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GTDM-CSAT: an LTE-U self Coexistence Solution
based on Game Theory and Reinforcement Learning
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Abstract—There is substantial literature covering both
problems and solutions related to the operation of Long Term
Evolution (LTE) networks in unlicensed spectrum (LTE-U) while
in coexistence with other technologies, such as Wi-Fi. However,
a seldom explored scenario is the coexistence between multiple
LTE-U networks. Within this scenario, a big issue is establishing
optimal configurations that take into account fairness among
different operators coexisting in the same unlicensed spectrum
coverage area. Solutions to this problem could, for instance, react
to changes in the environment by "tuning" different system
configurations. We propose a game theoretical reinforcement
learning algorithm, called GTDM-CSAT, aiming to maximize
the LTE-U aggregated throughput while keeping channel access
fairness among different access points. GTDM-CSAT uses the
relative data rate offered by the system to adapt the LTE-U
ON-OFF time. For this, we formulate the problem as a
Markovian game, where the LTE-U operators coexist on a
two-zero-sum game. The solution for the best ON-OFF time ratio
is defined by applying a modified Minimax Q-learning algorithm
for finding the game equilibrium. We perform simulations
following 3GPP specifications using the ns-3 simulator for
evaluating GTDM-CSAT under different traffic load scenarios.
Results indicate gains in the system aggregated throughput by
improving the individual data rate of each operator.

Index Terms—Markovian Games, LTE-U, Minimax
Q-learning.

I. INTRODUCTION

The demand for solutions enabling the coexistence between
different broadband wireless access systems in the same
unlicensed spectrum bands has crystallized into multiple
existing standardized solutions. For instance, 3rd Generation
Partnership Project (3GPP) Release 13 introduced the
Licensed-Assisted Access (LAA), enabling LTE to coexist
with legacy systems in 5 GHz ISM bands by means of a
Wi-Fi-like channel access mechanism named Listen Before
Talking (LTE-LBT) [1]. Also, LTE-U (LTE-Unlicensed) is an
industry standard [2], [3] based on the continuous interleaved
switch of LTE ON-OFF operation within a duty-cycle period.
There are also other LTE/Wi-Fi coexistence standards, such
as 3GPP’s LTE Wi-Fi Aggregation (LTE-LWA) [4] and
MuLTEFire [5]. As government initiatives, LTE over Citizen
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Broadband Radio Service (CBRS) [6] allows operation of LTE
access networks over the 3.5 GHz spectrum band in the United
States (US), while the so-called whitespaces spectrum’ [7] is
being regulated in some countries for utilization by unlicensed
devices within a determined geographical region.

Most of recent research related to LTE-U/Wi-Fi
coexistence [8]–[11] is based on Wi-Fi Alliance’s draft
on test procedures for Wi-Fi/LTE-U coexistence [12]. These
works provide different means for controlling the ON-OFF
ratio time of the duty-cycle of LTE-U, aiming to evaluate
the achieved LTE-U/Wi-Fi combined throughput. A common
assumption in these studies is the constant interference profile,
an unrealistic condition given that offered traffic variation
is not only a common situation in contemporary systems,
but is determinant for the performance of any coexistence
strategy. There are solutions that take such dynamic traffic
conditions under consideration, such as Carrier-Sensing
Adaptive Transmission (CSAT) [3], a Qualcomm solution
for LTE-U that senses the medium for a long period for
coexisting network activity, and adapts LTE transmission
duration proportionally. In our previous works [13]–[15], we
present and discuss the problems and solutions related to
the operation of LTE networks in the unlicensed spectrum,
especially the coexistence with Wi-Fi. However, there is
scarce literature on the coexistence between multiple LTE-U
networks, an expected scenario given the spectrum scarcity
faced by some operators, and one which we believe needs to
be properly addressed.

In this work we propose a novel strategy for the
LTE-U/LTE-U coexistence, called Game Theory Decision
Making for Carrier-Sensing Adaptive Transmission
(GTDM-CSAT). GTDM-CSAT adaptation to varying
traffic conditions is applied over the duty-cycle period,
varying when each coexisting LTE network transmits or
shuts down for a defined period. This problem is formulated
by a Markovian Game where these two operators are in
coexistence, and a two-zero-sum-game model is taken into
account. The main goal is to find an optimal ON-OFF time
ratio leading the modeled game to an equilibrium, using the
aggregated LTE-U/Wi-Fi throughput as the target parameter.

