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A SINR Maximizing

Interpolation-and-Decimation-based Dimensionality

Reduction Technique, with Application to

Beamforming
Aline de Oliveira, José Mauro Fortes, Fabian David Backx, Raimundo Sampaio-Neto

Abstract—We present a dimensionality reduction technique
based on a joint interpolation and decimation scheme, with
application to beamforming. The dimensionality reduction is
achieved by a two step procedure: interpolation followed by
decimation. The array snapshots are interpolated by a finite
impulse response (FIR) filter in order to generate correlation
between its samples. The decimation stage then discards some
samples from the correlated interpolator output signal, effectively
reducing the snapshots’ length. A notable point of this technique
is the elegant and effective way to design the interpolation filter.
The design is such that, for a given decimation pattern, the
interpolation filter maximizes the signal-to-interference-and-noise
ratio (SINR) at the ouput of the decimation stage. The optimiza-
tion of the reduced dimensionality stage is made independently of
the final application filtering stage, allowing the proposed scheme
to be combined with any interference-suppressive or detection
filter of choice. Investigation of this technique in light of the
particularities of the beamforming signal model led to, here
proposed, simplifications that allowed for a significant reduction
of its overall complexity. Comparison with renowned robust rank
reduction techniques show that the proposed approach has an
excellent SINR loss figure of merit performance with superior
robustness and low computational complexity.

I. INTRODUCTION

Interpolation and decimation algorithms were extensively

studied for sampling rate alteration and related applications

[1]. In these algorithms, the input signal is filtered prior to the

decimation stage in order to avoid aliasing. As the sampling

rate is an important cost factor in digital signal processors

implementations, so is the length of the input data in ever

increasing sophisticated algorithms.

One of this paper’s authors investigated the interpolation and

decimation concept focusing on the dimensionality reduction

of the observed data prior to the digital processing algorithms.

The idea was to design the interpolation filter aiming at the

minimization of a certain cost function. At first, this idea

originated an algorithm where the dimensionality-reduction

stage is coupled with the final application filter (the detection

filter for example), adaptively adjusting both the interpolation

and detection filter weights [2]. This idea proved to give
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excellent results at low computational cost in Direct Sequence

Code Division Multiple Access (DS-CDMA) communication

scenarios using Minimum Mean Square Error (MMSE) filters

[3], [4], [5].

Building on this concept, another approach was then pro-

posed: to design an interpolator filter that maximizes the

signal-to-noise ratio (SNR) at the output of the decimation

stage, irrespective of the final application filter. Indeed, differ-

ently from [2], the optimization of the reduced dimensionality

stage is made independently of the filtering stage, allowing

the proposed scheme to be combined with any interference-

suppressive or detection filter of choice. Since the interpola-

tion filter is now decoupled from the application filter, the

advantage of this stand-alone dimensionality reduction block

relies on the fact that it can be deployed upstream from

any desired application filter, e.g. any kind of detection or

estimation filter, without the need of redesigning it from the

application cost function, as it has to be done for different

applications [2], [3], [4], [5]. This alternative approach was

tested in Ultra Wide Band (UWB) communication scenarios,

and had excellent results [6], [7], [8].

The aforementioned method was further improved, leading

to the design of a decoupled interpolation filter that maximizes

the signal-to-interference-and-noise ratio (SINR), instead of

only the SNR as in [6], [7], [8]. The design of this new inter-

polator is creative and effective. This method was applied for

DS-CDMA and UWB communication scenarios and reported

in Portuguese in [9] and [10]. This method will be now on

called: joint interpolation and decimation scheme (JIDS).

In this paper, we recast the JIDS algorithm for beamforming

applications and specialize it considering the particularities

of this specific problem. We propose simplified methods for

selecting the algorithm parameters and for defining the best

decimation strategy: we investigate the dependence of two

of the JIDS parameters, the decimation factor, F , and the

interpolation filter length, Lv , and obtain a straightforward

method to set the length of the interpolation filter. We also

derive a new low complexity criterium for selecting the

best decimation pattern. The proposed specialized JIDS for

beamforming will be referred to as JIDSB.

The Minimum Variance Distortionless Response (MVDR)

beamforming filter [11] is a well-known beamforming tech-

nique that exploits the second-order statistics of the interfer-

ence vector to minimize the array variance while constraining
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the array response towards the direction of the signal of

interest (SOI). The Minimum Power Distortionless Response

(MPDR) beamforming filter, as denoted in [11], exploits the

second-order statistics of the received vector to minimize

the array output power while constraining the array response

towards the direction of the SOI. When the direction of arrival

(DOA) of the SOI is known exactly the output of the MPDR

resumes to the output of the MVDR [11].

There are many techniques available to implement the

MVDR filter with less computational burden, basically to

avoid the MVDR matrix inversion step, e.g. the stochastic-

gradient (SG) [12], [13] technique. However, full rank algo-

rithms usually require a large number of snapshots to reach

the steady-state. In large antena array arrangements, this may

cause degradation in convergence speed, especially in environ-

ments where a small support of independent and identically

distributed (IID) samples are available for estimation of the

statistical quantities [14].

Reduced-rank techniques can mitigate the effects of these

drawbacks. Principal Components (PC) [15], [16] and Cross-

Spectral Metric (CSM) [17] are examples of reduced-rank

filtering schemes based on an eigen-decomposition. The Mul-

tistage Wiener Filter (MWF) achieves rank reduction through

the Krylov subspace, which has the added benefit of a further

reduction in computational complexity based for example on

the Lanczos [18], [19], [20] or the Arnoldi [21], [20] algo-

rithms, or a conjugate gradient-based (CG) implementation

[22], [23] (CG-MWF). Other rank-reduction algorithms are,

for example, the Auxiliary Vector Filter (AVF) [24], [25] that

generates a sequence of linear auxiliary filters that converge

to the MVDR filter and the family of adaptive joint iterative

optimization (JIO) algorithms [26], [27].

Another concern in beamforming is robustness, which indi-

cates how the algorithms perform under certain unfavorable

situations, e.g. calibration errors, look of direction errors,

distortions caused by source spreading and poor estimation of

statistical quantities due to small sample support sizes. This

problem may be especially dramatic when the MPDR beam-

former filter is used. Many approaches have been proposed

to improve the beamformers robustness, for example, adding

extra quadratic (diagonal loading), linear point or derivative

constraints, [28], [12], [29], [30] and robust estimation using

random matrices theory [31] or eigenspace based robust beam-

formers [32]. It is within this context that the JIDSB algorithm

is inserted.

