
JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 206

Name Popularity Algorithm: A Cache Replacement
Strategy for NDN Networks

Andrey Silva, Ivanes Araujo, Neiva Linder and Aldebaro Klautau

Abstract—An essential aspect of the network paradigm called
Named Data Networking (NDN) is that all nodes in the network
have the ability to cache contents natively. The focus of this work
relies on efficiently choosing which content should be removed
from a full cache to allow storing another one. We propose a
new caching replacement algorithm for NDN networks called
Name Popularity Algorithm (NPA). The proposed algorithm
adopts an extra table that takes into account a long time history
for the popularity of contents. Thus, when a data content is
removed from the cache, its popularity is not reset, improving
the cache usage of the network routers. The performance of NPA
is compared to well-known strategies in the literature through
NS-3/ndnSIM simulations. The results indicate that the proposed
algorithm overcomes others with lower end-to-end delay, higher
cache hit ratio and smaller hop count. Besides, our code is
available as open source to be accessible for other researchers
and to allow reproduction of the results.

Index Terms—NDN, Cache replacement, ndnSIM, ns-3.

I. INTRODUCTION

DUE to the growing demand for multimedia content,
forecasts indicate that approximately 78% of the traffic in

mobile networks will come from video applications by 2021,
while in 2016 it already represented 60% of mobile traffic [1].

To deal with this significant amount of media content it
is essential to create distributed caches as close as possible
to end-users [2]. This strategy helps to maintain traffic near
the access network while reducing the load on the core
network and improving the user experience since contents are
delivered more quickly and efficiently. Examples of current so-
lutions based on the cache are the Content Delivery Networks
(CDNs), which are a set of distributed servers that deliver
content copies to end-users [3].

With the Internet evolution, new demands for the network
emerged, such as support for scalable distribution of content,
mobility and security, among others [4]. These demands have
motivated the scientific community to investigate alternative
architectures for the Internet of the future. In this context, a
new emerging paradigm known as Information-Centric Net-
working (ICN) has emerged as a promising alternative. ICN
has distributed cache as its vital feature and it is expected to
improve the network performance by making content retrieval
based on names rather than by establishing an end-to-end
connection based on an IP address [5]. Hence, ICN enables

Andrey Silva, Ivanes Araujo and Aldebaro Klautau are with Federal
University of Pará. Belém-PA, Brazil. emails: andreysilva@ufpa.br, alde-
baro@ufpa.br, ivanes@ufpa.br.

Neiva Linder is with Ericsson Research, Kista, Sweden. email:
neiva.linder@ericsson.com.

Digital Object Identifier: 10.14209/jcis.2019.22

content caching on several intermediate network nodes (routers
for example). Therefore, the content can be easily identified
and sent to different users without the need to establish a
contact with a server (sometimes located far from the edge of
the network where the user is). Thus, this behavior can help
to reduce the latency and the chances of network bottlenecks.

A significant amount of research was dedicated to ICN,
which led to a wide range of architectures based on ICN
principles. Among them, we highlight the main ICN archi-
tectures according to [4]: Content Mediator Architecture for
Content-Aware Networks (COMET), Scalable and Adaptive
Internet Solutions (SAIL), Publish-Subscribe Internet Technol-
ogy (PURSUIT), Content-Centric Networking (CCN), Data-
Oriented Network Architecture (DONA), CONVERGENCE,
MobilityFirst and NDN.

Among the architectures cited above, there are two which
are prevailing among the competitors: CCN and NDN [6] [7].
Both architectures are leading the on-going effort in ICN stan-
dardization process being developed by the Internet research
task force (IRTF) information-centric networking research
group (ICNRG) [8]. NDN and CCN share the same high-
level design and their differences are restricted to specific
aspects such as packet format. Therefore, the comparison
against the competitors applied to NDN can be also applied to
CCN. The NDN/CCN architectures adopt hierarchical names
to identify the chunks (pieces of contents). In opposite, DONA
and MobilityFirst use flat-label IDs. In CONVERGENCE,
PURSUIT and SAIL, the entire content names, or part of them,
can be either hierarchical or flat.

Regarding the caching mechanism, all strategies use on-
path caching at content routers (the type of caching mecha-
nism can be deterministic or probabilistic). Off-path caching
requires additional routing information for NDN/CCN and/or
additional registration for MobilityFirst, COMET, SAIL, PUR-
SUIT and DONA. Off-path in COMET relies on unspecified
name resolution system.

Although these architectures are different, they all share the
following common features: request and response model, con-
tent location independence, content-oriented security model
and native cache [2]. The focus of this work relies on the NDN
architecture. Therefore, the reader interested in more details
about the others ICN architecures (e.g., DONA, SAIL, PUR-
SUIT, MobilityFirst, CONVERGENCE, COMET and CCN)
is referred to [4].

Similar to other ICN architectures, the NDN architecture
is mostly characterized by the exchange of two types of
packets: Interest and Data. Both carry a name that identifies
a content. In this manner, to retrieve content, a user will send



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 207

an interest packet to the network with the name of the desired
content. The routers will transmit it until it finds a node that
contains the requested content, or until it reaches the node that
produces it. The node (intermediate or producer) will return
the requested data following the reverse path of the interest
packet until it reaches the user.

