values of the dual
variables and step size of the LDD algorithm to provide a
fast convergence. In [19], the same problem is studied in
an uplink scenario and a procedure to calculate those initial
values is provided. In [20], three different metrics of EE
maximization are studied in a multi-cell scenario: the ratio
between the sum rate and the total power consumption, the
weighted sum of the energy efficiencies achieved on each
Resource Block (RB) and the exponentially-weighted product
of the energy efficiencies achieved on each RB. In [21],
it is proposed an RRA scheme to optimize the EE in a
millimeter-wave multi-user massive Multiple Input Multiple
Output (MIMO) scenario, and their system model considers
a Cloud - Radio Access Network (C-RAN)-based scheduling
and a hybrid beamforming architecture. In [22], the authors

formulate a problem of EE considering the strategy of energy
harvesting in a device-to-device communication heterogeneous
network. The original formulate problem is not convex, and it
is transformed into a convex problem. The proposed solution
to solve the convex problem is based on DKB and LDD
algorithms. However, the works [18], [19], [20], [21], [22] do
not model QoS constraints and multiservice scenario. In [23],
the EE maximization problem considering QoS requirements
in a multi-cell OFDMA scenario is studied. It is formulated
as a probabilistic nonconvex optimization problem and an
iterative algorithm is proposed. In [24], the proportional-fair
energy efficient RRA problem for uplink in a small cell
scenario is studied and a low-complexity heuristic is proposed.
In [25], a scheme using online learning to maximize the EE
while maintaining QoS requirements in a heterogeneous C-
RAN is proposed. The proposed scheme is implemented in
centralized and decentralized scenarios. Although the works
[23], [24], [25] directly model QoS constraints, neither multi-
service scenarios nor discrete link adaptation are considered.
In [26] the authors propose a Dinkelbach-based iterative
resource allocation algorithm in a mult-icell OFDMA scenario,
which finds a solution to the main problem by solving a
sequence of subproblems. However, their subproblems are
mixed combinatorial and non-convex optimizaton problems to
which is necessary an exhaustive search to find the optimal
solution. Therefore, they propose a suboptimal solution by
splitting the subproblem into three steps: frequency allocation,
precoder design and power allocation. However, the authors
do not consider MCSs or multiples services. In [27], the EE
maximization problem subject to QoS constraints with discrete
transmit power allocation and RB assignment is studied. How-
ever, although discrete power levels are assumed, the SNR-
to-data rate mapping is performed by a continuous function.
Additionally, multiservice scenarios are not modeled in [27].

B. Contributions
In summary, none of the presented works in this literature

review has jointly considered the EE maximization subject to
QoS and satisfaction guarantees in a multiservice scenario with
RB assignment and transmit power allocation with discrete
MCS levels. This problem will be studied in this article. The
considered EE metric is the ratio between the offered data
rate and the total consumed transmit power. Moreover, we
formulate the total power minimization problem subject to
the same constraints. The main contributions of this work are
threefold:

(i) Proposal of the optimal solution to the Maximization of
Energy Efficiency Problem (MEEP) and the Power Mini-
mization Problem (PMP) considering the joint frequency
resource and discrete power allocation, and considering
QoS in a multiservice scenario. The solution to the total
PMP is obtained after reformulating the original problem,
that is nonlinear and integer, as an Integer Linear Problem
(ILP). The optimal solution of the MEEP, which is
fractional, nonlinear and integer, is obtained by solving a
sequence of ILP subproblems;

(ii) Proposal of two efficient low-complexity solutions for the
MEEP;
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(iii) Performance-complexity tradeoff analyses of the involved
solutions for both problems in order to assess the effi-
ciency of the suboptimal solutions.

II. SYSTEM MODELING AND FORMULATIONS

Considering the downlink of a Single Input Single Output
(SISO) system based on a combination of OFDMA and Time
Division Multiple Access (TDMA), the system is composed
of sectored cells connected to a BS serving a group of
terminals. The available radio resources are organized in a
time-frequency grid and an RB is the minimum unity of
resource that can be allocated to a terminal. As the system
utilizes OFDMA, the BS can serve different terminals by
the assignment of distinct RBs without causing interference
among them, i.e., there is no intra-cell interference within
a sector. Figure 1 illustrates the considered system model
and RRA, where we have a BS employing RRA assigning
frequency, and power to terminals as to satisfy the QoS
requirements of different types of services. Furthermore, “T.”
refers to terminals and f(frequency and power allocation) is
a generic function that maps the channel gain in a given
frequency and the power allocated to it on data rate.

We consider the simplifying assumption that the thermal
noise term in the SNR expression already takes into con-
sideration the inter-cell interference. We emphasize that this
simplifying consideration becomes increasingly valid as the
number of BS per square meters increases [28]. In 3rd Gener-
ation Partnership Project (3GPP) distributed networks, there
are schemes to mitigate the interference, such as Intercell
Interference Coordination (ICIC) [29] and Enhanced ICIC
(eICIC) [30], [31]. On basic approach is to avoid the simul-
taneous reuse of some RBs by neighbor cells. Therefore, our
single-cell consideration is also a valid model for a multi-cell
scenario [7].

The RRA problems considered in this work are ILP and this
class of problems has exponential worst-case computational
complexity [32]. Hence, the optimal solution, that is utilized
as an upper bound in performance to the proposed low-
complexity algorithms, can only be obtained for a reduced
number of terminals, RBs and MCS levels. Thus, as the time to
find a solution grows exponentially with the problem size and
due to computational limitation, it is impracticable to obtain
the optimal solution considering a multi-cell scenario.

For RRA be implemented in practice, it is necessary an
entity with processing power to execute algorithms such as
those proposed in this article. This entity is typically located
at the BS where decisions are made, such as users scheduling,
RB assignment, power allocation, and others. These decisions
are executed and impact on different system layers. In practical
scenarios, the data link layer has a sublayer called medium
access control that is responsible for the RRA. Information
of different types and layers are required to serve as input to
these algorithms. As an example, we can cite Channel State
Information (CSI) measurements, amount of data in the trans-
mission buffers, average QoS and satisfaction level, among
others. The physical layer is responsible for the transmission
and reception, managing the circuits power consumption asso-
ciated to it. The main power consumption entities in a BS are

the digital baseband, radio frequency chain, power amplifier,
and overhead (power systems and cooling) [33]. Furthermore,
according to [33], in a macro BS, the power amplifiers are
responsible for the power consumption of more than 50% of
its power. Therefore, the energy spent on RRA processing and
decision making is an insignificant fraction of the total energy
spent on a BS.