We apply the MVDR detection filter to the output of the

dimensionality reduction stage and compare the JIDSB results

in terms of SINR loss with the full rank MVDR filter and

several rank reduction techniques such as PC, CSM and CG-

MWF. In terms of robustness, we compare the JIDSB with the

former methods with diagonal loading when the MPDR filter

is applied.

This paper is organized as follows. Section II describes

the signal model. Section III combines the dimensionality

reduction transforms with the beamformer weighting vector.

Section IV recasts the JIDS, specialized here for the beam-

forming application. The proposed simplification procedures

are explained in subsection IV-B and IV-C. Subsection IV-D

addresses the computational complexity issue. The perfor-

mance assessment examples of the proposed specialized and

simplified JIDS (i.e. JIDSB) are provided in Section V. Finally,

conclusions are given in Section VI.

II. SYSTEM MODEL

We consider a beamforming application with a uniform lin-

ear array (ULA) with M elements. The sensor array received

vector at the i-th time snapshot r(i) ∈ C
M×1 is given by

r(i) = s(θ0)b0(i) + i(i) + n(i)
︸ ︷︷ ︸

x(i)

, (1)

where without loss of generality, the signal of interest

is represented as b0, a complex random variable with

power E[|b0|2] = σ2
0 and steering vector s(θ0) =

[1, e−j 2πd
λc

sin(θ0), ..., e−j
2π(M−1)d

λc
sin(θ0)]T , where λc is the car-

rier wavelength and d is the inter-element spacing of the ULA.

The term x(i) ∈ C
M×1 is the interference plus noise vector,

where

i(i) = A(Θ)b(i), (2)

Θ = [θ1, ..., θQ]
T ∈ R

Q×1 is the vector of direction of arrivals

of Q (Q < M) narrowband interference signals impinging on

the ULA, A(Θ) = [s(θ1), ..., s(θQ)] ∈ C
M×Q is the complex

matrix composed of the interference steering vectors, s(θk) ∈
C

M×1, k = 1, ..., Q, given by:

s(θk) = [1, e−j 2πd
λc

sin(θk), ..., e−j
2π(M−1)d

λc
sin(θk)]T . (3)

The elements of the vector b(i) = [b1(i), ..., bQ(i)]
T ∈ C

Q×1

are modeled as random variables from uncorrelated zero-mean,

circular complex processes, with variances given by σ2
1 , σ2

2 ,

..., σ2
Q. The vector n(i) ∈ C

M×1 is the complex vector of

sensor noise, which is assumed to be a zero-mean spatially and

temporally circular complex Gaussian vector. The beamformer

output is then given by

z(i) = wHr(i), (4)

where w = [w1, ..., wM ]T ∈ C
M×1 is the complex weighting

vector.

The beamformer weighting vector w can be designed to

maximize the SINR in z(i), according to the MVDR criterion

[11]

minwwHRw, subject to wHs(θ0) = 1, (5)

where R = E[x(i)xH(i)] is the autocorrelation matrix of the

interference and noise. The well-known solution of (5) is the

optimal weighting vector given by:

wop =
R−1s(θ0)

sH(θ0)R−1s(θ0)
. (6)

It is easy to show that the SINR achieved with the optimal

filter of (6) is given by

SINR(wop) = σ2
0s

H(θ0)R
−1s(θ0). (7)

When the autocorrelation matrix is not known a priori, it has

to be estimated from the observed data. In statistical stationary
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signal scenarios, the autocorrelation matrix can be estimated

from the available sample support with Ns snapshots as

R̂ =
1

Ns

Ns∑

i=1

x(i)xH(i). (8)

The solution in (6) that entails the computation of the inverse

of the estimated autocorrelation matrix, R̂, is called the

MVDR sample matrix inversion (SMI) beamformer.

The optimization problem that arises when we use the

autocorrelation matrix of the whole incoming signal, R =
E[r(i)rH(i)], is known as MPDR [11]. The MPDR and the

MVDR solutions are identical in conditions of perfect knowl-

edge of the autocorrelation matrix and the desired steering

vector. But SMI-based MPDR beamformers are known to

suffer from performance degradation [11], [28], [33]. The per-

formance degradation is due to signal cancelation, termed as

signal self-nulling. This problem becomes especially dramatic

in practical scenarios, when there are mismatches between

the assumed array response and the true array response. This

situation arises, for example, when there is a finite sample

support for estimating the autocorrelation matrix.

Diagonal loading is a popular approach to improve the

MPDR-SMI beamformer robustness. It is derived by imposing

an additional quadratic constraint either on the Euclidian norm

of the weight vector itself or on its difference from a desired

weight vector [28]. The estimated autocorrelation matrix added

with a diagonal loading γ ∈ R
+, R̂DL is given by

R̂DL = R̂+ γI. (9)

III. DIMENSIONALITY REDUCTION TECHNIQUE FOR

BEAMFORMING APPLICATION

Consider a dimensionality reduction transformation matrix

T ∈ C
D×M . The observed i-th snapshot rD(i) ∈ C

D×1 after

the dimensionality reduction, given by

rD(i) = Tr(i), (10)

is then processed by the beamforming filter, wD ∈ C
D×1,

whose output zD(i) is given by

zD(i) = wH
DrD(i). (11)

The complex weighting vector wD = [w1, ..., wD]T ∈ C
D×1

is designed according to the MVDR criteria for the reduced

observation rD and is given by

wD =
R−1

D sD(θ0)

sHD(θ0)R
−1
D sD(θ0)

, (12)

where RD = TRTH = E[xD(i)xH
D(i)] is the autocorrelation

matrix of the interference plus noise after the dimensionality

reduction stage, where R ∈ C
M×M is the autocorrelation

matrix of the interference plus noise of the original data and

sD(θ0) = Ts(θ0) is the desired signal steering vector after

the dimensionality reduction stage. The block diagram of this

process is illustrated in Fig. 1.

M × 1

r(i)

D × 1
T

D × 1

wD

zD = w
H

D
rD(i)rD(i) = Tr(i)

Fig. 1. Block diagram of dimensionality reduction stage followed by MVDR
beamformer filter.