Each NDN node consists of three main structures: Content
Store (CS), Forwarding Information Base (FIB) and Pending
Interest Table (PIT). The FIB structure can be defined as the
NDN forwarding table, responsible for maintaining the prefix
of a content name and the next node to which an interest packet
should be forwarded. When receiving an interest packet, if a
node has the corresponding content in the CS, it sends the data
packet by the incoming interface of the interest. Otherwise,
it is forwarded to an interface according to the FIB. This
same interface is expected to receive the data packet, which
is inserted in the CS and forwarded to the interest incoming
interface.

The PIT structure has mostly the role of keeping track of
this incoming interface [5]. Hence, the data can be delivered to
those who requested it by the interest reverse path. In general,
the PIT entries are deleted as the data is delivered to the
requester or when the time of an interest packet in the PIT
expires. Also, the PIT contains recently satisfied interests for
loop detection and measurements [9].

Given the relevance of using cache and given that it is native
to ICN networks, it is crucial to conduct studies to optimize
the usage of cache. This usage includes performing useful
strategies to decide which content should be cached and also
(the main objective of this work) which content should remain
in the cache.

To evaluate the performance of the proposed algorithm, we
conducted simulations through NS-3/ndnSIM network simula-
tor comparing our strategy with well-known cache replacement
strategies using real network topologies. Each network topol-
ogy has a variable number of consumers requesting contents
from a single server, based on a predefined distribution func-
tion. The routers have a limited capacity to store incoming
contents in the cache, and they can retrieve the contents when
interest packets request them. When the cache is full, the
replacement strategy should decide which content remove to
store the new incoming content. The obtained results show
that our algorithm outperforms the competitors, achieving
the highest cache hit ratio, the lowest end-to-end delay, and
the lowest hop count. The other competing approaches fail
to efficiently handle the router’s cache, since they are not
using the popularity history of the contents, or they are using
deterministic parameters to select which content to remove
from the cache. Therefore, our algorithm is more prepared to
deal with the nature of the requests.

The main contributions of this paper are listed below.
• We successfully proposed a new strategy for cache re-

placement in NDN networks, aiming at higher values of
the cache hit ratio and the reduction of content delivery
time through simulations using real network topologies
to validate our findings.

• The proposed strategy provides the ability to efficiently
adapt to the content request behavior by using an ex-

tension of the CS to store the popularity of the contents
discarded from the cache. The algorithm follows a simple
math model, improving the router’s decision regarding
which content should be withdraw from the cache. This
approach is intended to ensure the most popular contents
will not be lost their popularity, even in cases where they
were recently removed from CS (in case of small CS
capacity). Therefore, the most requested contents should
remain in the cache.

• The proposed algorithm can store the content popularity
history with no extra memory cost, depending only on the
size of the CS. The algorithm transfers a fixed amount of
CS storage capacity (reducing the size of the CS) to the
extension table to store contents popularity without losing
cache performance. Through simulations, we selected the
exact value of capacity transferred from CS, observing the
size of the extension table that our algorithm obtained the
best performance.

• There are several replacement strategies in the literature.
However, it is challenging to find the source code for
them. Thereby, a significant number of strategies are
difficult to be reproduced. Therefore, we provided our
source code as open source1 to help other researchers to
reproduce our results.

The rest of this work is organized as follows: Section II
overviews the related work. Section III details the operation
of the proposed algorithm. Section IV provides the evaluation
of the results obtained through simulation, and Section V
concludes the work.

II. RELATED WORK

As in [10], [11], a distinction will be made between con-
tent insertion strategies and content eviction (or replacement)
strategies. More specifically, it is assumed in this work that
the inclusion is done by the Leave a Copy Everywhere (LCE)
strategy that is natively used by the NDN architecture [12],
simply by including in the CS every incoming data packet.
The target then is the replacement strategy.

Whenever a node has reached its maximum storage capacity
and needs to insert new content, it follows its replacement
strategy and decides which content should be removed from
the memory to store the new one. There is a large body of
work in this area (see [13] [14]). Some of these methods
are based on the frequency (or popularity) pc of each content
c. Having pc defined, the replacement decision in this group
of strategies is just to discard the content with the smallest
pc. The challenge is then to find a suitable definition and
algorithm for pc. Among these methods, the more widespread
and basic is Least Frequently Used (LFU), which adopts pc as
the number of requests for c during the time that the content
was stored in the CS.

This method, however, is not robust to significant differ-
ences between pc values (outliers), since a given content c can
remain in the CS even if no longer requested due to a very
large pc value obtained in the past. This problem is known as
“cache pollution,” and it is triggered by the fact that the pc

1https://github.com/AndreySilva/NPA-Cache



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 208

value in LFU never decreases over time [15]. More advanced
versions of the LFU seek to address this issue, and here we
will describe two representative strategies.