This paper is organized as follows. Section II reviews
the literature on Wi-Fi/LTE coexistence domain, as well
as works applying game theory to this problem. We then
introduce the concept of stochastic games and define the
Minimax Q-Learning method on Section III, while the LTE-U
self-coexistence problem is presented as a stochastic game in
Section IV. The proposed GTDM-CSAT algorithm, as well
as its input parameters, is presented in Section V, with the
system modeling described in Section VI and the evaluation
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scenario presented in Section VII, where some simulations
evidence the need for adaptive adjust of the OFF time of
LTE-U. Finally, GTDM-CSAT evaluation results are presented
and discussed in the Section VIII, followed by final remarks
and future investigations in the Section IX.

II. RELATED WORKS

This section reviews literature related to optimization
of parameters for coexistence in the unlicensed spectrum,
highlighting the contributions from our proposed solution.

A. LTE/WiFi Coexistence performance

Wi-Fi/LTE-LAA coexistence was modeled and analyzed
using Markov chain in [16], specifically addressing the time
domain interference profile. In [17], the authors propose
an analytical model for LTE-LAA and its coexistence
related features, as well as valuable recommendations about
LTE-LAA and Wi-Fi performance analysis. Technical details
on LTE-LAA physical layer, channel design and multicarrier
operation in unlicensed spectrum are presented in [18].

In [19], using a Monte Carlo approach, the authors establish
a novel metric for numerically demonstrating the Wi-Fi/LTE-U
medium access sharing fairness, based on Wi-Fi performance
loss ratio and LTE-U duty-cycle rate. In [20], the authors
propose an analytical model to compute the probability of
collision faced by Wi-Fi, and estimate its downlink throughput
performance while coexisting with LTE-U. They also run
ns-3 network simulations to validate their model accuracy
estimation.

In [21], the authors address the LTE-U/Wi-Fi coexistence
problem as an optimization of the LTE-U channel access
probability. They propose a new proportional fair allocation
scheme, based on equal channel times to every competing
entity including idle periods, successful transmissions and
collisions for the WiFi network. In [22], the authors use
stochastic geometry to model and analyze the coexistence
performance of Wi-Fi/LTE-U in a multi-RAT network. The
coverage probability and spatial throughput of Wi-Fi and
LTE-U are derived, as well as a simple expression for the
Wi-Fi retention probability, revealing how the density of
Wi-Fi/LTE-U affect the retention probability of Wi-Fi.

Practical measurements of LTE-U and Wi-Fi coexistence in
different indoor scenarios are presented in [23], showing the
LTE-U impact over Wi-Fi throughput and latency performance
considering a full-buffer traffic scenario with different LTE-U
duty-cycles. Results showed that, depending on the duty-cycle
value, LTE-U disproportionally damages Wi-Fi throughput and
degrades real-time Wi-Fi communications in a way that would
likely be irritating to Wi-Fi users. The authors also highlight
the need for an open and collaborative R&D for finding a more
fair LTE-U approach just like 3GPP LAA solution.

Performance evaluation for LTE-LAA/Wi-Fi coexistence in
dense deployment scenarios is presented in [24]–[28]. The
results for low/moderate traffic loads evidence that LTE-LAA
is a better neighbor for Wi-Fi even when compared to the
scenario with two coexisting Wi-Fi systems. In one hand,
Wi-Fi experiences meaningful performance degradation when

coexists with LTE-LAA in dense deployment and heavy
traffic load scenarios. However, comparing the coexistence
of identical technology in [28], the LTE-LAA/LTE-LAA
combination is more robust to interference than Wi-Fi/Wi-Fi
one.

An adaptive LTE-LAA scheme presented in [29] claims
a harmonious coexistence and fair spectrum sharing among
LTE-LAA and Wi-Fi. This scheme uses a variable LTE
transmission opportunity (TXOP) followed by a variable
muting period, similar to CSAT. This way, besides LBT
feature, co-located Wi-Fi networks can also exploit the muting
period (like LTE-U) to gain access to the wireless medium.
The results also show a strong dependency of parameters
configuration, but the proposed scheme can significantly
improve the coexistence among LTE-LBT and Wi-Fi in a
fair manner. Once again, the authors of [27] affirm that
Listen-Before-Talking mechanism itself is not enough to
provide a fair coexistence, and it is necessary a constant
parameter adjustment, suggesting that artificial intelligence
techniques could be analyzed and deployed.