Fig. 2. Illustration of the JIDS dimensionality reduction stage.

IV. JIDS DIMENSIONALITY REDUCTION TECHNIQUE

The JIDS dimensionality reduction technique was presented

by one of the authors in a regional conference in Portuguese

[9] for DS-CDMA and UWB communications. For the sake

of completeness, this section gives an overview of the method

modifying it to take advantage of the beamforming system

model. In general terms, the JIDS is based on two operations:

interpolation and decimation, as depicted in Fig 2. At the

interpolation stage the i-th received snapshot r(i) is filtered

by v ∈ C
Lv×1 (Lv << M ) in order to correlate its

components before the decimation stage. The decimation stage

is implemented by means of a decimation matrix, D, that

selects certain components, reducing the original dimension M
by a factor of F . The resulting vector length is D = ⌊M/F ⌋,

where ⌊x⌋ is the operation that selects the largest integer not

greater than x. For a uniform decimation by a factor of F ,

there are in fact F possible patterns, l ∈ {0, ..., F − 1}. The

index l, that designates the decimation pattern, Dl ∈ C
D×M ,

corresponds to the row of the first component of r(i) selected

by the decimation block, that is

Dl =








φl,0

φl,1

...

φl,D−1








, (13)

where

φl,i = [0, · · · , 0
︸ ︷︷ ︸

iF+l

, 1, 0, · · · , 0]. (14)

The JIDS dimensionality reduction technique makes a joint

choice of the interpolation filter, vl, and the decimation

pattern, Dl as will be explained in the following subsection.

A. An Effective Design of the Interpolation Filter Specialized

for Beamforming

Given a decimation pattern l, we seek the interpolation

filter v∗

l that maximizes the SINR at the output of the

dimensionality reduction stage. Furthermore, we also seek the

decimation pattern l∗ that results in the highest SINR among
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all F possible decimation patterns, l ∈ {0, . . . , F − 1}. The

problem of choosing the decimation pattern, l∗, will be shown

to simplify to a trivial comparison of scalars.

In the following, we address the problem of finding the

interpolation filter v∗

l that maximizes the SINR at the output of

the dimensionality reduction stage, given a decimation pattern

l. The output of the dimensionality reduction stage using the

l-th decimation pattern, at the i-th snapshot, is given by

rDl
(i) = DlVlr(i) (15)

= DlVl

(
s(θ0)b0(i) + i(i) + n(i)

)
(16)

= sDl
b0(i) + iDl

(i) + nDl
(i), (17)

where Vl ∈ C
M×M is a Toeplitz matrix that implements the

discrete convolution between vl ∈ C
Lv×1 and r(i) ∈ C

M×1.

The first column of Vl is given by [vT
l , 0, ..., 0]

T ∈ C
M×1.

Due to the convolution commutation property,

Vlr(i) = R(i)vl, (18)

where R ∈ C
M×Lv is a Toeplitz matrix whose first column

is given by r(i) ∈ C
M×1. Using (18) we can rewrite (15) as

rDl
(i) = DlR(i)vl. (19)

Similarly, sDl
, iDl

(i) and nDl
(i) are defined as

sDl
= DlVls(θ0) = DlSvl, (20)

iDl
(i) = DlVli(i) = DlI(i)vl, (21)

nDl
(i) = DlVln(i) = DlN (i)vl, (22)

where S ∈ C
M×Lv , I ∈ C

M×Lv and N ∈ C
M×Lv are

Toeplitz matrices with their first columns given respectively

by s(θ0) ∈ C
M×1, i(i) ∈ C

M×1 and n(i) ∈ C
M×1.

The SINR after the dimensionality reduction stage using

the l-th decimation pattern is given by (dropping the snapshot

index i for convenience)

SINRl =
σ2
0 ‖ sDl

‖2
E[‖ iDl

+ nDl
‖2] . (23)

The filter v∗

l that maximizes (23) is the one that satisfies

v∗

l = argmax
v

‖ sDl
‖2

E[‖ iDl
+ nDl

‖2] , (24)

which is equivalent to

v∗

l = argmax
v

‖ sDl
‖2

E[‖ rDl
‖2] , (25)

since

E[‖ rDl
‖2]

σ2
0E[‖ sDl

‖2] =
E[‖ sDl

b0 + iDl
+ nDl

‖2]
σ2
0 ‖ sDl

‖2

=
σ2
0 ‖ sDl

‖2 +E[‖ iDl
+ nDl

‖2]
σ2
0 ‖ sDl

‖2

= 1 +
1

SINRl

. (26)

The numerator in (25) may be written as

‖sDl
‖2 = ‖DlSvl‖2 (27)

= vH
l Alvl, (28)

where Al ∈ C
Lv×Lv is the symmetric, hermitian, non-negative

matrix given by

Al = SHDH
l DlS (29)

= SHdiag(pl)S. (30)

The matrix diag(pl) is a diagonal matrix that is formed with

the elements of the vector pl along the main diagonal. The

vector pl identifies the l-th, l ∈ {0, ..., F − 1}, decimation

pattern: it has zeros at the positions where the elements will

be discarded and ones where the elements will be selected, that

is, the elements with indices {l, l+F, l+2F, ..., l+ ⌊M/F ⌋}
are retained.

The denominator in (25) may be written as

E[‖ rDl
‖2] = E[‖ DlRvl ‖2] (31)

= vH
l Blvl, (32)

where Bl ∈ C
Lv×Lv is a hermitian symmetric, non-negative

matrix given by

Bl = E[RHDH
l DlR] (33)

= E[RHdiag(pl)R]. (34)

The maximization problem in (25) can be restated as

v∗

l = argmax
v

fl(v), (35)

where fl(v) is defined as

fl(v) =
vHAlv

vHBlv
= vHAlv(v

HBlv)
−1. (36)

The gradient of fl(v) is computed as

∇vfl(v) = −vHAlv(v
HBlv)

−2Blv + (vHBlv)
−1Alv.

(37)

The values that null (37), or equivalently,

−(vHAlv)Blv + (vHBlv)Alv = 0, (38)

must satisfy

Alv = λBlv, (39)

or

Flv = λv, (40)

where Fl = B−1
l Al and λ is the scalar given by

λ =
vHAlv

vHBlv
= fl(v). (41)

We notice that (40) is the eigenvalue equation of matrix Fl.