The LFU-Aging [16] avoids the “cache pollution” by adopt-
ing an empirical threshold τ . If the average of pc values
exceeds τ , pc is changed to pc

2 . However, this strategy per-
formance is strictly linked to the adopted τ and there is no
robust algorithm for its estimation in distinct networks and
traffic conditions.

A variant of LFU-Aging is Least Frequently Used With
Dynamic Aging (LFU-DA) [17], which dynamically adjusts
and sum the factor γ to pc value. The value of γ starts at zero
and is updated with the value of the content that is removed
from the cache. Thus, greater γ values are assigned to contents
that are constantly requested, or newly inserted.

The authors in [18] designed the cache policy based on con-
tent popularity (CCP), which makes use of a new table called
Content Popularity Table (CPT) that stores the cache hits and
content popularity to calculate the current content popularity
at every end of counting cycles. The authors in [19] proposed
the Popularity-based cache policy for Privacy-preserving in
NDN (PPNDN) using a probabilistic way based on the content
popularity with information of the router. The Least Value
First (LVF) algorithm [20] is a replacement algorithm that is
based on the value of the delay, age and popularity of the
content, which are combined with tuning parameters α, β and
ε, allowing a priority customization based on the user-provided
parameters.

In contrast to popularity-based strategies, there are replace-
ment methods that do not depend on pc. For example, the
algorithm LRU is considered the simplest and most common
one and consists of removing the less recently requested
content. Two other common examples are: the algorithm
RANDOM which randomly chooses a content to be removed
from the CS and the First-In-First-Out (FIFO) method, which
models the problem as a queue. If the requested content is not
in the CS, it is placed at the end of the queue, and all others
are moved up one position. In this manner, the content that
was at the beginning of the queue (the oldest one in cache) is
removed.

Another parameter that can be taken into account for cache
replacement decisions is the content packet size. The algorithm
SIZE [21], for example, removes from the cache the larger size
content. However, a small size content is not always one of the
most requested contents. Therefore, a variant of SIZE called
Greedy-Dual-Size (GDS) [21] has been proposed, accounting
for time, location, size, and other cost information by applying
a cost/size function for each block.

By reviewing the previously cited methods, we can infer that
the reactive behavior of the algorithms without any knowledge
of the recently removed contents or the adoption of adjusting
parameters (α, γ, etc.) are the major drawbacks suffered by all
proposed algorithms. That is why the newly proposed cache
schemes have to deal with these challenges by adopting a
mechanism for taking in account the popularity history without
the need of using deterministic parameters (which may be
suitable only for specific situations) to improve the cache hit
ratio and the end-to-end delay. With this motivation, we pro-

posed the NPA algorithm, which can be categorized within the
group of replacement strategies that are based on popularity
pc value. It adopts an extra table that allows the algorithm
to take into account a long time history for the popularity of
contents without any extra deterministic parameter. This way,
different of the previous related algorithms, when a content is
removed from the cache, the proposed algorithm keeps for a
while the popularity of the removed contents. Besides, table
extension has been adopted in another works such as [22], [23]
to decide which content to store in cache, i.e., for placement
strategies. In contrast, the proposed algorithm is a replacement
algorithm and is also distinguished by other features as it will
be described next section.

III. PROPOSED STRATEGY: NPA

In this section, the NPA operation is detailed. Before it
can be described, the notation used to represent popularity-
based cache strategies is presented in Section III-A. Next, a
thorough NPA explanation is made in Section III-B, including
the motivation for the NPA features and a brief discussion of
its computational complexity.

A. Adopted notation

We will define the notation for popularity-based replace-
ments using, for convenience, the pc evolution for the LFU
strategy. This notation will then be used for explaining the
NPA in Section III-B.
M is the CS size. For simplicity, when describing the

algorithm, all content packets have the same size.
It is assumed that interests arrive at discrete instants of time

denoted by n ∈ N. Without loss of generality, it is assumed
that there is always one, and only one, event related to the
cache for each n. For a specific content c, some related events
are the arrival of an interest for c, the insertion of c in the
cache and its eviction, denoted respectively by ac, ic and ec.
The sequence pc[n] denotes the popularity of a specific content
c over time n. The eviction of c from the cache at instant n
is denoted here as pc[n] = 0, such that pc[n] > 0 indicates
content c is cached at time n. But in LFU implementation,
this counter and its associated contents are discarded.

An example using LFU helps grasping the notation. Assume
the sequence E[n] of events c ∈ {A,B,C} is:

E[n] = [aB , iB , aA, iA, aB , aB , aC , eA, iC , aC ,

aC , aC , aA, eB , iA, aB , eA, iB ]
(1)

for n = [1, 2, . . . , 18], respectively. Assume also that the CS
can store M = 2 contents. The CS was empty until B arrives,
which triggers the first cache inclusion iB at n = 2. Table I
depicts the contents in the CS and pc[n] values used by LFU
for different time instants.