We assume that in a given Transmission Time Interval (TTI)
there are J terminals competing to get RBs out of the N
available ones. Furthermore, we define the sets of available
RBs and terminals as N and J , respectively. We consider
that the set of all services provided by the system operator is
|S| = S, where | · | denotes the cardinality of a set. Moreover,
the set of terminals belonging to service s is Js and |Js| = Js.
Note that

⋃
s∈S Js = J and

∑
s∈S Js = J . Moreover, also

notice that for scalar values |x| denotes the absolute value.
The received SNR γj,n of terminal j on its assigned RB n

is

γj,n =
αj pn |hj,n|2

σ2
j

, (1)

where αj represents the combined effect of shadowing and
path gain between the BS and terminal j, hj,n is the short-
term fading channel response of terminal j on RB n, σ2

j is the
noise power at terminal j and finally pn is the transmit power
allocated to the RB n.

The channel state information is collected by Channel Qual-
ity Indicator (CQI) reporting, where each terminal observes
its Signal to Interference-plus-Noise Ratio (SINR) and send a
CQI to the BS. This quality information is a 4-bit integer and is
used to indicates a suitable MCS value (transmission data rate).
Therefore, the reported CQI is used by the BS to calculate the
MCS, which is used by the RRA (scheduler) [34]. We assume
that the system has a link adaptation feature that chooses the
highest MCS level that assures an estimated BLock Error Rate
(BLER) lower than a given fixed BLER target. Therefore,
different transmit data rates can be achieved depending on
the SNR interval. Table I contains the modulation, CQI index,
Effective Coding Rate (ECR) and number of transmitted bits
per TTI for the 15 MCS schemes employed in Long Term
Evolution (LTE) system.

TABLE I
MCS TABLE [35].

CQI Index Modulation ECR Transmitted number of bits

1 QPSK 0.0762 25
2 QPSK 0.1172 39
3 QPSK 0.1885 63
4 QPSK 0.3008 101
5 QPSK 0.4385 147
6 QPSK 0.5879 197

7 16QAM 0.3691 248
8 16QAM 0.4785 321
9 16QAM 0.6016 404

10 64QAM 0.4551 458
11 64QAM 0.5537 558
12 64QAM 0.6504 655
13 64QAM 0.7539 759
14 64QAM 0.8525 859
15 64QAM 0.9258 933
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Frequency and Power Allocation with QoS Satisfaction

Data Rate = f(frequency and power allocation)
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Fig. 1. System Model and RRA

Consider in this study that there are M MCS levels and,
consequently, M transmit data rates different of zero. M =
{1, 2, · · · ,M} is the set of all MCS. According to our model,
the mth MCS level is used when the estimated SNR is between
γm and γm+1 with γm < γm+1.

Note that, as the MCSs belongs to a discrete set, we can also
model the transmit power as a discrete variable. As previously
commented, the link adaptation feature with a target BLER can
select the MCS based on SNR regions. Due to this fact, it is
acceptable that the transmit power to achieve a given MCS
is the lowest value capable of produce a SNR that satisfy the
BLER requirement. Therefore, the minimum transmit power
λj,n,m allocated to terminal j on RB n so as to employ the
MCS m can be defined as

λj,n,m =
γm σ2

j

αj |hj,n|2
. (2)

In this context, we can introduce Y as a J × N × M
assignment tensor with elements yj,n,m that has the value 1 if
terminal j gets assigned RB n and the MCS m is employed.
The assignment tensor Y is the optimization variable of both
PMP and MEEP. Moreover, the total available power at the
BS is defined as P tot.

A. Problem Formulation

Two optimization problems are developed in this subsection.
The first one is the PMP, whose objective is to minimize the
total transmit power. The second one is the MEEP, which
aims at maximizing the ratio of total transmit data rate and
the total utilized power. Both of these problems are subject to
a minimum number of satisfied terminals per service, provided
by a system operator in a given TTI.

In this paper, we assume an adaptive power and RB alloca-
tion. Let us define tj as the data rate requirement of terminal
j at a given TTI. Although we assume instantaneous data rate
requirements, the authors in [36] show that time-averaged data
rate requirements can be converted to instantaneous data rate
requirements. Let us define the minimum number of terminals
from service s that should be satisfied as ks. Moreover, the
index of terminals are sequentially disposed according to the
service.

Using the definitions above, the PMP can be mathematically
formulated as

min
yj,n,m

∑
j∈J

∑
n∈N

∑
m∈M

λj,n,m yj,n,m, (3a)

s. t.
∑
j∈J

∑
n∈N

∑
m∈M

yj,n,m λj,n,m ≤ P tot, (3b)∑
j∈J

∑
m∈M

yj,n,m ≤ 1, ∀n ∈ N , (3c)

∑
j∈Js

u

(∑
n∈N

∑
m∈M

νm yj,n,m, tj

)
≥ ks, ∀s ∈ S, (3d)

yj,n,m ∈ {0, 1}, ∀j ∈ J ,∀n ∈ N ,∀m ∈M, (3e)

where u(x, b) is a Heaviside function at b that assumes the
value 1 if x > b and 0 otherwise, and νm is the transmitted
number of bits considering the MCS m. In (3a), we minimize
the total transmit power from the BS. Constraints (3b) and
(3c) guarantee that the total transmit power limit is obeyed
and that each RB should be associated to only one terminal
and MCS level. Constraints (3d) and (3e) guarantee for each
service, a minimum number of terminals satisfied in terms of
their QoS constraints and that the optimizations variables are
binary, respectively.

The second problem studied in this article, the MEEP, has
the same set of constraints as problem (3). However, the main
objective is to minimize the ratio of the total transmit power
from the BS and the total transmit data rate in the downlink,
that is equivalent to maximize the total EE. Therefore, the
MEEP problem can be stated as

min
yj,n,m

∑
j∈J

∑
n∈N

∑
m∈M

λj,n,m yj,n,m∑
j∈J

∑
n∈N

∑
m∈M

νm yj,n,m
, (4a)

s. t. (3b), (3c), (3d) and (3e). (4b)

Problems (3) and (4) are optimization problems with integer
(binary) variables yj,n,m, thus belonging to the category of
combinatorial optimization problems. Generally, optimization
problems of this class are known to be very hard to solve
optimally. Practically, exhaustive search over all possible RB
assignments and MCS allocations (power allocation) can be
used to obtain the optimal solution. The complexity of the
problems (3) and (4) are increased because of the nonlinear
and nonconvex constraint (3d). Problem (4) has an additional
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difficulty because of the fractional objective function (4a). The
methods to obtain the optimal solution are presented in the
next section.