Therefore, vector v that solves (40) must be the eigenvector

of Fl associated to λ. But as can be seen comparing (41)

with (36), λ is the SINR itself. Thus, in order to maximize

the SINR we need to find the eigenvector associated to the

largest eigenvalue of Fl. By doing so, we are choosing the

interpolation filter, v∗

l , that will produce the maximal SINR

for the l-th decimation pattern. In summary, the interpolation

filter v∗

l that maximizes the SINR at the output of the

dimensionality reduction stage, given a decimation pattern l,
is the eigenvector associated to the largest eigenvalue of Fl.
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In the following, we address the problem of finding the

decimation pattern l∗ that results in the highest SINR among

all F decimation patterns. It turns out that the answer is

simple: we just have to compare the largest eigenvalue of

Fl for l ∈ {0, . . . , F − 1} and select l∗ as the decimation

pattern that produces Fl∗ with the largest eigenvalue. This

process can be done in a parallel multiple branch structure with

F branches, where each branch uses a different decimation

pattern followed by a simple scalar comparison. By doing so,

we are choosing the interpolation filter v∗

l∗ , that will produce

the maximal SINR among all F decimation patterns.

We can now recast the JIDS for beamforming applications:

1) Construct the Toeplitz matrix of the desired steering

vector s(θ0), S;

2) Compute the Lv ×Lv matrix Al = SHdiag(pl)S , as in

(30);

3) Estimate the Lv × Lv matrix Bl in (34) using NB

snapshots as

B̂l =
1

NB

NB∑

i=1

RH(i)diag(pl)R(i); (42)

4) Compute the Lv × Lv matrix F̂l = B̂−1
l Al;

5) Compute the largest eigenvalue, λmax,l, of F̂l;

6) Repeat steps 2 to 5 for the F possible decimation pat-

terns and choose the decimation pattern l∗ that provides

the largest eigenvalue of F̂l

l∗ = argmax
l

λmax,l, (43)

l ∈ [0, .., F − 1]. (44)

7) For the decimation pattern l∗ (selected in the previous

step), set the interpolation filter v∗

l∗ as the eigenvector

associated to the largest eigenvalue of F̂l∗ .

After determining D and V using the steps described above,

the JIDS dimensionality reduction transformation matrix TJ ∈
C

D×M is, thus, given by

TJ = DV. (45)

B. Selection of the Interpolator Length

Selection of the interpolator length, Lv , and the decimation

factor, F , may require an extensive search. In this section we

will examine the particularities of the beamforming problem

in order to suggest a good choice for those parameters adjust-

ments.

Previous work [6] showed that, for scenarios where the

observed data is corrupted only by white noise, the best

results occurred for interpolation filter lengths equal to the

decimation factor Lv = F . This may be explained by the

fact that Lv = F is the filter length that combines the

largest number of samples while preserving the statistical

characteristics of the white noise vector. For this choice of

Lv , the time interval between the preserved noise samples

is greater than the memory of the interpolator filter and the

white noise vector remains white after filtering and decimation

operations. Indeed, it is straightforward to show that, due

to the structure of Vl in (22), the k-th component zk(i) of

the filtered noise vector z(i) = Vln(i) in (22) depends only

on the (at most) Lv components nk, nk−1, · · · , nk−Lv+1 of

n(i), that is zk(i) = f(nk, nk−1, · · · , nk−Lv+1). The net

effect of the matrix Dl in (22) is to select (keep) one out

of every F components of z(i), resulting in nDl
(i). In this

respect, any two adjacent components of nDl
(i) are indeed

two components of z(i) spaced F components apart of each

other. Thus, in order for any two adjacent components of

nDl
(i) to be uncorrelated, zk = f(nk, nk−1, · · · , nk−Lv+1)

and zk+F = f(nk+F , nk+F−1, · · · , nk+F−Lv+1) must be

uncorrelated. For this to hold, zk and zk+F cannot have com-

ponents of n(i) in common, or equivalently, k+F−Lv+1 > k
that is F > Lv − 1, and since F and Lv are integers,

F ≥ Lv . Therefore, Lv = F is the condition that combines

the largest number of samples while preserving the statistical

characteristics of the white noise vector.

That is a good starting point for investigating the parameters

settings in beamforming scenarios as well. It is to be expected

that in cases where the jammer-to-noise-ratio (JNR) is very

low, using Lv = F is the best choice, as it approaches the

white noise only scenario. In scenarios where the JNR is

very high it may not be the best setting, but it may still be

a good choice. We checked this through extensive computer

simulations and verified that, for beamforming applications,

setting Lv = F is indeed a good setting. In this subsection

we will show only two representative results for illustration

purposes.

We simulated a beamforming scenario consisting of: M =
64 elements; SOI at 0o and SNR = 10 dB. We varied the

number of jammers and their JNR and evaluated the SINR

loss for the decimation factors of 2, 4, 8 and 16 for a range

of filter lengths. The SINR loss (LSINR) was computed as

LSINR =
‖wH

DsD‖2
(wH

DRDwD)(sH(θ0)R−1s(θ0))
, (46)

where R is the true autocorrelation of the noise and interfer-

ence known a priori and

RD = TJRTH
J , (47)

wD =
R−1

D sD(θ)

sHD(θ)R−1
D sD(θ)

, (48)

sD = TJs(θ0), (49)

where TJ is defined in (45). The number of training samples

for estimating Bl is NB = 128, averaged over 200 Montecarlo

trials.

In Fig. 3 we simulated three jammers impinging on the ULA

at angles −30o, 50o and 65o. All jammers have a JNR of -9

dB. One can see that for all decimation factors, F , the lowest

SINR losses occur for filter lengths set as Lv = F , as we

expected. The arrows in the figure point where the interpolator

lengths are equal to the decimation factors. The presentation

of the SINR loss in dB is equivalent to 10 log10 (LSINR).
In Fig. 4 we simulated four jammers impinging on the ULA

at angles −60o, −30o, 10o and 50o. All jammers have a high

JNR of 15 dB. One can see that for all decimation factors,

except for F = 4 (which is not the best reduction factor for

this scenario anyway), the lowest SINR losses occur for filter
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lengths Lv = F . The arrows in the figure point where the

interpolator lengths are equal to the decimation factors.

This procedure avoids the additional burden of jointly

optimizing the filter length and the decimation factor.