It can be noted that due to the insertion strategy adopted,
when a content that is not in the cache arrives, for example,
c = C as indicated by aC at n = 7, its insertion iC forces the
eviction eA of the content with smaller pc[n] (in n = 8), which
in this case is A. Evictions also happen at instants n = 14 and
n = 17.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 209

For presenting the proposed NPA algorithm, it is useful to
define a “relative” time value kc, which is associated with a
specific content c and it is reset to zero whenever c is evicted
from a table (such as the CS cache or the additional table
used by NPA). Again, sequences indexed by kc are identified
with an over line to avoid ambiguity, and the subscript c
is omitted whenever redundant. Therefore, besides pc[n], the
time evolution of a popularity can be alternatively described
as pc[k]. To avoid confusion, Table II provides an example
using the events related to c = B in sequence E[n] of Table I.
Note that, upon eviction, k = 0 and its associated sequence
also resets with pc[0] = 0 in Table II.

Table I: CS Popularity Evolution for LFU strategy.

Time Content Name plfu
c [n]

n = 1 – –
– –

n = 2 B 1
– –

n = 3 B 1
– –

n = 4 A 1
B 1

n = 5 B 2
A 1

n = 6 B 3
A 1

n = 7 B 3
A 1

n = 8 B 3
– –

n = 9 B 3
C 1

n = 10 B 3
C 2

n = 11 C 3
B 3

n = 12 C 4
B 3

n = 13 C 4
B 3

n = 14 C 4
– –

n = 15 C 4
A 1

n = 16 C 4
A 1

n = 17 C 4
– –

n = 18 C 4
B 1

Table II: Evolution of the LFU popularity of content B in E[n]
of Table I according to the two kinds of sequences adopted in
this work.

n plfu
B [n] k plfu

B [k]

1 0 0 0
2 1 1 1
5 2 2 2
6 3 3 3
14 0 0 0
16 0 0 0
18 1 1 1

It can be noted from Table II, that the evolution of pB [k]

in LFU can be interpreted as an arithmetic progression (AP)

pB [k] = pB [0] + kr, (2)

with a common difference r = 1. This AP is reset each time
content c exits the cache as conveniently indicated by the
values of k. The first element pB [0] of Eq. (2) is zero in
Table II, but other values can be adopted when Eq. (2) is used
for describing NPA in the next section.

B. The Proposed NPA Algorithm
As mentioned, the proposed NPA algorithm adopts an extra

table to store and “remember” the popularity of contents even
after they are evicted from the cache.

The traditional CS has two fields: the content with Sc bits
and the content name hash [24]. The size of CS in LFU is
denoted as M = M lfu to make a distinction between the
cache size of other methods. When LFU is adopted, the CS is
complemented by an array with M lfu integer values consisting
of the LFU popularity plfu

c [n].
In NPA, this array is substituted by a table called history

table (HT), which has space for Y entries with four fields each:
a content name hash, a new popularity denoted as pnpa

c [n], and
two other integer values: continuous cache hit hc[n] and the
LFU rank lc[n]. The size of the CS when NPA is adopted is
denoted as M =M npa.

Note that the HT and CS tables have distinct sizes Y
and M npa, respectively, and the hash field in the HT allows
to relate their entries. This way, a content c may have its
statistics (hc[n], lc[n], p

npa
c [n]) stored in HT and not have the

corresponding content c cached in CS. Since the space for
storing the Sc bits of the content itself in the CS is in average
much larger than the one required by the other CS and HT
fields [22], [23], it is relatively easy to dedicate some storage
space to HT and guarantee that Y > M npa, which is assumed
here. A fundamental principle of NPA is then to balance the
investment in memory to store contents with what is needed
for an auxiliary data structure HT that allows better overall
performance.

The value of the LFU rank lc[n] is similar to that used by
LFU when accounting its pc[n]: lc[n] is incremented for each
new interest while the content is in the HT. The distinctions
come from the fact that the NPA does not discard the value
of lc[n] when the content leaves the CS, but only when it
leaves the HT. Therefore, if a content that remained in the HT
returns to the cache, the algorithm can take advantage of this
information.

Moreover, if it is necessary to remove an input from HT,
it will be removed the one with the lowest lc[n] value. As
defined for pc[n] in LFU, lc[n] = 0 denotes that content c is
not in the HT at instant n.

The counter hc[n], although stored in the HT, varies solely
according to the contents in the CS, i.e., it is reset to zero
every time the content is evicted from the CS.

In addition to decreasing the number of times a content’s
popularity is reset to zero, NPA also adopts the principle of
incrementing its popularity pnpa

c [n] more aggressively than the
LFU and its variants. Another distinctive feature is that interest
retransmission is not processed by NPA.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 210

When the interest is not satisfied, it is retransmitted using
the same or a different interface. This way, the interests
originating from retransmission must be ignored. Ignoring
retransmissions is motivated by the fact that too large pnpa

c [n]
values could be obtained not due to the popularity of content
but due to constant retransmissions of this content in a network
experiencing congestion, for example. Therefore, in NPA, if
an interest arrives for content c that is already in both CS
and HT, and it is not a retransmission, the value of pnpa

c [n] is
updated to pnpa

c [n+1] = pnpa
c [n]+hc[n] and grows faster than

in LFU as detailed in the sequel.
Considering lc[n] influence, pnpa

c [k] evolution for NPA can
be written as:

pnpa
c [k] = S(k) + lc[0]− 1 (3)

To understand the parcel lc[0]−1, it should be noted that k =
0 represents the first interest arrival for c, when it is already in
the CS. However, as shown in line 4 from the Algorithm 2, lc
is added to pc[k] before k = 0. Thus, since lc is incremented
by one in k = 0 (line 8 from Algorithm 1), the expected
influence from lc in time k should be accounted as lc[0]− 1.