B. PMP Optimal Solution

The non linearity of constraint (3d) increases the com-
putational complexity to obtain the optimal solution. There-
fore, we introduce a new optimization variable to linearize
this constraint and reduce its complexity. Assume ρ =[
ρ1 · · · ρJ

]T
, where ρj is a binary selection variable that

assumes the value 1 if terminal j is selected to be satisfied
and 0 otherwise. In this way, the PMP can be reformulated
by substituting the constraint (3d) by the following three new
constraints ∑

n∈N

∑
m∈M

νm yj,n,m ≥ ρj tj , ∀j ∈ J , (5a)∑
j∈Js

ρj ≥ ks, ∀s ∈ S, (5b)

ρj ∈ {0, 1}, ∀j ∈ J . (5c)

With the linearization of (3d), the PMP becomes an ILP that
can be solved optimally by standard solvers mainly based on
Branch and Bound (BB) [37]. This method has a much lower
average computational complexity than the full enumeration or
brute force method. Appendix A contains the computational
complexity analysis to obtain the PMP optimal solution.

C. MEEP Optimal Solution

We used the method proposed by Anzai et al. in [38] to
linearize the fractional objective function and find the optimal
solution to the MEEP. Therefrom, the fractional objective
function can be replaced by the difference between the nu-
merator and denominator multiplied by a weight. Thus, the
MEEP can be reformulated as

min
yj,n,m,ρj

P − β V, (6a)

s. t.
∑
j∈J

∑
n∈N

∑
m∈M

yj,n,m λj,n,m ≤ P tot, (6b)∑
j∈J

∑
m∈M

yj,n,m ≤ 1, ∀n ∈ N , (6c)∑
n∈N

∑
m∈M

νm yj,n,m ≥ ρj tj , ∀j ∈ J , (6d)∑
j∈Js

ρj ≥ ks, ∀s ∈ S, (6e)

ρj ∈ {0, 1}, ∀j ∈ J , (6f)
yj,n,m ∈ {0, 1}, ∀j ∈ J ,∀n ∈ N ,∀m ∈M. (6g)

where β is a weight, P =
∑
j∈J

∑
n∈N

∑
m∈M

λj,n,m yj,n,m and

V =
∑
j∈J

∑
n∈N

∑
m∈M

νm yj,n,m.

According to [38], for a specific value of β, the optimal
solution of problems (4) and (6) are the same. Solving (6)
instead of (4) is much simpler, since problem (6) is an ILP.
In order to find the weight β and optimally solve the MEEP,
the following steps should be performed:

(a) In the first iteration β is a large enough number.
(b) Find the optimal solution y?j,n,m of (6). If the objective

function (6a) is positive, stop the algorithm and y?j,n,m is
the optimal solution of (4). Otherwise, go to step (c).

(c) Update P and V with the new solution y?j,n,m, update β
as P

V and go back to step (b).
Note that, according to [38], the convergence to obtain

the optimal solution through this method is guaranteed if
the solution space of optimization problem is limited. As the
search space of MEEP is limited due to the power and QoS
constraints, the convergence of our proposed optimal solution
is guaranteed. Thus, the method proposed by [38] is able
to solve integer fractional problems by solving a sequence
of ILP subproblems. Appendix B contains the computational
complexity analysis to obtain the MEEP optimal solution.

III. PROPOSED LOW-COMPLEXITY SOLUTIONS

Although the optimal solution to the MEEP obtained ac-
cording to Section II is less complex than the one achieved
with brute force method, its complexity is still exponential in
terms of the input variables.

Motivated by this, in this section, two new low-complexity
quasi-optimal heuristics are proposed for solving the MEEP.
However, before that, we show a strategy to decrease the
complexity to obtain a solution to MEEP without significant
loss of optimality.

A. Pre-Selection of Terminals for Complexity Reduction

In a similar way to [39] and using the main aspects
presented in Section II, we observed the behavior of the
optimal solution by performing numerical simulations. We
assume J = 8 terminals using the same service type (S = 1)
inside a cell sector with N = 15 available RBs. It is important
to emphasize that this simplifying approach is considered only
to this analysis, i.e., the performance evaluation in Section IV
considers multiple services. It is analyzed 3000 independent
snapshots with terminals uniformly distributed inside a cell.
The results considered here are the outage rate and the total
EE. The outage rate is the percentage of the independent
snapshots where the algorithms are not able to satisfy the
constraints of the problem (4). The total EE is the ratio of the
total downlink transmit data rate and the total transmit power
at the BS in a given snapshot. The system load is emulated by
increasing the terminals’ required data rate, which is assumed
to be equal to all terminals.

This analysis aims at evaluating the system performance in
terms of outage rate and EE when we discard some of the
terminals of the set J . Discarding a terminal j means that it
will not be considered for RRA. However, the constraints of
(4) should not be violated with this procedure. Consider that
“MEEP OPT” and “MEEP Selec.” are the optimal solutions
obtained according to Section II-C assuming all terminals in
the problem and assuming that only k terminals (the minimum
number of terminals that should be satisfied per service) were
chosen to solve the problem, respectively. The pre-selection
method is done by picking the k out of J terminals with
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Fig. 2. MEEP Behavior: analysis of outage rate percentage vs data rate
requirements per terminal for the optimal MEEP solution and the optimal
MEEP after the pre-selection of the best ks terminals.

highest ratio between the average SNR γj and the data rate
requirement tj . The average SNR is given by

γj =
1

N

∑
n∈N

αj |hj,n|2

σ2
j

. (7)

Our objective with the terminal discard method is to remove
from the allocation process the terminals that are most difficult
to get the QoS requirements fulfilled. In Fig. 2 we evaluate
the outage performance varying the data rate requirements per
terminal for “MEEP OPT” and “MEEP Selec.” assuming J =
8 and k = 4, identified as “4/8” in the figure, and J = 8
and k = 6, identified as “6/8”. Here, the performance of the
“MEEP Selec.” is approximately optimal in both scenarios.
Note that the scenario “4/8” has a large degree of freedom to
perform the allocation process than the scenario “6/8”, which
leads to a performance degradation of “MEEP Selec.” as it
can be seen in Fig. 2. Nevertheless, in practical scenarios, the
system operators generally require a satisfaction ratio higher
than 80%, which is considerably greater than the satisfaction
ratio of 50% demanded in scenario “4/8” [40].