B. Game Theory

Several works have applied game theory to solving
telecommunication problems related to resource allocation in
standalone and coexistence scenarios.

The authors in [30] surveyed game theory-based solutions
for LTE-A radio resource allocation, discussing the fair
spectral sharing. They propose to fill some gaps in the
literature by presenting detailed techniques that can improve
efficiency in the spectrum utilization. In [31], the authors
propose a two-level scheme for resource allocation, based on
cooperative game theory. In the first level, finite resources
are allocated in classes, and a Nucleolus game approach is
proposed for seeking fairness for an inter-class distribution.
By the second level, the authors suggest a proportional fair
algorithm aiming an intra-class resource distribution.

When it comes Wi-Fi spectrum sharing, the work presented
in [32] proposes a game theory model based on interactions
among Wi-Fi devices and channel usage. Their objective is to
improve efficiency on the channel access control for coexisting
Wi-Fi APs in unlicensed spectrum bands.

In [33], a coalition game is proposed for access point
(AP) selection in a LTE-U and Wi-Fi coexistence scenario.
The users with diverse traffic demand are capable of
accessing either LTE-U or Wi-Fi, and they operate based
on the proposed coalition formation game. Simulations were
performed using ns-3 network simulator, and the results
demonstrate a considerable increase at the overall throughput
of LTE-U and Wi-Fi that outperforms the standalone cases.

In [34], another coalition game-based solution is proposed
for LTE-LAA and Wi-Fi coexistence. The use of time
resources, via almost blank subframe (ABS), and the traffic
offloading are taken into account for a Shapley fairness game.
Simulations show that resource allocation using this approach
can sure present better fairness.

Multi-game approach for LTE-U and Wi-Fi coexistence
is proposed in [35], [36]. In [35] the authors propose
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a framework where dynamic channel selection and
inter-operator spectrum sharing are modeled as distinct games
for resource allocation. Taking this method into account, the
paper show, by simulation results, that sum-throughput for
LTE-U is higher when compared with LBT.

In [36] the multi-game framework proposed uses Nash
bargaining game (NBG) for sharing time resources in
unlicensed bands for LTE-U and Wi-Fi. Internally, the LTE-U
uses a bankrupt game for its resource allocation. The major
conclusion of this work states that using this method in a dense
deployment scenario the Wi-Fi is less damaged by LTE-U
when compared with LTE-LBT.

Finally, in [37] the game theory approach for spectrum
sharing problem in LTE-U and Wi-fi coexistence is combined
with decision tree method. The results show improvements in
throughput and spectrum efficiency keeping the traffic load
balanced and guarantying fairness.

C. Q-learning

In [38], a technique named double Q-learning for
coexistence among LAA and Wi-Fi is devised. This solution
is based on DTX (Discontinuous Transmissions), and TPC
(Transmit Power Control) applied for channel selection, which
leads to an improved LAA and Wi-Fi coexistence. In [39],
Q-learning is also used for LAA channel selection in a
3GPP indoor coexistence scenario. The author also proposes
a game theoretical solution and compare its performance
with Q-learning. As for DC-based solutions, a Q-learning
solution is proposed in [40] for dynamic duty-cycle selection
in co-channel LTE-U/Wi-Fi situations, with results indicating
an enhancement on maximum capacity considering FTP as the
offered traffic.

According to our state-of-the-art findings, we point out
that although there are several papers exploring game theory
applied in the coexistence domain, few are the ones that take
into account the LTE-U/LTE-U coexistence case. In fact, the
LTE-U Forum itself, in [41], assumed that for multi-operator
LTE-U deployment scenario, the LTE-U APs would perform
channel selection. However, since there are a limited number
of channels in the ISM spectrum, the probability of two LTE-U
small cells sharing the same unlicensed channel is very high,
especially in a dense deployment scenario. Hence, our work
proposes a novel solution for the co-channel LTE-U/LTE-U
coexistence problem, filling a gap we believe exists for this
scenario. In particular, we apply game theory (suitable to
model the competition of limited resources), and reinforcement
learning techniques (convenient to dynamic decision-making
problems), as meticulously described in this section.