The integers lc[n] and hc[n] are essential elements of NPA.
To model their operation, we will first define hc[n] influence
in NPA by using the relative time k as:

S(k) = (2hc[0] + k)
k + 1

2
(4)

where S(k) represents the sum of the terms of an AP (ac-
counted in line 11 in Algorithm 1), and hc[0] represents the
first therm of the AP summed in S(k), which is typically 1.
But it can be a higher value, due to the possibility of having
multiple interest arrivals before the content c is cached, making
hc to be incremented each time (line 9 in Algorithm 1). The
complete operation of NPA is detailed in Algorithm 1.

Algorithm 1 Proposed NPA algorithm for interest arrival.

1: At Interest Arrival (content c)
2: if not retransmission(c) then
3: if lc[n] = 0 then
4: Exclude from HT the entry with min(lc[n]);
5: Insert c in HT, {c was not in HT}
6: lc[n+ 1]← 1 and hc[n+ 1]← 1;
7: else
8: lc[n+ 1]← lc[n] + 1; {c is already in HT}
9: hc[n+ 1]← hc[n] + 1;

10: if pnpa
c [n] 6= 0 then

11: pnpa
c [n+ 1]← pnpa

c [n] + hc[n];
12: else if c is not pending then
13: hc[n+ 1]← 1;
14: end if
15: end if
16: end if

For HT understanding, Figure 1 depicts the data structure
adopted in LFU and NPA, where the former can store M lfu

and the latter can store M npa contents.
As previously stated, LFU could be modeled as in Ex-

pression 2. Therefore, based on the example using E[n], the

Algorithm 2 Proposed NPA algorithm for data arrival.

1: At Data Arrival (content c)
2: Exclude from CS the entry with min(pnpa

c [n]);
3: Insert c in the cache;
4: pnpa

c [n+ 1]← lc[n];

Figure 1: History Table (HT) adopted by the proposed NPA
strategy and its comparison with LFU.

evolution of popularity for content B using LFU is shown
in Table II. In the same way, the evolution of popularity for
content B using NPA is shown in Table III.

Table III: Evolution of the NPA popularity of content B in
E[n] of Table I according to the counters hB [n] and lB [n].

n pnpa
B [n] hB[n] lB[n]

1 0 0 0
2 1 1 1
5 3 2 2
6 6 3 3
14 0 1 3
16 0 1 3
18 4 1 4

Note that unlike the LFU, the NPA is able to recover the
popularity of content B more efficiently, because pnpa

B [18] = 4.
Since at time n = 14 the content B is removed only from the
CS, in n = 18 the content returns to the cache and NPA can
recover part of its popularity with the use of the present value
in lB [18] (which is equal to four), unlike the LFU that has the
initial value plfu

B [18] = 1.
Lastly, since LFU has the computational complexity of

O(log(n)), and NPA performs twice the number of insertions,
lookups and evictions (because of the extra table), the runtime
complexity of NPA is O(log(2n)) which is the same as
O(log(n)). Most popular replacement policies range from
O(1) to O(n), where n is the number of cached items. But
it should be highlighted that the policies that usually achieve
good performance have O(log(n)) complexities, like LFU, for
example [10].

The next section compares the performance of NPA and the
other investigated algorithms, as well as the parameters used
in the simulation.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 211

Table IV: Simulation Parameters.

Parameter Value Parameter Value

Simulator NS-3/ndnSIM 2.2 Zipf α 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Sim. time 600s Relative cache size 1%

Num. of seeds 10 Confidence interval 95% (t-distribution)
Request rate exp(80) Packet size 4096 Bytes

Num. of producers 1 Routing strategy Best-route
Contents catalog 10000 Topologies Telstra, AT&T, Tiscali

Placement strategy Leave Copy Everywhere (LCE) Replacement strategy RANDOM, LFU, LRU, NPA (proposed)

(a) Telstra Topology (b) AT&T Topology (c) Tiscali Topology

Figure 2: Real topologies used in simulations. The red circle, green stars and blue square nodes are consumers, gateway routers
and backbone routers, respectively.

IV. SIMULATION RESULTS

We conducted extensive simulations using the NS-3 discrete
simulator through an NDN networking module known as
ndnSIM version 2.2. The parameters used in the simulations
are listed in Table IV. These parameters were selected based
on the previous studies [18] [20] [25] [26]. In total, ten ex-
periments were performed, and a 95% confidence interval was
calculated. The popularity of the requested contents follows a
Zipf distribution with α parameter ranging from 0.5 to 1.0,
where the lower and higher α value represents a low and high
correlation between content requests, respectively.