In Fig. 3, we evaluate the Cumulative Distribution Function
(CDF) of the total EE with a varying data rate requirement per
terminal for “MEEP OPT” and “MEEP Selec.” in the same
scenario. Fig. 3 shows that the “MEEP Selec.” has approx-
imately the same performance in both scenarios. Therefore,
there is no substantial performance loss between the original
MEEP and the MEEP after selection of ks terminals.

It is noteworthy that this quasi-optimal pre-selection method
also be applied in a scenario with multiple services by choos-
ing the best ks terminals of each service s ∈ S . Consider
that J̃s is the new terminal set with size J̃s after selecting
the ks best terminals from Js, and that J̃ =

⋃
s∈S J̃s and

J̃ =
∑
s∈S J̃s. The benefit of this pre-selection method is

that the optimization problem to be solved has its dimension
and complexity reduced. With this method, besides reducing
the number of optimization variables, we can also remove
the slack variables ρ and constraints (6e) and (6f) from the
optimization problem. In the next section, our proposed low-
complexity solution incorporates this strategy.
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Fig. 3. MEEP Behavior: CDF total EE vs data rate requirements per terminal
for the optimal MEEP solution and the optimal MEEP after the pre-selection
of the best ks terminals to a required data rate of 1.5 Mbps.

B. Low-Complexity Algorithms to MEEP

The proposed low-complexity solutions to MEEP are com-
posed of three parts. In part 1, depicted in Fig. 4, we adopt
an initial RB allocation considering that each terminal should
receive a minimum number of RBs to obtain a data rate equal
to its requirement based on the assumption that it is able to
transmit on the RBs at the highest MCS level. In part 2,
presented in Fig. 5, we assign some or all the remaining
RBs while applying an adaptive transmit power allocation
among RBs in order to satisfy minimally the system QoS
requirements, i.e., using the lowest possible transmit power
to meet them. Note that, parts 1 and 2 are also present as part
of the suboptimal solution for the Joint RB Assignment and
Power Allocation Problem (JRAPAP) for Rate Maximization
with QoS constraints in our previous work [13]. Part 3
branches into two different algorithms, as it will be explained
in Sections III-B1 and III-B2.

We start with the description of the first part of the proposed
algorithm, where in step 1 it is applied the pre-selection of
terminals according to Section III-A, i.e., the ks terminals
with highest γj/tj ratio for each service s ∈ S are selected.
Then, we define the auxiliary set A that is composed of the
pre-selected terminals. In step 2, we define a set B with all
available RBs in the system. After that, the algorithm in step
3 estimates the minimum number of RBs needed by each
terminal to satisfy its data rate requirements considering the
hypothesis that they are able of using the highest MCS, i.e.,
it implies that the minimum number of RBs needed to satisfy
the data rate requirement tj for terminal j is equal to tj/νM .
Therefore, this step has as objective to know the minimum
number of RBs that are necessary to satisfy each terminal. In
step 4 it is tested if set A is empty while the same test is
performed for set B in step 5. In steps 6 and 7 we assign the
terminal whose data rate requirement is more difficult to fulfill,
i.e., the one with lowest γj/tj , to its RB with highest channel
gain. Basically, terminals with low values for γj/tj have poor
channel conditions and thus, few RBs in good conditions, and
also require more RBs to become satisfied. In step 8, we check
if the chosen terminal in step 6 has the minimum number of
RBs, according to step 3. If so, this terminal is removed from
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Part 1

Step 1: Auxiliary set A is composed by the best ks
terminals for each service s ∈ S according to γj/tj .

Step 2: RB set B is composed by all avaliable RBs.

Step 3: Estimate the required minimum
number of RBs for each terminal from
A be satisfied (based on the best MCS).

Step 4: Is the set A empty?

Step 5: Is the set B empty?

Step 6: Choose the terminal from
A with lowest ratio γj/tj .

Step 7: Allocate the best RB from B to the
selected terminal. Remove the selected RB from B.

Step 8: Has the selected terminal received
the required minimum number of RBs?

Step 9: Remove the selected terminal from A.

Feasible
solution

not found.

Go to Part 2.

No

No

Yes

No

Yes

Yes

Fig. 4. Part 1 of the suboptimal algorithm for MEEP.

A in step 9. Otherwise, this terminal still needs to receive
more RBs. Note that, an outage event happens when the set
B is empty, and there are still terminals in set A. I the end
of this section we provide a discussion on how the proposed
algorithm can act in such cases.

Once part 1 is finished, the terminals have got assigned their
required minimum number of RBs and, it is possible that there
are still available RBs. In steps 1 and 2 of part 2, shown in
Figure 5, the best ks terminals are re-added to the auxiliary set
A and we allocate the transmit power to the RBs of each one
of them according to HH algorithm [17], neglecting the total
available power constraint and assuming that transmit power
is allocated until the required data rate of each terminal is
met. In step 3 we check if there was a violation of the total
available power P tot of the BS. If so, in step 4, we evaluate if
A and B are empty. If so, an outage event happens. In the end
of this section we provide a discussion on how the proposed
algorithm can act in such cases. Step 5 uses the previous idea
presented in steps 6 and 7 of part 1 to select a terminal, i.e.,
it chooses the terminal with lowest γj/tj , and associate it to
the RB from B with best channel quality. In step 6 the HH
algorithm is applied for the chosen terminal considering the
already assigned RBs and the new RB (selected in step 4). The
HH solution is executed until the terminal achieves its data
rate requirement. If the newly selected RB is in good channel
conditions, it is likely that the total transmit power allocated to
the terminal will decrease. Therefore, step 7 checks if this new
allocation (RB and power) was capable of decreasing the total
allocated power. If so, step 8 assigns this new RB to the chosen
terminal and update the total BS power P tot. Otherwise, in step

Part 2

Step 1: Return the best ks terminals to auxiliary set A.

Step 2: Apply HH power allocation on all terminals from
A, individually, without power constraint until all termi-
nals become satisfied. Update current total used power.