C. JIDS Simplification for Beamforming Environment - JIDSB

Deeper investigation of the ULA structure into the JIDS

revealed that the JIDS can be further simplified. In this context,

we propose a low complexity criterium for selecting the best

decimation pattern for ULAs. Considering the structure of the

steering vector in a ULA, we can, instead of selecting the

decimation pattern related to the largest eigenvalue, λmax,l, of

Fl, among all decimation patterns, l ∈ {0, .., F − 1}, select

the decimation pattern, l∗, that corresponds to the largest trace

of Fl, denoted tr(Fl),

l∗ = argmax
l

{tr(Fl)} , (50)

l ∈ {0, . . . , F − 1}. (51)

This procedure leads to similar performance and avoids the

need of eigenvalue decompositions during the decimation

pattern decision process. The trace of Fl (which is equal to

the sum of all eigenvalues of Fl) is approximately equal to

the largest eigenvalue of Fl, because, when using the length

of the interpolation filter Lv equal to the reduction factor F ,

the rank of Fl is at most two, meaning that Fl has at most

two non-zero eigenvalues.

Proof. The rank of Fl = B−1
l Al is upper bounded by the

minimum between the rank of B−1
l and Al. Since Bl is

invertible, Bl is a full rank matrix, leaving us with the analysis

of Al. Matrix Al can be written as

Al = AH
Dl
ADl

, (52)

where

ADl
= DlS. (53)

The application of the JIDS in beamforming allows us

to use the structure of the steering vector s(θ0) =
[s0, s1, . . . , sM−1]

T to go deeper into the structure of ADl
.

The matrix S ∈ C
M×Lv is a Toeplitz matrix,

S =













s0 0 . . . 0
s1 s0 . . . 0
...

...
...

...

sLv−1 sLv−2 . . . s0
...

...
...

...

sM−1 sM−2 . . . sM−Lv













, (54)

with its element, Sp,q , at the p-th row, p ∈ {0, . . . ,M − 1},

and q-th column, q ∈ {0, . . . , Lv − 1}, formed by

Sp,q =

{
sp−q, p ≥ q
0, otherwise.

(55)

The m-th element, sm, of the steering vector s(θ0) ∈ C
M×1

corresponds to the signal impinging on the m-th antenna

element and is given by

sm = e−j 2πd
λc

m sin(θ0), m ∈ {0, . . . ,M − 1}. (56)

Substituting (56) into (55),

Sp,q =

{

e−j 2πd
λc

(p−q) sin(θ0), p ≥ q
0, otherwise,

(57)

or equivalently

Sp,q =

{
eαpe−αq, p ≥ q

0, otherwise,
(58)

where

α = −j
2πd

λc

sin(θ0). (59)
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We can then rewrite the “tall" matrix S as

S =











e
α0
e
−α0

0 . . . 0

e
α1
e
−α0

e
α1
e
−α1

. . . 0

...
...

...
...

e
α(Lv−1)

e
−α0

e
α(Lv−1)

e
−α1

. . . e
α(Lv−1)

e
−α(Lv−1)

...
...

...
...

e
α(M−1)

e
−α0

e
α(M−1)

e
−α1

. . . e
α(M−1)

e
−α(Lv−1)












.

(60)

Matrix S ∈ C
M×Lv has at most Lv linearly independent rows.

Indeed, from (60), we note that the M−Lv last rows of S are

linearly dependent: they can be expressed as the multiplication

of the row vector, [e−α0, e−α1, . . . , e−α(Lv−1)], by a complex

scalar. This means that the Lv linearly independent rows of S
are precisely the first Lv rows of S .

After decimation using the l-th uniform pattern, the i-th row

of the resulting matrix ADl
, denoted ADl

(i, :), corresponds

to the (iF + l)-th row of matrix S , denoted S(iF + l, :),

ADl
(i, :) = S(iF + l, :), (61)

i ∈ {0, . . . , D − 1} (62)

l ∈ {0, . . . , F − 1}. (63)

Using Lv = F , the l-th uniform decimation pattern, l ∈
[0, . . . , F − 2] has two linearly independent rows, while

decimation pattern l = F−1 has only one linearly independent

row. Therefore, the rank of Fl is limited by the rank of Al

which in turn is limited by the rank of ADl
, consequently the

rank is at most two. This finishes the proof that Fl has at most

two nonzero eigenvalues.

As a result, we can choose the Fl, l ∈ {0, · · · , F − 1},

which has the largest trace (which is equal to the sum of all

eigenvalues), instead of the one that has the largest eigenvalue

without any noticeable performance degradation.

To compute the trace of Fl, we can use the fact that the

trace of a matrix C = AB, with A,B,C ∈ C
N×N , is given

by tr(C) =
∑N−1

i=0 A(i, :)B(:, i), where A(i, :) denotes the

i-th row of A and B(:, i) denotes the i-th column of B. Thus

the trace of Fl is computed as

tr(Fl) =

Lv−1∑

i=0

B−1
l (i, :)Al(:, i). (64)

A representative result is depicted in Fig. 5, showing that

the proposed decimation pattern selection procedure is in good

agreement with the original one. In Fig. 5 we simulate a ULA

wiht M = 64 elements; SOI at 0o, SNR = 10 dB; 8 jammers

impinging at angles −80o, −65o, −40o, −25o, 30o, 45o, 60o

and 75o with a JNR of 15 dB each. We selected the interpolator

length, Lv = F , as described in subsection IV-B.

The JIDS algorithm specialized for beamforming with the

proposed simplification is named the JIDSB dimensionality

reduction algorithm.
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Fig. 5. SINR loss as a function of the decimation factor, F , for the proposed
and the optimal decimation pattern selection strategies for an array with M =
64 elements, SNR = 10 dB and 8 jammers with JNR = 15 dB.

D. Computational Complexity

In this subsection, we address the computational complexity

of the JIDS and the JIDSB algorithms.

The main steps of the proposed algorithms take place in a

lower dimensional subspace, because the practical effect of the

decimation matrix Dl is to select just D lines of S and R(i).
Thus, the computation of matrices Al = SHDH

l DlS and

B̂l(i) = RH(i)DH
l DlR(i) are reduced to the multiplication

of two matrices of size D × Lv . Tables I and II show the

computational complexity of the main parts of the JIDS and

JIDSB algorithms respectively.