For a fair comparison, it is assumed that the same size in
bytes for the LFU cache (and other “baseline” algorithms)
must be adopted for NPA to store both CS and its HT.

In this work, it is assumed that all content packets c in CS
have the same size and it is adopted Y = (M lfu−M npa)C/S,
for Y entries on HT, where C is the content packet size and S
is the size of an entry in the HT. From [22] [23], it is adopted
C = 4 kB and S = 16 B.

The simulations were performed using three real network
topologies: AT&T, Telstra, and Tiscali (Figure 2). Regarding
cache, each node (except the producer and the consumers) can
store contents. The storage capacity per node is defined by the
relative cache, which is the ratio of the cache size per router
to the total number of different contents in the network. The
delay and link capacity between backbone routers are 10 ms
and 50 Mbps, respectively. From backbone routers to gateway

routers the delay is 7 ms with a link capacity of 16.4 Mbps.
From consumers to gateway routers, it is adopted a delay of
1.5 ms and ideal links (unlimited capacity).

All topologies have only one producer who is the backbone
router with the highest centrality. The number of consumers
is not the same for each topology. In this case, the AT&T
topology is the one with more consumers.

Figure 3: Impact on cache hit ratio with different sizes of HT.

As a first analysis, we intend to observe the size of the
HT that obtains the best performance so that this value is
subsequently adopted as fixed in all the experiments of this



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 212

(a) Telstra cache hit ratio (b) AT&T cache hit ratio (c) Tiscali cache hit ratio

Figure 4: Cache hit ratio versus Zipf α parameter.

(a) Telstra hop count (b) AT&T hop count (c) Tiscali hop count

Figure 5: Hop count versus Zipf α parameter.

(a) Telstra delay (b) AT&T delay (c) Tiscali delay

Figure 6: End-to-end delay versus Zipf α parameter.

(a) Telstra cache hit ratio over time (b) AT&T cache hit ratio over time (c) Tiscali cache hit ratio over time

Figure 7: Cache hit ratio over time for Zipf α = 0.7.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 213

work. The value of the Zipf parameter used for this set of
simulations was equal to α = 0.7 because it corresponds to
a value widely used in the literature and close to that found
in real data analysis [27]. Figure 3 shows the impact of the
HT size variation in relation to CS size, with the calculated
confidence intervals.

The table size percentage from Figure 3 depicts how much
of the CS storage capacity has been transferred to HT. For
instance, a percentage of 10% indicates that the CS, with a
100 contents capacity (without HT), will be able to store only
90 contents when using the HT and will store 2560 content
entries on HT. Thus, the larger the relative size of HT, the
smaller the CS one. From Figure 3, we can attest that the HT
with 3% of CS size has the best cache hit ratio in all topologies
except Telstra. As the HT relative value of 3% was the one that
presented the best result in two topologies, this was the value
used to generate the comparative results presented below.

Figure 4 presents average cache hit ratio, for all scenar-
ios, with confidence intervals. It can be attested that NPA
outperforms the other algorithms (LRU, LFU, LFUDA, and
RANDOM) in all scenarios, regardless of the Zipf α and
network topology. The two strongest competitors to NPA
are LFUDA and LFU, especially when Zipf α is close to
1. NPA good performance for the cache hit ratio can be
explained by its ability to register content popularity even
after it is removed from the CS. The cache hit ratio gains of
NPA concerning LFU have an average of 14.5%, 19.5% and
17.6% for Tiscali, Telstra and AT&T scenarios respectively,
and about 12.8%, 13% and 10% concerning LFUDA in the
Tiscali, Telstra and AT&T scenarios respectively. The weak
cache hit ratio of LRU and RANDOM is because they do
not use any popularity information to remove data from the
cache. RANDOM results are higher than those of LRU, since
the scenarios have a high number of requests, which is very
adverse to LRU performance.

Figure 5 illustrates the average hop count necessary to re-
trieve the content to the user, for all scenarios, with confidence
intervals. The hop count metric is related to the distance
between the consumer and the requested content. Lower values
indicate faster content retrieval to the consumer. As expected,
NPA presents better hop count than the other algorithms since
it achieves higher cache hit ratio. The hop count reduction of
NPA in comparison to LFU is 1.8%, 3% and 3.5% for Tiscali,
Telstra, and AT&T scenarios respectively, and about 2%, 1.9%
and 2.3% concerning LFUDA in the Tiscali, Telstra and AT&T
scenarios respectively.

Figure 6 illustrates the average end-to-end delay, for all
scenarios, with confidence intervals. It can be highlighted
that NPA achieves a lower end-to-end delay in comparison
with the others candidates, which can be explained by the
fact that NPA has more cache hits and fewer hops to find
the content. This feature also decreases the congestion level
on the links, reducing the packet drop/retransmission, which
favors faster content delivery. The delay reduction of NPA in
relation to LFU is 7.4%, 13.8% and 8.5% for Tiscali, Telstra,
and AT&T scenarios respectively, and about 6.5%, 8.2% and
4.8% in comparison to LFUDA in the Tiscali, Telstra and
AT&T scenarios respectively. Because of low values of cache

hit ratio and higher hop count, LRU and RANDOM provide
higher end-to-end delays than other methods.