Step 3: Is the current used
transmit power lower than
the total power constraint?

Step 4: Are the sets
A or B empty?

Step 5: Select the terminal from A with lowest γj/tj .
Select the best RB from B to the selected terminal.

Step 6: Apply HH on the already assigned RBs
of the selected terminal and the new selected
RB and until the terminal becomes satisfied.

Step 7: Has the current transmit power allocated to
the selected terminal decreased with the new RB?

Step 8: Allocated the new RB to the selected
terminal. Update the total transmit power.

Step 9: Do not allocate the new RB to the selected
terminal. Remove the selected terminal from A.

Go to Part 3.

Feasible
solution

not found.

No

No

Yes

No

Yes

Yes

Fig. 5. Part 2 of the suboptimal algorithm for MEEP.

9, as no more power saving can be obtained by assigning new
RBs to the chosen terminal, this terminals is taken out of A,
and the RB is not assigned to it. The algorithm keeps testing
if the addition of new RBs is capable of decreasing the total
used power. Finally, we proceed to part 3 if the total used
power is lower than the total available one.

Therefore, if part 3 is reached, we have an initial solution
to the MEEP that satisfies the constraint (3d) and uses a low
transmit power. Based on this assumption, we can reformulate
the MEEP without QoS and satisfaction constraints. In Sec-
tions III-B1 and III-B2, we present the branches (part 3) of
the two suboptimal solutions to the MEEP.

In some problem instances, the proposed solution may not
be able to satisfy all constraints of MEEP, i.e., not able to
find a feasible solution. In these situations, we propose to
decrease the data rate requirements of all terminals. In this
case the new data rate requirement would be the original data
rate requirement multiplied by a factor Ψ, where 0 < Ψ < 1.
Then, our proposed solution can be executed again to evaluate
if the new required data rates can be satisfied. Depending on
τ , we expect to satisfy the system QoS requirements with
the limited RBs and available transmit power. Appendix C
contains its computational complexity analysis.

1) MEEP heuristic 1: The third part of the first MEEP
heuristic has the steps shown in Fig. 6. In the step 1, we
allocate the remaining RBs (that were not associated to any
terminal yet) to their terminals with best channel quality.
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Part 3

Step 1: Allocate all remaining RBs from
B to terminals with best channel quality.

Step 2: Auxiliary Set E is composed of the energy
efficiency (ratio of the total transmit data rate and

the total transmit power) for each MCS in each RB.

Step 3: Select the RB and MCS from E which maximizes
the energy efficiency. The MCS levels can not decrease.

Step 4: The new power
and MCS allocation

results in a total utilized
power lower than the
total avaliable power?

Step 5: The new power and
MCS allocation results in
a energy efficiency larger

than the previous one?

Feasible
solution
found.

Step 6: Update the MCS from the
selectioned RB to the new level.

Yes

Yes

No

No

Fig. 6. Part 3 of heuristic solution 1 to MEEP.

Assuming that the RB n was configured with MCS level mn

in the solution of part 2, in step 2 of part 3, for each RB,
we estimate the total EE when the MCS level of the RB
is increased by one until it reaches the maximum MCS M .
Meanwhile, the MCS levels of the other RBs are maintained.
The EE estimations of all possible combinations are stored in
the set E . In step 3, we select the MCS from the RB which
provides the highest increase in terms of EE, based on E . It
is important to mention that in this step, the terminals’ data
rate cannot be decreased as that would leave them unsatisfied.
This is the reason for estimating the EE when the MCS level
of an RB n varies from nm to M (not lower than nm). Step
4 is responsible for testing whether the new power allocation
violates the total available power constraint (3b). If so, the
algorithm ends with a feasible solution, without updating the
MCS level. Otherwise, in step 5, we test whether this new
power allocation and MCS are capable of increasing the total
system EE, i.e., we test whether the total system power is
more efficiently allocated than in the previous iteration. If so,
in step 6, we assign the new selected MCS to the chosen RB
and the algorithm keeps testing if it is possible to increase
the EE through power and MCSs allocations. Otherwise, the
algorithm ends and a feasible solution is found. Appendix E
contains its computational complexity analysis.

2) MEEP heuristic 2: Part 2 of low-complexity algorithm
in Section III-B gives us a feasible solution which minimizes
the consumed power. Therefore, we propose to use this
solution as the initial solution of the Anzai’s method and
solve the optimization problem (6). As the solution of part
2 already satisfies the terminals’ QoS requirements, we can
omit the constraints (6d), (6e) and (6f). Furthermore, as the
RB assignment is already defined, we recast the problem to
a power allocation problem solved by HH algorithm with the

additional constraint that the initial MCS levels in each RB
could not decrease, as this would reduce the transmit data rate
and violate the QoS requirements of some terminals. Appendix
D contains its computational complexity analysis.

Therefore, we can adapt and use the algorithm of [38] to
obtain the third part of the second MEEP heuristic, following
the steps below
(a) Initially assume that β is a large enough number.
(b) Compute the current value of objective function P−β V ,

where P and V are defined as in Section II-C using the
current solution.

(c) Find the suboptimal solution to the problem, y�j,n,m, using
HH algorithm, with the additional stop criterion that
the current allocated power needs to be lower than the
previous one.

(d) Test whether the new objective function, y�j,n,m is posi-
tive, i.e., a suboptimal solution to the problem and stop
the algorithm if so. Otherwise, go to step (e).

(e) Update P , V and β according to β = P
V and go back to

step (b).

C. Convergence of Low-Complexity Algorithms
The proposed low-complexity solutions to MEEP are com-

posed of three iterative parts. In part 1 there are two sets, A
and B, with a finite number of elements. At each iteration
one element is removed from both sets. If the set A becomes
empty, the algorithm moves to part 2. On the other hand, if
the set B becomes empty, no feasible solution is found and
the proposed heuristic ends.

In part 2, there are two auxiliary sets, A and B, with a finite
number of elements. At each iteration of part 2, one element of
A or B is removed. In this part, if A or B becomes empty, no
feasible solution is found and the algorithm ends. On the other
hand, if the power constraint is achieved, then the algorithm
goes to part 3.