III. STOCHASTIC GAMES

In reinforcement learning, a Markov Decision Process
(MDP) formalization [42] is a method for modeling a single
adaptive agent that interacts with an environment characterized
by a probabilistic transition function. The MDP is defined by
(a) a set of S states, (b) a set of A actions, (c) a transition
probability function, T : S × A → [0, 1], and (d) a reward
function, R : S × A → <, that represents the effects of

each action on the state environment. The goal is to maximize
the agent’s reward by finding a policy function µ : S → A
providing the optimal action decision for each state. As for
secondary agents according to MDP perspective, they are
modeled as part of the environment, with some fixed behavior.

By extending MDP via the use of stochastic games [43],
also called Markov games, it is possible to model dynamic
interactions that change the environment in response to each
player action. In other words, stochastic games expand the
MDP approach to include multiple adaptive agents with
interacting or competing goals.

In its general form, an N-player stochastic game is defined
by a set of states (games), S, and a collection of action
sets, {A1, A2, ..., AN }, one for each agent of the environment.
The state transition probability function and reward function
for each agent are defined, respectively, by T : S × A1 × A2 ×
... × AN → [0, 1] and R : S × A1 × A2 × ... × AN →<. The
overall goal is to find an optimal strategy that maximizes the
reward of each and all agents.

This paper considers a special case of a stochastic game,
where there are two agents in the environment competing for
resources such that one agent gain necessary implies a same
amount of loss to its opponent. This diametrical perspective,
called two-player zero-sum stochastic game, allows us to use a
single reward function that each agent tries to maximize itself.

Following this approach, each player state transitions are
controlled by their current state, action, and the corresponding
opponent action. For that, we can define Ti(s, a, o) as the
probability function of transition to state s given that the
player i takes the action a while his opponent takes the
action o.

A. Solving Two-Player Zero-Sum Stochastic Game

Solving an MDP means finding an optimal policy that
maximizes the sum of rewards received from the environment.
A naive approach for that solution consists of enumerating
and evaluating all possibles policies and return the best
one, however, the total number of policies is an exponential
function of the number of states and the number of
actions [44].

An alternative approach to finding the best policy is through
Bellman’s equation [45]. According to Richard Bellman’s
principle of optimality [46], an optimal policy has the property
that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision. Hence,
we can break the MDP problem into sub-problems, reducing
the complexity to a polynomial function of the number of
states and the number of actions [45]. Bellman’s dynamic
programming is elegant. However, its development assumes
the availability of an explicit model that encompasses the
transition probability from one state to another. Unfortunately,
in practical situations, such a model is not available.

We can cope with this issue by applying the Q-learning [47],
a model-free reinforcement learning algorithm. The
Q-Learning formulation is based on a Q function, updated
whenever it receives a reward of r from a state transition after
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the agent takes a certain action a from a finite set of actions A.
Hence, denoting the agent’s decision time steps as t, the
function Qt is updated at the next decision time, t + 1, when
a reward, r , is observed for a state transition from st to st+1
after taking an action at , as shown by equation 1:

Qt+1(st, at ) ← (1 − α)Qt (st, at ) + α
[
r + γmax

a∈A
Qt (st+1, a)

]
(1)

where α and γ are the learning rate and the discount factor,
respectively. Indicating the effect of the future reward to the
current state [45]. The goal is to decide the optimal action at
the current state st as:

a∗ = arg max
a∈A

Qt (st, a) (2)

According to the Q-learning convergence proof [48],
Q-learning converges to the optimum action-values with 100%
probability, so long as all actions are repeatedly sampled
in all states and the action-values are represented discretely
under reasonable conditions on the Markovian environment.
So, through experience (i.e., trial-and-error interactions with
the dynamic environment), the agent is capable to find a policy
indicating what action maximizes rewards under any given
circumstances. For this reason, Q-Learning is highly suited for
solving Markov decision problems without explicit knowledge
of the transition probabilities [45].

However, Q-Learning itself is not able to solve stochastic
games, since secondary opponents behavior is accounted for
just as part of the environment. In fact, two or more interacting
Q-Learning agents, in a certain competitive situation, could
provide either low or unfair performance between them [49].