Fig. 6 shows how the computational complexity of the

stage of decimation pattern selection is decreased by the

simplification described in subsection IV-C as a function of the

reduction factor F . In order to assess the number of operations

required for finding the eigenvector associated with the largest

eigenvalue of a N × N matrix we used the power method

[20], which takes Nit iterations and involves NitN
2 complex

multiplications and NitN(N −1) complex additions. For both

algorithms (JIDS and JIDSB), we set the filter length equal

to the reduction factor Lv = F and Nit = 5. We can see that

the proposed simplification significantly reduces the number

of complex operations for the stage of decimation pattern

selection.

V. NUMERICAL RESULTS AND COMPARISONS

In this section, we compare the JIDSB algorithm applied for

reducing the dimensionality of the MVDR-SMI beamformer

(JIDSB-SMI) with renowned rank reduction algorithms in

terms of SINR loss performance, computational complexity,

adapted beampattern and BER performance.

We compare the JIDSB-SMI with the PC-SMI, CSM-SMI

and CG-MWF algorithms. The PC-SMI and CSM-SMI algo-

rithms follow the same structure of the JIDS-SMI as explained

in section III: the received array snapshots go through the

dimensionality reduction stage and then are used to estimate

the lower dimension autocorrelation matrix which is then
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TABLE I
COMPLEX OPERATIONS OF THE JIDS.

Algorithm main steps Multiplications Additions

Computation of Al FDL2
v F (D − 1)L2

v

Estimation of Bl NBFDL2
v + FL2

v NBF (D − 1)L2
v + (NB − 1)FL2

v

Inversion of Bl O(FL3
v) O(FL3

v)
Computation of Fl FL3

v F (Lv − 1)L2
v

Eigenvalue decomposition O(FL3
v) O(FL3

v)

TABLE II
COMPLEX OPERATIONS OF THE JIDSB.

Algorithm main steps Multiplications Additions

Computation of Al FDL2
v F (D − 1)L2

v

Estimation of Bl NBFDL2
v + FL2

v NBF (D − 1)L2
v + (NB − 1)FL2

v

Inversion of Bl O(FL3
v) O(FL3

v)
Computation of tr(Fl) FL2

v F (L2
v − 1)

Computation of Fl L3
v (Lv − 1)L2

v

Eigenvalue decomposition O(L3
v) O(L3

v)
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Fig. 6. Comparison of the number of complex multiplications of the stage of
decimation pattern selection of the JIDS and JIDSB for Lv = F and Nit = 5.

inverted and used in the computation of the MVDR or the

MPDR filter. The rank of the PC-SMI algorithm is the number

of vectors used to form the subspace that is spanned by the

D eigenvectors associated with the D largest eigenvalues of

the estimated autocorrelation matrix R̂ [15]. The rank of the

CSM-SMI algorithm is the number of vectors used to form

the subspace that is spanned by the D eigenvectors of the

estimated autocorrelation matrix R̂ that maximize the cross

spectral metric [17]. The rank of the CG-MWF algorithm is the

number of basis vectors used to describe the Krylov subspace

of the estimated autocorrelation matrix R̂ [22]. The CG-MWF

algorithm converges to the MVDR or the MPDR result without

the need of inverting the estimated autocorrelation matrix R̂.

The rank of the JIDSB-SMI is ⌊M/F ⌋ = D, which is the

final length of the vectors after the dimensionality reduction

stage.

Tables III, IV, V and VI show step by step how the

JIDSB-SMI, PC-SMI, CSM-SMI and CG-MWF algorithms

implement the MVDR beamformer respectively.

TABLE III
JIDSB-SMI ALGORITHM

initialization R̂D(0) = 0D×D , F
S = Toeplitz(s(θ0))
JIDSB for dimensionality reduction
for l = 1, . . . , F

pl = l-th fixed decimation pattern,

Al = SHdiag(pl)S,

B̂l =
1

NB

∑NB
i=1 R

H(i)diag(pl)R(i),

where R(i) = Toeplitz(x(i))
end

l∗ = argmaxl
∑Lv

i=1 B
−1
l

(i, :)Al(:, 1),

F̂l∗ = B̂−1
l∗

Al∗

v = eigenvector associated with the largest eigenvalue of F̂l∗

V = Toeplitz(v)
D is constructed according to (13)

MVDR-SMI after dimensionality reduction stage
TD = DV
sD = TDs(θ0)

R̂D = 1
Ns

∑Ns
i=1 TDr(i)rH(i)TH

D = TDR̂TH
D

wD = R̂−1
D

sD/sHDR̂−1
D

sD

TABLE IV
PC-SMI MVDR ALGORITHM

initialization R̂(0) = 0M×M , DPC = D

R̂ = 1
Ns

∑Ns
i=1 x(i)x

H(i)

PC rank reduction
TPC = [φi . . . φDPC

]

φi = eigenvector associated with the i-th largest eigenvalue of R̂

MVDR-SMI after rank reduction stage

sPC = TH

PCs(θ0)

R̂PC = TH

PCR̂TPC

wPC = R̂−1
PC

sPC/s
H
PCR̂

−1
PC

sPC

A. SINR Loss Performance Comparison

We evaluate the SINR loss performance of the proposed

JIDSB-SMI algorithm and compare it with the performance

of the JIDS-SMI, PC-SMI, CSM-SMI and the CG-MWF

algorithm.

In these simulations we adopt a ULA consisting of M = 64
sensor elements whose inter-element spacing is half a signal

wavelength. The SOI is at 0o. We simulate two scenarios
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TABLE V
CSM-SMI MVDR ALGORITHM

initialization R̂(0) = 0M×M , DCSM = D

R̂ = 1
Ns

∑Ns
i=1 x(i)x

H(i)

CSM rank reduction
TCSM = [φi . . . φDCSM

]
φi = eigenvector associated with the i-th largest Sj

Sj =
φH
j s(θ0)

λj
, j ∈ [1, . . . ,M ]

φj = eigenvector associated with the j-th eigenvalue λj of R̂

MVDR-SMI after rank reduction stage

sCSM = TH

CSMs(θ0)

R̂CSM = TH

CSMR̂TCSM

wCSM = R̂−1
CSM

sCSM/sHCSMR̂−1
CSM

sCSM

TABLE VI
CG-MWF ALGORITHM

initialization u1 = −g0 = s(θ0), γ0 = ‖g0‖
2, w0 = 0M×1, K = D

R̂ = 1
Ns

∑Ns
i=1 x(i)x

H(i)

CG-MWF
for each iteration k = 1, . . . ,K

vk = R̂uk

ηk =
γk−1

uH
k

vk

wk = wk−1 + ηkuk

gk = gk−1 + ηkvk

γk = ‖gk‖
2

uk+1(i) = −gk(i) +
γk−1

γk
uk

Output:

wCG-MWF = wK

sH (θ0)wK

and compare the algorithms SINR loss for different sample

supports. In the first scenario, there are two narrowband

jammers impinging at angles 30o and 50o and in the second

scenario, there are 6 narrowband jammers impinging at angles

−65o, −40o, −25o, 30o, 45o and 60o . Each jammer has a

JNR of 15 dB.