Note that, parts 1 and 2 of the proposed solutions iterate a
finite number of steps until no feasible solution is found or
the algorithm flow moves to part 3. These parts are common
to both proposed MEEP heuristics, which differs only in their
last part. In the first MEEP heuristic, the part 3 reaches the
end of the algorithm when the algorithm tries to allocate more
power to a given RB and the EE is not improved. Thus, as
the search space is finite, the algorithm improves his EE until
convergence. In its turn, in the second MEEP heuristic, the
part 3 is based on the method proposed by [38] and the search
space is limited due to the power constraint. Therefore, both
proposed heuristics cannot decrease their EE, then their EE is
always improved until reach the convergence.

IV. PERFORMANCE EVALUATION

In this section we evaluate the performance of the optimal
solution to PMP, and optimal and low-complex suboptimal
solutions to MEEP. Our main focus is on the existing trade-
offs of optimizing the total used transmit power and the EE,
as well as evaluating the performance of the low-complexity
solutions to the MEEP. In Section IV-A we show the main
simulation assumptions whereas in Section IV-B we show and
discuss the simulation results.
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TABLE II
MAIN SIMULATION PARAMETERS.

Parameter Value Unit

Cell radius 334 m
Total transmit power 0.35 N W

Number of subcarriers per RB 12 -
Number of MCS levels 15 -

Shadowing standard deviation 8 dB
Path loss 35.3 + 37.6 log10 (d) dB

Noise spectral density 3.16 · 10−20 W/Hz
Number of snapshots 3000 -

A. Simulation description

The simulation scenario is the downlink of one sector
deployed in a tri-sectorized cell of a cellular system. We per-
formed several snapshots with the terminals evenly distributed
inside a cell sector with its BS placed at the corner. We
consider the specifications in [41], where each RB is composed
of a group of consecutive Orthogonal Frequency Division
Multiplexing (OFDM) symbols and 12 adjacent subcarriers.

Channel manifestations such as distance-dependent path
loss model, a log-normal shadowing component and a
Rayleigh-distributed fast fading component are considered in
a propagation model. We consider that the system has a link
adaptation feature based on the report of 15 discrete CQIs used
by the LTE [35], shown in Table I. We also assume that the
SNRs threshold to switch from one MCS to another can be
obtained in [42]. The most relevant parameters utilized in the
simulation are summarized in Table II.

The suboptimal solutions presented in Sections III-B1 and
III-B2 are identified in the plots by PROP1 and PROP2,
respectively. The optimal solution of the PMP is identified
in the plots by PMP OPT. In order to perform a fair com-
parison among different solutions, we utilized the same chan-
nel realizations for all algorithms. The IBM ILOG CPLEX
Optimizer [37] is used to solve the ILPs. The computational
complexity to obtain the optimal solutions is a limitation factor
for the choice of the number of RBs, terminals and services.

Four performance metrics are evaluated: the percentage of
unused power, the total data rate, the outage rate and the total
EE. The percentage of unused power is the ratio between the
saved transmit power (non-used transmit power) and the total
available transmit power at the BS. The total data rate is the
sum of the transmit data rate of all terminals. The outage rate
and total EE were defined previously in Section III-A. Finally,
by increasing the data rate requirements of the terminals we
are able to simulate high loads where the demand for RBs and
transmit power is augmented.

Our proposed solutions are evaluated over different condi-
tions, therefore, in Table III we present some scenarios where
the main parameters of our model are changed.

B. Results and Discussion

In Fig. 7, we show the CDFs of total data rate for all
algorithms in scenario 5 with required data rate of 100 kbps
and 600 kbps. One observation that is valid for all scenarios is
that, PMP OPT provides the lowest data rate. This is expected,
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Fig. 7. CDF of total data rate to a required data rate equal to 100 and 600
kbps in scenario 5 to the algorithms MEEP OPT, PMP OPT, PROP1 and
PROP2 with four services (S = 4).

since this solution aims at delivering only the minimum
required data rate to the terminals to save transmit power. This
is not the case for the MEEP solutions, since not necessarily
saving power leads to maximum EE. The performance gain
at the 50th percentile of the total data rate of MEEP OPT,
PROP1 and PROP2 solutions relative to the PMP OPT solution
are 697%, 683% and 555% for the required data rate of 100
kbps and 61%, 18% and 15% for the required data rate of
600 kbps, respectively. From the analysis of the results in Fig.
7, we can see that our proposed solutions PROP1 and PROP2
perform near optimally (compared to MEEP OPT) for low rate
requirements and suffers a performance degradation for high
loads.

In Fig. 8, we present the percentage of unused power versus
the data rate required by each terminal for all solutions in
scenario 5. One general observation is that PMP OPT provides
the best performance when we consider the unused power,
since power economy is directly modeled in the objective
function of the PMP, as shown in (4a). Moreover, we can
see that the percentage of unused power decreases with the
data rate requirements of the terminals. The reason is that,
as the QoS demands of the terminals increase, the task of
satisfying the problem constraints becomes more difficult and,
consequently, more transmit power is used. However, this
optimized transmit power usage in PMP OPT leads to low
total transmit data rates, as observed in Fig. 7. As we will
show next, this behavior impacts on the EE performance.
Considering the required data rate by the terminals of 400
kbps in scenario 5, we see that the solution PMP OPT is
capable of saving 82.2% of the total available power while the
solutions MEEP OPT, PROP1 and PROP2 save 77%, 76.89%
and 75.66%, respectively.

Fig. 9 shows the total EE CDFs for all algorithms in scenario
1 for a required data rate per terminal of 100 kbps and 1 Mbps.
A general observation is that, for all remaining figures, the
MEEP OPT algorithm provides the best performance in EE
terms. Basically, the total EE is the objective function (4a) of
the MEEP. The performance gains of MEEP OPT in the 50th

percentile of EE relative to solutions PMP OPT, PROP1 and
PROP2 are 300%, 8% and 14.5%, for a required data of 100
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TABLE III
SIMULATED SCENARIOS.

Scenario S J1 J2 J3 J4 k1 k2 k3 k4 N Required data rate

1 2 4 4 - - 3 3 - - 15 All terminals demand the same data rate
2 3 3 3 3 - 3 3 2 - 15 All terminals demand the same data rate
3 3 3 3 3 - 3 3 2 - 15 Terminals from service 3 demand a data rate 250 kbps higher than those from

services 1 & 2
4 4 3 3 3 3 3 3 2 2 20 All terminals demand the same data rate
5 4 3 3 3 3 3 3 3 3 20 All terminals demand the same data rate
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Fig. 8. Non-used transmit power versus required data rate in scenario 5 for
MEEP OPT, PMP OPT, PROP1 and PROP2 algorithms with four services
(S = 4).