In [50], Michael L. Littman proposes a new algorithm that
widens Q-Learning technique for solving stochastic games,
specifically two-player zero-sum stochastic games, called
Minimax Q-Learning. This solution is a combination of the
Q-Learning and linear programming to a single matrix game,
providing an optimal solution for any fully competitive game,
where two players have opposite goals and reward functions.

Hence, considering a finite set of predefined states S and
actions A, the goal is to define for each player i a function
V i(s) to be the expected reward for an optimal deterministic
policy starting from a state s ∈ S, and Qi(s, a, o) as the
expected reward for taking the action a when the opponent
chooses the action o from the state s, and continuing optimally
thereafter, as shown by Equations (3) and (4).

V i(s) = max
a∈A

min
o∈A

Qi(s, a, o) (3)

Qi(s, a, o) = Ri(s, a, o) + γ
∑
s′∈S

T(s, a, o)V i(s′) (4)

Then, for every state transition from s to s′, we can treat
the Qi(s, a, o) values as immediate payoffs in an unrelated
sequence of matrix games (one for each state, s), each of
which can be solved optimally using a similar Q-Learning
technique, as shown by equation (5).

Qi(s, a, o)
α
←− r + γmax

a′∈A
min
o′∈A

Qi(s′, a′, o′) (5)

In [51], the authors demonstrate that this Minimax
Q-Learning holds essential properties of the standard
Q-Learning, including:
• Policies can be computed independently;
• The Q function is enough to specify the policy function;
• Value iteration methods can be applied, and they

guarantee convergence;
• There’s a unique optimal solution;
• It converges to the Nash equilibrium under certain

conditions.
The strength of the minimax criterion is that it allows the

agent to converge to a fixed strategy that is guaranteed to be
safe in the sense it does as well as possible against the worst
possible opponent. A convergence proof for that algorithm was
provided subsequently by Littman and Szepesvari in [52].

IV. LTE-U SELF-COEXISTENCE PROBLEM MODELING

In a situation of two coexisting LTE-U operators (herein
named Operator 1 and Operator 2), their channel access
profiles will behave similarly as illustrated in Figure 1.
Basically, for each fixed time window defined by the
Almost-Blank-Subframe (TABS), both operators determine a
certain time for starting transmitting (Tstart ) and stopping
transmitting (Tstop), thus providing a total duration time
of continuous operation (Ton) and inactivity (Tof f ). As a
consequence, both systems are susceptible to either a certain
collision period (Tc) or IDLE channel period (TIDLE ), causing
network efficiency loss.

Fig. 1. Channel access profile of two competing LTE-U operators.

Assuming ∀k , k ′, and k, k ′ ∈ [1, 2], according to
Figure 1, we can also analytically infer that:

Tonk + Tof fk = TABS (6)

Tonk′ + Tof fk′ = TABS (7)

Tonk = Tstopk − Tstartk (8)
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Tonk′ = Tstopk′ − Tstartk′ (9)

Tc = Tstopk − Tstartk′ (10)

For an efficient collision-free transmission, where
Tc = TIDLE = 0, we have:

Tstopk = Tstartk′ (11)

TABS = Tstopk′ − Tstartk (12)

Hence, replacing Equations (8) and (11) in (6), we have:

Tof fk = TABS − Tonk (13)
= TABS − (Tstopk − Tstartk ) (14)
= TABS − (Tstartk′ − Tstartk ) (15)

Replacing Equation (12) in (15):

Tof fk = Tstopk′ − Tstartk − (Tstartk′ + Tstartk ) (16)
= Tstopk′ − Tstartk′ (17)

Therefore, according to Equations (9) and (17), the
following identity can be obtained:

Tof fk = Tonk′ (18)

In other words, when it comes in time resource management
for two competing LTE-U, the gain of an operator implies
the same amount of loss for its opponent, thus as stated by
two-person zero-sum game modeling.