Figure 7 illustrates cache hit ratio behavior over time using
Zipf α = 0.7, for all topologies. These results indicate that
NPA outperforms the others competitors in all simulation sce-
narios. The NPA reaches about 12%, 11% and 10% of cache
hit ratio in Tiscali, Telstra and AT&T scenarios respectively,
attaining at least 12.8% more cache hit ratio than the other
depicted strategies.

V. CONCLUSION

In this work, we have proposed an algorithm (NPA) that
uses a table named History Table which increases the capacity
to count the content popularity even after it is removed from
the cache. Also, a comparative performance study of NPA with
other algorithms in the literature was conducted using the NS-
3/ndnSIM network simulator in real network topologies.

The proposed algorithm proved to be effective, reaching
higher cache hit ratio and lower hop count and end-to-
end delay than the other strategies. Therefore, our proposed
method can deliver contents faster than compared algorithms,
mainly when we analyzed the results for Zipf α = 0.7, which
is considered to be a realistic value and widely adopted [27]–
[29].

As a future work, we aim to expand the algorithm to use
an aging parameter to deal with changes in popularity to
avoid pollution of cache for contents that are not popular
anymore. We intend to compare NPA with more robust cache
replacement algorithms, making use of time-varying popular-
ity models (instead of Zipf that generates contents with static
popularity). Besides, this paper did not take into consideration
the scalability of the proposed algorithm when more than one
producer are used. Therefore, we will evaluate the impact
of the number of producers on the performance of several
cache strategies. Finally, we intend to search for real traces to
perform experiments with these data to obtain results closer
to real content popularity.

REFERENCES

[1] C. V. N. Index, “Global mobile data traffic forecast update
2015–2020 white paper. Accessed: Aug. 2, 2016. [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/mobile-white-paper-c11-520862.pdf.”

[2] L. Saino, “On the design of efficient caching systems,” Ph.D. disserta-
tion, University College London, 2015.

[3] H. Yin, X. Zhang, S. Zhao, Y. Luo, C. Tian, and V. Sekar, “Trade-offs
between cost and performance for cdn provisioning based on coordinate
transformation,” IEEE Transactions on Multimedia, 2017.

[4] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE Communications Sur-
veys & Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
2014.

[6] S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo, “Recent advances
in information-centric networking based internet of things (ICN-IoT),”
IEEE Internet of Things Journal, 2018.

[7] P. Batista, I. Araújo, N. Linder, K. Laraqui, and A. Klautau, “Testbed
for ICN media distribution over LTE radio access networks,” Computer
Networks, vol. 150, pp. 70–80, 2019.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 214

[8] B. Wissingh, C. A. Wood, A. Afanasyev, L. Zhang, D. Oran, and
C. Tschudin, “Information-Centric Networking (ICN): CCN and NDN
Terminology,” Internet Engineering Task Force, Internet-Draft draft-irtf-
icnrg-terminology-00, Dec. 2017, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-terminology-00

[9] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu,
W. Shang, Y. Huang, J. P. Abraham, S. DiBenedetto et al., “NFD
developers guide,” Tech. Rep., 2016.

[10] A. Balamash and M. Krunz, “An overview of web caching replacement
algorithms,” IEEE Communications Surveys & Tutorials, vol. 6, no. 2,
pp. 44–56, 2004.

[11] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374–
398, 2003.

[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proceedings of
the 5th international conference on Emerging networking experiments
and technologies. ACM, 2009, pp. 1–12.

[13] H. ElAarag, Web Proxy Cache Replacement Strategies: Simulation,
Implementation, and Performance Evaluation. Springer Science &
Business Media, 2012.

[14] A. Ioannou and S. Weber, “A survey of caching policies and forwarding
mechanisms in information-centric networking,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 4, pp. 2847–2886, 2016.

[15] T. Koskela, J. Heikkonen, and K. Kaski, “Web cache optimization with
nonlinear model using object features,” Computer Networks, vol. 43,
no. 6, pp. 805–817, 2003.

[16] M. Arlitt, R. Friedrich, and T. Jin, “Performance evaluation of web proxy
cache replacement policies,” in International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation. Springer,
1998, pp. 193–206.

[17] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating
content management techniques for web proxy caches,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 27, no. 4, pp. 3–11, 2000.

[18] J. hua Ran, N. Lv, D. Zhang, Y. yuan Ma, and Z. yong Xie, “On
performance of cache policies in named data networking,” in 2013 In-
ternational Conference on Advanced Computer Science and Electronics
Information (ICACSEI 2013). Atlantis Press, 2013.

[19] J.-Y. Yang and H.-K. Choi, “PPNDN: Popularity-based caching for
privacy preserving in named data networking,” in 2018 IEEE/ACIS 17th
International Conference on Computer and Information Science (ICIS).
IEEE, 2018, pp. 39–44.