For both scenarios, we examine the case when the amount

of diagonal loading is set to γ = σ2
n in (9), just in order

to avoid computational instabilities in the algorithms and the

case when the diagonal loading is set to γ = 10σ2
n, which is

empirically shown in [34] to be a suitable value. We compare

the latter case using two different detection filters: the MVDR,

when the desired signal is not present during estimation of the

autocorrelation matrix and the MPDR, when the desired signal

is present during the estimation of the autocorrelation matrix

and the SOI SNR equals 10 dB.

For all simulations the JIDS and JIDSB had equivalent

performances, as expected, so in the following we will mention

only the JIDSB for brevity. The mean SINR loss is defined as

LSINR = SINR/SNR0, with SNR0 = sH(θ0)R
−1s(θ0), where

R is the true autocorrelation matrix of noise and interference.

The SINR is computed as

SINR =
σ2
0E

{
|wHTs(θ0)|2

}

E {wHTRTHw} , (65)

where w is the beamforming filter, T is the dimensionality

reduction transformation (applied when necessary) and the

expectation, E{·}, is computed by averaging 200 Montecarlo

runs. Figs 7 and 10 show the SINR loss vs. sample support

with a diagonal loading of σ2
n. We can see that the JIDSB
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had an expressive superior performance compared to full rank

MVDR-SMI, CG-MWF, CSM-SMI and PC-SMI algorithms.

Figs. 8 and 11 show the SINR loss vs. sample support with

a diagonal loading of 10σ2
n. As expected, all the algorithms

improved their convergence rate when compared to the case of

a diagonal loading of σ2
n depicted in Figs 7 and 10. But, even

with the considerable improvement of the full rank MVDR-

SMI and CG-MWF, the proposed JIDSB still had similar

performance.

Next, we examine the effect of the presence of the desired

signal in the observed data during estimation of the autocor-

relation matrix. Figs 9 and 12 show how the performance is

affected by the self-nulling when the MPDR detection filter is

applied. As expected, for a high SNR such as 10 dB, there is

a large degradation in the performance of all algorithms. Still,

the JIDSB performed better than all the others algorithms.

It should be stressed that in Fig. 9 the JIDSB showed an

impressive superior performance.

Finally, we evaluate the SINR loss performance vs. number

of antennas for all the algorithms considered, for a sample
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Fig. 13. Output SINR loss versus number of antennas for different algorithms
for sample support Ns = 150, 2 jammers with JNR = 15 dB.

support of 150 snapshots and two jammers. As can be seen

from Fig. 13, as the number of antennas M grows (and

consequently the dimensionality of the snapshot increases), the

SINR loss performances of the CSM-SMI and the PC-SMI

algorithms degrade rather abruptly. Still, the CG-MWF and

JIDSB algorithms exhibit only a slight degradation in SINR

loss performance.

B. Computational Complexity Comparison

Table VII shows the number of complex operations needed

to complete all the steps described in tables III, IV, V and

VI for the algorithms considered. We used the power method

(cf Section IV-D) in order to find the eigenvector associated

with the largest eigenvalue of a N ×N matrix; the number of

iterations Nit = 5. In order to compute the inverse of a N×N
matrix we used the Gauss-Jordan method that takes 2N3/6+
3N2/6− 5N/6 complex multiplications and additions.

Fig. 14 depicts a comparison of the number of complex

multiplications computed by the different algorithms for the
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TABLE VII
COMPLEX OPERATIONS OF THE JIDSB-SMI, PC-SMI, CSM-SMI AND CG-MWF ALGORITHMS.

Algorithm Multiplications Additions

(Ns + 1)DM +D2(Ns + 2) + 2D NsD(M − 1) +NsD2 +D(M − 1)− 1
+2D3/6 + 3D2/6− 5D/6 +2D3/6 + 3D2/6− 5D/6

JIDSB-SMI +FDL2
v(1 +NB) + L2

v(2F +Nit) + L3
v +FDL2

v(1 +NB)− L2
v(F + 1)− F +NitLv(Lv − 1)

+2FL3
v/6 + 3FL2

v/6− 5FLv/6 +L3
v + 2FL3

v/6 + 3FL2
v/6− 5FLv/6

(Ns + 1)M2 +DPCNitM
2 + (1 +M)(MDPC +D2

PC) (Ns − 1)M2 +DPC(M − 1)(NitM +M +DPC + 1)
PC-SMI +2DPC + 2D3

PC/6 + 3D2
PC/6− 5DPC/6 +D2

PC − 1 + 2D3
PC/6 + 3D2

PC/6− 5DPC/6
(Ns + 1)M2 +NitM

3 (Ns − 1)M2 + (M − 1)(1 +DCSM)(M +DCSM)− 1
CSM-SMI +(M + 1)(M +MDCSM +D2

CSM) +Nit(M − 1)M2 +D2
CSM + 2D3

CSM/6
+2DCSM + 2D3

CSM/6 + 3D2
CSM/6− 5DCSM/6 +3D2

CSM/6− 5DCSM/6
CG-MWF (Ns + 1)M2 +DMWF(M2 + 5M + 2) + 4M M2(Ns − 1) +DMWF(M2 + 4M − 2) + 2(M − 1)

Fig. 14. Comparison of the number of complex multiplications in logarithmic
scale for different algorithms for M = 64.

two scenarios considered in section V-A, according to Table

VII. Analysing Fig. 14 in light of figs. 7, 8, 9, 10, 11 and

12, it can be seen that the superior SINR loss performance of

the JISDB compared to the others algorithms does not come

at the expense of increased computational complexity. Indeed,

the JIDSB performs better than the CSM-SMI and the PC-SMI

algorithms and still has lower computational complexity.