V. GTDM-CSAT SOLUTION PROPOSAL

This section presents the configuration of Minimax
Q-learning algorithm for GTDM-CSAT. First of all, we need
to clearly define what constitutes the Agent. After that, we
define the Q-learning process, with three main variables:
• The system’s states;
• The actions that the agent and its opponent can perform;
• The reward from the environment.
In order to provide a simple approach suitable in practical

situations, we propose the following Minimax-Q-learning
framework:

1) The agents represent two LTE-U APs (Operators A
and B), subject to mutual interference. GTDM-CSAT
algorithm is embedded in them, making both capable of
updating their OFF period within each 40 ms duty-cycle;

2) The actions that the agents can take are
established on a set of duty-cycle patterns
A = {20%, 30%, 50%, 60%, 80%}. Herein, a duty-cycle
pattern of 30% means that LTE-U gates off 70% of the
duty-cycle time and transmits in the rest of 40 ms;

3) The reward is given by the aggregated of each operator
transmitted data rate over its respective demanded data
rate:

TXLTEA

TXLTEAtotal

+
TXLTEB

TXLTEBtotal

, where

a) T XLTEA and T XLTEB are the transmitted link data
rates of the MCS scheme mapped from the current
Channel Quality Indicator (CQI) of each operator
LTE-U AP in accordance with the Adaptive
Modulation and Coding (AMC) described in [53],
[54].

b) T XLTEAtotal
and T XLTEBtotal

are the average
traffic data rates offered for each operator;

4) Therefore, the system’s states can be defined based on
the following thresholds:

S =


0, if 0 ≤ TXLTEA

TXLTEAtotal
+

TXLTEB

TXLTEB total
< 1

1, if 1 ≤ TXLTEA

TXLTEAtotal
+

TXLTEB

TXLTEB total
< 2

(19)

Within above-mentioned definitions, we proposed the
GTDM-CSAT based on the relative transmitted data rate of
each operator. In addition to the ease of obtaining it from
the PHY and MAC layers of LTE-U APs, this metric could
also provide an indication of channel usage fairness for
each operator. We claim this is a differential the proposed
GTDM-CSAT because, in the case of two LTE-U APs having
the same transmission data rate capabilities, this will not
always indicate the same channel access priority, as their
demanded data rate can vary.

Hence, the algorithm can work to maximize the system’s
aggregated data rate simultaneously keeping a fair channel
access priority between operators. Pseudo-code in Algorithm
1 illustrates the proposed Minimax-Q-Learning framework:

VI. SYSTEM MODELING

We model and evaluate the GTDM-CSAT in ns-3
simulator [55], an open-source network simulator based
on discrete events, developed especially for research and
educational purposes. The ns-3 is built upon C++, and it
complies to technical norms of standards organizations of
emerging networks like 3GPP, IEEE, and Wi-Fi Alliance. This
is the main reason for using ns-3 as a prototyping tool for the
performance analysis presented here.

LTE-U, LTE-LAA and Wi-Fi systems modeling, and their
corresponding coexistence are kept in a repository called
laa/ns-3-lbt [56], apart from the ns-3 main branch. The
code is part of a project funded by the Wi-Fi Alliance and
developed by the Centre Tecnològic de Telecomunicacions de
Catalunya (CTTC) and by the University of Washington [57].
The main improvements implemented by this project are:
(i) Wi-Fi’s CCA procedure; (ii) frame synchronization
modeling; (iii) AP selection modeling based on RRSI; (iv)
propagation and interference modeling; (v) MIMO modeling.
Two new LTE transmission models are available: (i) LTE-Duty
cycle (LTE-DC), the LTE-U; and (ii) LTE Listen Before
Talking (LTE-LBT), the 3GPP LTE-LAA. Additionally, some
evaluation scenarios defined in [58] are ready to use (e.g.,
indoor and outdoor). Then, we generate the results of this
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Algorithm 1: Minimax-Q-Learning algorithm for dynamic
duty-cycle selection of a LTE-U AP during self
coexistence.

1 Initialize
2 for s ∈ S, a, o ∈ A do
3 Start Q-Table with random Q-Values Q(s, a, o).
4 end
5 Estimate initial states s.
6 Learning:
7 Loop - for each agent:
8 Generate a random value r ∈ U(0, 1)
9 if r < ε then

10 Select an action a ∈ A randomly;
11 else
12 Select an action a ∈ A according to

max
a

min
o

Q(s, a, o);

13 end
14 Run a;
15 Take the immediate reward r , which

is
TXLTEA

TXLTEAtotal
+

TXLTEB

TXLTEB total
;

16 Observe the next state s′ ∈ S;
17 Update Q-table according to the expression:
18 Q(s, a, o)

α
←− r + γ ·max

a′∈A
min
o′∈A

Q(s′, a′, o′)

19 s = s′

20 end loop

paper by using a modified version of changeset 26 of
repository laa/ns-3-lbt [56] (ns-3-lbt-056f37aea269.tar.bz2).