[20] F. M. Al-Turjman, A. E. Al-Fagih, and H. S. Hassanein, “A value-
based cache replacement approach for information-centric networks,” in
38th Annual IEEE Conference on Local Computer Networks-Workshops.
IEEE, 2013, pp. 874–881.

[21] P. Cao and S. Irani, “Cost-aware www proxy caching algorithms.” in
Usenix symposium on internet technologies and systems, vol. 12, no. 97,
1997, pp. 193–206.

[22] C. Bernardini, T. Silverston, and O. Festor, “MPC: Popularity-based
caching strategy for content centric networks,” in 2013 IEEE Interna-
tional Conference on Communications (ICC). IEEE, 2013, pp. 3619–
3623.

[23] M. D. Ong, M. Chen, T. Taleb, X. Wang, and V. Leung, “FGPC: fine-
grained popularity-based caching design for content centric networking,”
in Proceedings of the 17th ACM international conference on Modeling,
analysis and simulation of wireless and mobile systems. ACM, 2014,
pp. 295–302.

[24] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu,
W. Shang, Y. Huang, J. P. Abraham, S. DiBenedetto et al., “Nfd
developers guide,” Technical Report NDN-0021, NDN, Tech. Rep.,
2014.

[25] S. Shailendra, S. Sengottuvelan, H. K. Rath, B. Panigrahi, and A. Simha,
“Performance evaluation of caching policies in ndn-an icn architecture,”
in 2016 IEEE Region 10 Conference (TENCON). IEEE, 2016, pp.
1117–1121.

[26] Y. Zhang, X. Tan, and W. Li, “PPC: popularity prediction caching in
icn,” IEEE Communications Letters, vol. 22, no. 1, pp. 5–8, 2018.

[27] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
Zipf-like distributions: Evidence and implications,” in INFOCOM’99.
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, vol. 1. IEEE, 1999, pp.
126–134.

[28] P. Marchetta, J. Llorca, A. M. Tulino, and A. Pescapé, “MC3: A
cloud caching strategy for next generation virtual content distribution
networks,” in IFIP Networking Conference (IFIP Networking) and
Workshops, 2016. IEEE, 2016, pp. 332–340.

[29] L. Saino, I. Psaras, and G. Pavlou, “Icarus: a caching simulator for infor-
mation centric networking (icn),” in Proceedings of the 7th International
ICST conference on Simulation Tools and Techniques. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2014, pp. 66–75.

Andrey Silva received the B.Sc. degree in com-
puter engineering, and the M.Sc. degree in elec-
trical engineering from the Federal University of
Pará, Belém, Brazil, in 2015 and 2017, respectively,
where he is currently pursuing the Ph.D. degree in
electrical engineering. In 2018, he was in a visiting
scholar program at Michigan Technological Univer-
sity, Houghton, MI, USA. He is the current presi-
dent of the IEEE Communication Society (ComSoc)
student chapter at Federal University of Pará. His
current research interests include caching strategies,

computer networks, computer vision, vehicular communications, machine
learning, and digital signal processing.

Ivanes Araujo is an Experienced Researcher at
Ericsson in Sweden. He is currently working as a
3GPP delegate in the specification of radio interface
protocols. His areas of interest are mostly related to
5G and the radio resource control protocol, in topics
such as carrier aggregation and dual connectivity.
Ivanes Araujo also performed research in informa-
tion centric networking and quality of service for
mobile networks, previously to Ericsson. He holds
an M.Sc. in electrical engineering from Federal
University of Pará (UFPA), Belém, Brazil.

Neiva Linder is a Research Leader for the Net-
work Orchestration and Automation area at Eric-
sson Research in Sweden. She has research in-
terests on AI based operations applied to mobile
networks automation and service assurance. Neiva
joined Ericsson in 2011 and has worked in several
technology areas applied to fixed and mobile back-
haul network architectures, transport solutions for
4G/5G, including Cloud RAN, SDN, NFV, network
slicing, etc. She has over 10 years experience in
telecommunication. Previously to Ericsson, Neiva

was active in the area of signal processing for communication and held a
postdoctoral position at the EIT-LTH Faculty of Engineering, Lund University,
Sweden. Neiva Linder holds a Ph.D. in electrical engineering with major
in telecommunication from the Federal University of Pará (UFPA), Belém,
Brazil.

Aldebaro Klautau received the bachelor (Universi-
dade Federal do Pará, UFPA, 1990), M. Sc. (Uni-
versidade Federal de Santa Catarina, UFSC, 1993)
and Ph. D. degrees (University of California at
San Diego, UCSD, 2003) in Electrical Engineering.
Since 1996, he has been with UFPA and is now full
professor, the ITU-T TIES Focal Point, and directs
LASSE. He was a visiting scholar at Stockholm
University, UCSD and The University of Texas at
Austin. He is a senior member of the IEEE and
a researcher of the Brazilian National Council of

Scientific and Technological Development (CNPq). He has supervised more
than 50 graduate students, published more than 150 papers in peer-reviewed
conferences and journals, and has several international patents. His work
focuses on machine learning and signal processing for telecommunications
and embedded systems.