Even for the considerable performance improvement of

the CG-MWF in the case of diagonal loading, the proposed

JIDSB still had similar performance, with a significantly lower

computational complexity than the CG-MWF for the case

of Fig. 11 (L=F=2) and a lower computational complexity

than the CG-MWF for smaller sample support and similar

computational complexity as the CG-MWF for larger sample

support for the case of Fig. 8 (L=F=8), as can be verified in

Fig. 14.

Since the main contender of the JIDSB in terms of SINR

loss performance is the CG-MWF, in Fig. 15 we further

compare the computational complexity of the JIDSB algorithm

with the CG-MWF for different decimation factors F , vs.

different sizes of sample support Ns. The number of snapshots

NB used to estimate Bl ∈ C
Lv×Lv is the total number of

snapshots available, NB = Ns. We note from Fig. 15 that

the JIDSB has a remarkably smaller computational complexity

than the CG-MWF for factors F = 2 and F = 4. For F = 8,

Fig. 15. Comparison of the number of complex multiplications of the
JIDSB with the CG-MWF as a function of the sample support, Ns, for
F = {2, 4, 8, 16}, M = 64, Nit = 5, DMWF = 30 and NB = Ns.

the complexity is notably lower for smaller sample support and

it is almost the same as the computational complexity of the

CG-MWF for larger sample support. For F = 16, the JIDSB

has a significantly increased computational complexity, that is

because for this pair of array size M and factor F , the JIDSB

pre-processing steps take place in a not so reduced subspace,

thus increasing significantly the computational complexity.

C. Beampattern Comparison

Fig. 16 depicts the adapted beampattern of all algorithms

with the configuration that led to the results in Fig. 11 with

a sample support of 200 snapshots. The arrows indicate the

positions of the jammers. All curves were averaged over 200

Montecarlo runs. From Fig. 16, we can see that all algorithms

were able to set deep nulls at the jammers position. Moreover,

the JIDSB beampattern follows more closely the beampatterns

obtained by the CG-MWF and the full rank MVDR-SMI,

which is in good agreement with the SINR loss performance

behaviour depicted in Fig. 11.

D. BER Performance Comparison

Fig. 17 illustrates the application of the sensor array for a

communication system and depicts the BER, for all algorithms

for a small sample support. The system model is as described
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Fig. 16. Adapted beampattern for different algorithms for sample support
Ns = 200, M = 64 and 6 jammers with JNR = 15 dB.

in (1) and the scenario is again the same related to Fig.

11. The simulated desired signal, b0, represents a symbol

of a Quadrature Phase Shift Keying (QPSK) constellation

with power σ2
0 = E[||b0||2] and impinges on the array from

direction θ0 = 0o. The outputs of the beamformer filters, z(i)
as in (4) and zD(i) as in (11), are fed to a minimum-distance

QPSK detector, which is the optimal detector for gaussian

channels.

Since noise and jammers are modeled as independent com-

plex gaussian random vectors, it is possible to compute semi-

analytically the error bit probability, P(e), as

P(e) = E [P (e|SINR(w))] , (66)

which can be estimated by the average

BER =
1

Np

Np∑

i=1

P (e|SINR(wi)) , (67)

where

P(e|SINR(wi)) = Q
(√

SINR(wi)
)

, (68)

with

Q (α) =

∫
∞

α

1√
2π

e
−t2

2 dt, (69)

and

SINR(wi) =
σ2
0 ||wH

i Tis(θ0)||2
wH

i TiRTH
i wi

, (70)

where wi and Ti are the detection filter and the dimensionality

reduction transformation obtained in the i-th simulation run

and R is the autocorrelation matrix of the noise and interfer-

ence. Fig. 17 depict the semi-analytical BER of the described

QPSK system using Np = 1000 for a sample support of

20. In the horizontal axis we show the SNR based on the

reference detection SNR of the optimal full rank case without

interference, given as

SNR = 10 log10

(
σ2
0

σ2
n

||s(θ0)||2
)

= 10 log10

(
Mσ2

0

σ2
n

)

. (71)

SNR
9 10 11 12 13 14 15 16 17 18 19

B
E

R

10-6

10-4

10-2

Sample Support = 20

JIDSB L=F=2, rank = 32
PC rank = 50
CSM rank = 30
CG-MWF rank = 30
Full Rank MVDR-SMI

Fig. 17. Semi-analytical BER for different algorithms for sample support
Ns = 20, M = 64, 6 jammers with JNR = 15 dB.

We can see that the JIDSB performance is slightly better than

the full rank MVDR-SMI and CG-MWF, that is because the

mean SINR for that scenario, with a sample support of only

20 snapshots is slightly better for the JIDSB than for the CG-

MWF.

VI. CONCLUSION

We reported the JIDS dimensionality reduction technique.

The JIDS algorithm achieves dimensionality reduction by

means of a joint interpolation and decimation scheme. The

JIDS strategy design is an elegant and effective way to obtain

the joint interpolation filter and decimation pattern, taking

advantage of the correlation generated by the interpolation

filter in order to eliminate samples and still achieve a high

SINR after the decimation stage. We stress that the design

is such that the interpolator filter maximizes the SINR at the

output of the decimation stage, irrespective of the final appli-

cation filter. We also proposed the JIDSB algorithm, which is

a specialized version of the JIDS technique for beamforming

with new proposed simplification procedures that resulted from

analysis of the combination of the beamforming system model

with the JIDS structure. The JIDSB has reduced number

of operations and complexity in comparison with the JIDS,

without degrading its performance.

We presented performance results in terms of SINR loss vs.

sample support applying the MVDR filter with and without

diagonal loading and the MPDR filter with diagonal loading.

We could see the superiority of the JIDSB-SMI in terms of

SINR loss performance for the MPDR filter and for the MVDR

filter without diagonal loading. In the case of the MVDR filter

with diagonal loading the JIDSB had similar performance as

the full rank MVDR-SMI and CG-MWF, with an impressive

lower computational complexity specially for small sample

supports.

In our understanding, the proposed JIDSB algorithm shows

considerable advantages in beamforming scenarios. It is an

inherently robust method, it has similar or superior SINR loss

performance than the full rank MVDR-SMI and CG-MWF,
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lower computational complexity and it reduces significantly

the length of the processed data.
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