The implemented LTE-U transmission model follows the
approach proposed in [2]. It takes advantage of the LTE
Almost Blank Subframe (ABS) functionality to disable LTE
transmissions in certain subframes. This component works
by specifying an ABS pattern within a duty-cycle period of
40 ms. The configuration is implemented with a bit-mask of 40
values (one per LTE subframe), thus conforming to the format
specified by 3GPP in [59]. Our contribution to the ns-3 code
is two-fold: (i) Specific codes in order to set the bit-mask as
well as to calculate the LTE-U AP transmitted data rate on
runtime basis; and (ii) The implementation of a Q-learning
algorithm to decide the suitable bit-mask.

VII. EVALUATION SCENARIO AND SYSTEM PARAMETERS

We evaluate the performance of LTE-U self-coexistence in
the first coexistence scenario defined by 3GPP in [58]. This
scenario is composed of two access points (LTE-U NodeBs) of
different operators, and two LTE-U User Equipments (UEs),
one of each operator, as shown in Figure 2.

Herein, although it is possible to configure the distance d2
(between operators) as well as the distance d1 (between the
LTE-U AP and the UE), both remain set to 10 m to model
a situation of high coexistence interference. The backhaul
generates UDP full buffer traffic in the downlink to the STAs.
We present the main simulation parameters in Table I.

Despite its simplicity, this scenario allows us to easily
control the overall system’s interference profile, thus enabling

Fig. 2. 3GPP Simple Coexistence Scenario [58].

TABLE I
SYSTEM MODELING PARAMETERS.

LTE Parameters (Release 8 - FDD )
Bandwidth 20 MHz - 100 PRBs
Carrier frequency 5 GHz
Link-to-system mapping Vienna LTE Simulator (MIESM)
Packet Scheduler Proportional Fair

CQI report Wideband CQI
(based on SINR) - 15 CQIs

ABS Pattern Duration 40 ms
Path loss and Shadow fading ITU InH
Multi-antenna Technology 2x2 MIMO (5dBi - Omnidirectional)
Tx Power 18 dBm
Traffic Model (DL only) UDP full-buffer

the exploration of the proposed solution under a set of different
network conditions.

VIII. RESULTS

As a means to evaluate the performance gains under
different Q-learning GTDM-CSAT learning parameters (α and
γ), the following investigation scenario is proposed:
• Both operators (LTE-U A and LTE-U B) start the

simulation with udpRate = 75 Mbps for a total simulation
time of 40 s;

• At 5 s, LTE-U B decreases its offered data rate (udpRate)
to 37.5 Mbps;

• At 10 s, LTE-U B decreases its udpRate to 18.75 Mbps;
• At 15 s, LTE-U B returns its udpRate to 75 Mbps, so

that both LTE-U A and LTE-U B operators reach the
same udpRate again;

• At 20 s, LTE-U A decreases its udpRate to 37.5 Mbps;
• At 25 s, LTE-U A decreases its udpRate to 18.75 Mbps;
• At 30 s, LTE-U A returns its udpRate to 75 Mbps, so

that both LTE-U A and LTE-U B operators reach the
same udpRate once again.

The goal is to analyze a static preliminary scenario where
one LTE-U operator deterministically changes its traffic rate,
thus requiring the other LTE-U operator adaptation to a new
interference profile. In this scenario, these changes encompass
the main possible traffic rate combinations during a simulation
time that allows up to 1000 state transitions. Besides, for every
traffic rate changing, a maximum aggregated throughput is
expected. Hence, based on this prior information, we linearly
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evaluate the impact of the learning rate, α, and the discount
factor, γ, in our simulation results, aiming to minimize the total
number of iterations the algorithm takes to reach the expected
aggregated throughput.

Following this perspective, we found that when α = 0.3
and γ = 0.9 the algorithm reaches the expected aggregated
throughput with an average of 15 iterations (40 ms each)
in the worst case, showing the behavior of the transmitted
data rate presented in Figure 3. This performance corroborates
with [39], which confirmed the rapid convergence of a solution
based on the stochastic game in comparison with traditional
Q-Learning.