0 200 400 600 800
0

20

40

60

80

100

Total sector energy efficiency (Mbps/W)

C
D

F
(%

)

MEEP OPT PMP OPT
PROP1 PROP2
100 kbps 1 Mbps

Fig. 9. CDF of EE for a required data equal to 100 kbps and 1 Mbps in
scenario 1 to MEEP OPT, PMP OPT, PROP1 and PROP2 algorithms with
two services (S = 2).

kbps, and 15,6%, 16,2% and 16,2% for a required data of 1
Mbps. Note that, PROP1 and PROP2 solutions are capable of
maintaining a low performance loss compared to MEEP OPT
solution especially for low QoS demands. Another important
observation is that the MEEP OPT solution tends to become
the PMP OPT solution with the increasing rate requirement.
The reason for this is that for high data rate requirements per
terminal, the MEEP and PMP solution space become smaller
and, therefore, there is a lower optimization margin to increase
the EE. Thus, the two problems converge to similar solutions.

Fig. 10 shows the total EE CDFs for all algorithms in
scenarios 2 and 3 for a data rate requirement of 100 kbps

and 600 kbps, respectively. It is important to mention that the
required data rates in the x-axis in Figs. 10(a) and 10(b) are
for services 1, 2 and 3 in scenario 2, and for services 1 and
2 in scenario 3. The terminals from service 3 in scenario 3
demand a data rate 250 kbps higher than the terminals from
services 1 and 2, as indicated in Table III. The objective is
to show the impact of the terminals’ data rate requirements,
tj , on the performance of the proposed algorithms. Basically,
with low QoS demands, the variation of tj between terminals
from different services shows a significant impact on the EE,
except for the PMP algorithm, as depicted in Fig. 10(a). With
high QoS demands, all algorithms seem to be insensitive to the
variation of the required data rate of service 3 in scenario 3. As
the QoS demands are increased to 1 Mbps, the fixed difference
in the required data rate of 250 kbps between service 3 and
the other services in scenario 3 becomes negligible and this
justifies the small performance difference in 10(b).

Fig. 11 shows the total EE CDFs for all algorithms in
scenarios 4 and 5 for a data rate requirement of 100 kbps and
600 kbps, respectively. The objective is to show the impact of
the minimum number of satisfied terminals per service, ks. All
solutions show a considerable EE loss with the variation of ks.
Basically, the EE loss when ks is increased is more preeminent
in high QoS demands. In high QoS conditions, satisfying or
not one terminal has an important impact in the resource usage
as a single terminal demands more RBs and transmit power to
become satisfied. The performance gains in the 50th percentile
of EE of the MEEP OPT solution compared to the PMP OPT,
PROP1 and PROP2 solutions in scenario 4 are 508%, 10% and
20%, and 45.8%, 45.2% and 58.15% in Figs. 11(a) and 11(b),
respectively. The PROP1 solution shows a good performance
performance in Fig. 11(a), however, it presents a performance
loss in Fig. 11(b).

In Fig. 12, we show the outage rate versus the required
data rate per terminal for the algorithms MEEP OPT and
PROP1 in scenario 5. Note that, the MEEP OPT and PMP
OPT have the same set of constraints and, therefore, they
present the same outage performance. This is also the case
of PROP1 and PROP2 that share common steps related to
QoS and service satisfaction. As expected, the outage rate
increases with the required data rate per terminal. Focusing
on the relative performance among algorithms, the proposed
heuristic solutions present a small performance degradation
compared to the MEEP OPT solution for low and moderated
loads. When the MEEP OPT solution reaches an outage rate
of 10%, the difference in outage rate between our solution and
MEEP OPT is 5.2%.
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(a) Required data rate of 100 kbps.
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(b) Required data rate of 600 kbps.

Fig. 10. CDF of EE for a specific required data to MEEP OPT, PMP OPT,
PROP1 and PROP2 algorithms with three services (S = 3). Assuming the
scenarios 2 and 3, and evaluation the impact of variable tj .

In summary, from the analysis of the results of Figs. 7 to 12,
the PROP1 and PROP2 solutions achieve a good performance
compared to the optimal solution considering the problem
objective and constraints for lower and medium loads.

Table IV shows the Complexity/EE trade-off of each so-
lution for a given scenario and required data rate. The com-
plexity is calculated by substituting the variables in the worst-
case computational complexity calculated in the appendixes.
Thus, the Complexity/EE metric is determined by dividing
the calculated complexity by the EE obtained in the 50th

percentile. The objective is to show how promising are the
algorithms in terms of the obtained EE and the computational
cost associated to achieve it. As we can see the EE trade-off for
the MEEP OPT have extremely higher values even for the least
challenging scenario. Furthermore, for the other scenarios, the
trade-off metric is above the maximum representable value in
the software used for simulation that is 1E+308. Therefore,
besides the MEEP OPT having the best EE, its complexity
is prohibitive. Considering the analyzed scenarios, we can see
that the PROP1 algorithm results in the best trade-off between
complexity and EE.

As we are dealing with algorithms, it is also impor-
tant to present a computational complexity analysis for
them. The worst-case computational complexities of solving
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(a) Required data rate of 100 kbps.
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(b) Required data rate of 600 kbps.

Fig. 11. CDF of EE for a specific required data to MEEP OPT, PMP OPT,
PROP1 and PROP2 algorithms with four services (S = 4). Assuming the
scenarios 4 and 5, and evaluation the impact of variable ks.
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Fig. 12. Outage rate versus required data rate in scenario 5 for MEEP OPT
and PROP1 algorithms with four services (S = 4).

MEEP and PMP using BB are O
(
JN
√

2
(JNM+J)

)
and

O
(√

2
(JNM+J)

)
, respectively, as explained in Appendices

A and B. The worst-case computational complexity for the
PROP1 and PROP2 solutions, detailed in Appendices C to
D, are O

(
JM2N log2N

)
and O (qJMN log2N), respec-

tively, where q is the number of iterations. As we can observe,
the computational complexity of the suboptimal solutions
are polynomial and much lower than those of the optimal
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TABLE IV
TRADE-OFF BETWEEN COMPUTATIONAL COMPLEXITY AND EE.

Scenario Required data rate MEEP OPT PROP1 PROP2
- - Complexity/EE Trade-off Complexity/EE Trade-off Complexity/EE Trade-off
- (kbps) No of operations per Joule No operations per Joule No operations per Joule

1 100 1.35e+266 0.0010 0.0099
1 1000 1.29e+267 0.0097 0.0946
2 100 - 0.0026 0.0292
2 600 - 0.0194 0.2119
4 100 - 0.0035 0.0706
4 600 - 0.0300 0.5972

solutions. Thus, we can identify an excellent performance-
complexity trade-off for them, when compared to the MEEP
OPT and PMP OPT strategies.

V. CONCLUSIONS AND PERSPECTIVES

In this work, we studied RRA problems involving energy
and power optimization with QoS and satisfaction constraints
in multiservice scenarios. Two problems were formulated:
MEEP and PMP. PMP is an ILP problem and can be optimally
solved by BB-based algorithms, while MEEP is a fractional
integer optimization problem. To solve the latter, we employed
an iterative method proposed in [38]. Motivated by the high
computational burden to obtain the optimal solutions, we also
proposed two suboptimal algorithms to the MEEP.

According to the performance results, we could show the
relevance of optimizing energy resources, especially under
the MEEP point of view that is able to obtain high data
rates with an acceptable transmit power. Moreover, we could
show that the proposed suboptimal solutions presented a good
performance especially in low and moderated system loads.
The computational complexity of the involved algorithms were
presented and we could show that the suboptimal solutions are
able to offer good performance-complexity trade-offs.

Regarding the possible extensions, in MIMO scenarios,
besides the time-frequency dimension, the RRA needs to
manage also the space resources, introducing the concept of
Space-Division Multiple Access (SDMA). However, one of the
major problems in SDMA solutions is the possible number
of group compositions that grows up with the number of
terminals and antennas [43]. Therefore, one possible extension
of the current framework is to perform a pre-selection of the
most promising groups before starting the framework. Note
that, the steps of the framework should be adapted for a MIMO
scenario. Furthermore, this extension also can be valid for
massive MIMO scenarios.

In power-domain Non-Orthogonal Multiple Access
(NOMA), terminals with different channel conditions are
multiplexed at the same frequency with different power
coefficients. After that, in downlink, each terminal applies
successive interference cancellation to obtain the desired
signal [44]. However, as the application of NOMA in all
terminals may be unpractical, an alternative approach is to
combine NOMA and Orthogonal Multiple Access (OMA)3

leading to a hybrid multiple access system [7]. Furthermore,

3OFDMA is an example of OMA.

the number of compositions of NOMA terminals grows
combinatorially with the number of terminals and RBs. Thus,
one of the challenges is to find the best composition of
terminals NOMA that maximizes the EE satisfying the QoS
requirements. Therefore, one possible extension of the current
framework is to adapt the frequency assignment functionality
to handle with the hybrid NOMA/OMA approach.

APPENDIX A
COMPLEXITY ANALYSIS OF THE PMP OPTIMAL SOLUTION

As in [45] and [46], we consider summations, multipli-
cations, and comparisons as the most relevant and time-
consuming operations. The computational complexity consid-
ered here is the worst-case one that gives an upper bound
on the computational resources required by an algorithm and
is represented by the asymptotic notation O. To obtain the
optimal solution, we used the BB algorithm. Firstly, remember
that the optimal solution of MEEP is obtained by iteratively
solving ILPs. Therefore, we firstly calculate the computational
complexity of solving an ILP with BB algorithm. Assuming
that the optimization problem has l integer variables, there
are at least (

√
2)l linear subproblems to be solved [32]. For

each linear subproblem with m constraints and l variables, it
is needed 2(m + l) iterations, and each iteration in its turn
requires (lm − m) multiplications, (lm − m) summations,
and (l − m) comparisons [45], [32]. Moreover, the optimal
solution of PMP problem (3) can be obtained by BB algorithm.
Therefore, the problem has JNM + J optimization variables
and JN + J + N + S + 1 constraints. By retaining only the
high order operations, its worst-case computational complexity
is given by O

(
(
√

2
(JNM+J)

)
.

APPENDIX B
COMPLEXITY ANALYSIS OF THE MEEP OPTIMAL

SOLUTION

We assume the same hypothesis of Appendix A. As in
problem (6) there are JNM + J integer variables and
JN + J +N + S + 1 constraints. By retaining only the high
order operations, the worst-case computational complexity is
O
(√

2
(JNM+J)

)
for problem (6). However, the algorithm

proposed in [38] obtains the optimal solution with a maximum
of 3 × I iterations, where I is the number of constraints. As
our problem has JN + J + N + S + 1 constraints, then the
worst-case complexity is O

(
JN
√

2
(JNM+J)

)
.
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APPENDIX C
COMPLEXITY ANALYSIS OF PARTS 1 AND 2 OF THE MEEP

SUBOPTIMAL SOLUTION

According to the description of parts 1 and 2, we can
see that the most computationally intensive operations are
present in the HH algorithm. The worst-case computational
complexity of HH algorithm for N RBs and M MCSs is
given by O(MN log2N) [47]. Considering that in practical
scenarios J is greater than N , our solution is dominated by
the execution of HH algorithm for each terminal. Therefore, its
worst-case computational complexity is O (JMN log2(N)).

APPENDIX D
COMPLEXITY ANALYSIS OF THE MEEP HEURISTIC 1

As the MEEP heuristic basically employs the HH algorithm
to estimate the EE for each MCS and the MCS is updated until
the power runs out, the worst-case computational complexity
is the same as the calculated in Appendix C multiplied by the
number of MCSs. Therefore, the worst-case complexity of this
solution is O

(
JM2N log2(N)

)
.

APPENDIX E
COMPLEXITY ANALYSIS OF THE MEEP HEURISTIC 2

The worst-case computational complexity of the proposed
suboptimal solution for MEEP with Anzai’s algorithm is
clearly dominated by the power allocation steps performed
by the adapted HH algorithm of Section III-B2. As the MEEP
heuristic solution basically employs the HH algorithm with
the iterative algorithm of [38], the worst-case computational
complexity is the same of calculated in Appendix C multiplied
by the number of iterations. In our simulations, we verified that
a low number of iterations is sufficient to achieve the presented
performance. Assuming q as the number of iterations, the
worst-case complexity of this solution is O (qJMN log2(N)).
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