Fig. 3. Investigative result of two LTE-U coexisting operators.

Other straight conclusions can be taken from Figure 3.
We can note that during the time interval from 5 s to

15 s, when LTE-U B decreased its udpRate, the LTE-U A
sequentially changed its duty-cycle pattern to increase its
transmission rate, then keeping the aggregated transmitted data
rate constant. The GTDM-CSAT transferred transmission time
from LTE-U B to LTE-U A, because of the lower udpRate
of LTE-U B. The same behavior is also observed during the
time interval from 20 s to 30 s, when LTE-U A decreased its
udpRate while LTE-U B sequentially increases its transmission
time, and consequently, its transmission rate.

Based on these promising results, we evaluate the
effectiveness of the GTDM-CSAT in the following scenario:
• Simulations of 100-second long with LTE-DC APs

randomly changing their udpRate;
• Initially, an LTE-U AP is randomly selected (A or B) to

chance its udpRate;
• After the operator is selected, each udpRate variation

follows a second uniform random variable to select one
of three possible udpRate values: 75 Mbps, 37.5 Mbps,
and 18.75 Mbps;

• A third uniform random variable defines for how long
the udpRate selected will remain, considering an interval
from 4 s to 7 s;

• The throughput (calculated in L3) is evaluated at the end
of the simulation.

Now, the goal is to analyze the GTDM-CSAT performance
compared to a fixed duty-cycle LTE-U solution in the same
condition. Figure 4 presents our performance results by bar
plots of received data throughput for some static duty-cycle
patterns and the GTDM-CSAT Minimax-Q-learning. Plots
from two operators are overlapped so that the aggregated
throughput could be visualized.

Fig. 4. Minimax-Q-Learning performance compared to a fixed duty-cycle
LTE-U in a random udpRate scenario.

As we can analyze from Figure 4, the GTDM-CSAT
Minimax-Q-Learning method provides the best aggregated
throughput performance (77 Mbps), which is around
12 Mbps higher than the best fixed duty-cycle performance
at dc = 0.5 (65 Mpbs). Furthermore, analyzing each
operator individually, we can note that, when operating
with Minimax-Q-Learning, LTE-U B achieved its maximum
throughput performance (43 Mbps), while LTE-U A
reaches 30 Mbps, which is very close to its maximum
throughput obtained at dc = 0.5 (32 Mbps). In other
words, the GTDM-CSAT Minimax-Q-Learning solution not
only maximized the aggregated throughput but also balanced
channel access priority among operators. This is an evident
consequence of maximizing the relative data rate as proposed
in section V, making possible to detect data rate demand of
each operator and effectively equalize the channel usage.

Enabling, however, multiple LTE-U APs coexistence, such
as a dense LTE-U deployment scenario, requires extending the
minimax criteria to a non-cooperative general-sum stochastic
game. The authors in [60] propose an interesting framework
for this, called Nash-Q-learning. This solution enables the
agents to perform learning updates based on assuming Nash
equilibrium behavior over their current Q-values, finding
each player optimal strategy toward Nash equilibrium for
each iteration. Nevertheless under the cost of exponential
complexity in the number of agents. We address analyzing
such a solution as a short-term future work perspective.

IX. CONCLUSION AND FUTURE INVESTIGATION

This work presented a game theory and reinforcement
learning solution, named GTDM-CSAT, for co-channel LTE-U
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self-coexistence problem in unlicensed spectrum. We first
modeled the problem as a Markov decision process and
then introduced a solution based on Minimax Q-Learning
algorithm. We implemented this solution in ns-3, an
open-source network simulator, and performed simulations
based on an official 3GPP scenario according to specifications
defined by Wi-Fi Alliance for coexistence in 5 GHz carrier
frequency. Results showed that the proposed solution provides
significant gains of aggregated throughput while still keeps a
fair resource sharing between operators.

Our next steps will be extending the GTDM-CSAT
solution for multiple operators and reproducing the simulations
in a dense deployment scenario, e.g., the 3GPP indoor
coexistence scenario defined in [58]. Furthermore, we also
intend to evaluate the GTDM-CSAT for other LTE coexistence
solutions, as LTE-LAA and LTE-LWA. The signaling for
changing coexistence information among LTE and Wi-Fi APs
is also our target for future works.
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