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Analysis of Energy Detection with Noise
Uncertainty over α-η-κ-µ Fading Channel
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Abstract—One of the main challenges in implementing spec-
trum sensing techniques concerns the system robustness against
noise power uncertainties. In this paper, a performance analysis
of energy detection-based cognitive radio system is carried out
assuming absence/presence of noise uncertainty for the sensing
channel modeled by the α-η-κ-µ fading channel. The detection
capacity of spectral sensing over several representative scenarios
is analyzed with the theoretical results validated through Monte
Carlo simulations. The results show that the performance of the
spectral sensing technique is drastically affected by the noise
uncertainty as well as by the channel conditions described the
fading parameters α, η, κ, and µ. Both the ratio of the power
of the dominant component to the power of the scattered and
quadrature scattering signal and the clustering imbalance have
a smaller impact on the overall performance. The offered results
are especially useful in assessing the effect of fading in energy
detector-based cognitive radio communication systems.

Index Terms—Spectrum sensing, energy detector, α-η-κ-µ
fading model, noise uncertainty.

I. INTRODUCTION

W ITH the exponential increase in demand for mobile
communications services, the electromagnetic spec-

trum of radio frequencies tends to become increasingly con-
gested. Regulatory agencies have used fixed band allocation
policy, where the resource is allocated by type of service
and users acquire the right to exploit certain bandwidth. This
management policy results in underutilization of the resource,
since the holder of the right to use a particular band may
not do it all time and in all area where the service is offered.
Consequently, there is a contradictory scenario in which the re-
source is at the same time scarce and underutilized, generating
a great challenge for future mobile technologies, for example
5G and beyond. In this context, the concept of cognitive radio
(CR) [2] arises, which proposes, among other functionalities,
the opportunistic use of the spectrum. To perform this task,
CR carries out the spectral sensing [2], which consists of
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collecting samples of a signal in a given bandwidth to infer
about its availability. If the sensing band is being occupied
by the holder of the right to use it, called primary user (PU),
the CR should search for another available band or limit its
transmission power to a level of interference acceptable to PU.
If the targeted band is idle, CR can use it opportunistically.

There is a great number of spectral sensing techniques
proposed in the literature to detect the presence of the signal
in a given band. This includes the classic likelihood ratio test
(LRT) [3], the energy detector (ED) [3], [4], matched filter-
ing (MF)-based methods [3], cyclostationary detection (CSD)
method [5], eigenvalue-based sensing [6] and covariance based
sensing [7]. These methods have different requirements and
advantages/disadvantages. However, for many detection meth-
ods, the noise power is assumed to be known a priori. Never-
theless, the change of noise power affects their performance.
In practice, noise power does change with time and location,
a phenomenon known as noise uncertainty. Because of this,
the accurate noise power waveform/distribution is unknown,
which affects the performance of detection methods in spectral
sensing [8]–[14].

One of the elements in a wireless transmission system that
affects the performance of spectral sensing is the communica-
tion channel. Concerning the short-term fading, the complex
model α-η-κ-µ [15] is of particular interest, for it takes
into account all the important small-scale phenomena known
to date. Specifically, the model considers the nonlinearity
phenomenon of the transmission medium, the power of the
scattered waves, the power of the dominant components, and
the multipath clustering. In order to impinge some degree
of correlation between in-phase and quadrature, imbalances
between these two components are inserted [15]. The model
has been described by means of its envelope and phase
probability density functions (PDFs), which are written in
terms of physically-based parameters. It is noteworthy that the
said model comprises all of the most relevant fading scenarios
found in the literature. Because of its newness as well as
comprehensiveness, several issues remain to be explored and
investigated, thus creating an enormous opportunity for future
researches. Some theoretical or practical studies have already
been published in the literature focusing on the α-η-κ-µ
model [16]–[19]. Also, algorithms have already been proposed
for the generation of uncorrelated α-η-κ-µ samples [20], [21].

The spectrum sensing in fading channels has been studied,
for instance, in [2], [22]–[29] and some analyzes were per-
formed in the presence of noise uncertainty [30]–[32], using
an energy detection scheme. However, studies regarding gen-
eralized fading channels which describe scenarios not covered
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by most common fading distributions are still scares, if not
absent, in the literature.

This paper investigates the spectral sensing performance
by means of the energy detection technique for the sensing
channel described by the envelope of the α-η-κ-µ model, in
the absence and presence of noise uncertainty.

This article is organized as follows: in Section II a brief
review of the α-η-κ-µ fading model is made. The Section III
describes the system model adopted for spectral sensing and
the Section IV describes the statistics adopted in the presence
of noise uncertainty. In the Section V a study is made on the
performance metrics adopted. The numerical results and their
interpretations are detailed in Section VI. Finally, Section VII
presents the conclusions of this work.

II. THE α-η-κ-µ FADING MODEL

The α-η-κ-µ fading model proposed in [15] accounts for
virtually all relevant small-scale propagation phenomena de-
scribed in the literature, namely, nonlinearity of the medium,
power of the scattered waves, power of the dominant compo-
nents, and multipath clustering.

The resulting phase-envelope joint PDF is presented in three
different parametrizations, namely Raw, Local, and Global. In
the Global Parametrization [15, Eq. (14)], which is the one
applied here, the following are the corresponding physical
parameters: (i) α > 0 - the non-linearity of the transmission
medium; (ii) η > 0 - the ratio of the total power of the in-
phase and quadrature scattered waves of the multipath clusters;
(iii) κ > 0 - the ratio of the total power of the dominant
components and the total power of scattered waves; (iv) µ > 0
- the total number of multipath clusters; (v) q > 0 - the ratio of
two ratios: the ratio of the power of the dominant components
to the ratio of the power of the scattered waves of the in-phase
signal and its counterpart for the quadrature signal; (vi) p > 0
- the ratio of the number of multipath clusters of in-phase and
quadrature signals; (vii) r̂α > 0, - the mean value E(Rα), for
a fading signal with envelope R.

It is noteworthy that, in [15], and for the envelope, an exact,
fast-convergent series expansion for its PDF and also for its
cumulative distribution function (CDF) are found. Addition-
ally, in [15] the reader can find some important joint PDFs
for the envelope-based and for the complex fading model.

A great number of well-known distributions, and others not
yet available in the literature, can be obtained as particular
cases of the α-η-κ-µ fading model [15, Section VI]. Fig. 1
shows a detailed relationship between the parameters of the
α-η-κ-µ distribution and known distributions as its special
cases. Specifically, the three-fading-parameter distributions (η-
κ-µ, α-κ-µ, α-η-µ, and α-η-κ), the two-fading-parameter
distributions (κ-µ, η-µ, Beckmann (η-κ), α-µ, α-κ and α-η
), the one-fading-parameter ones, namely, Nakagami-m, Rice,
Hoyt, and Weibull, and no-fading-parameter ones, namely,
semi-Gaussian, Rayleigh, and negative exponential. A diagram
illustrating the migration of the general envelope-based α-
η-κ-µ fading model to its main special cases is shown in
Fig. 1. (These are the main transitions. Others involving the
parameters p and q and specific values of other parameters

not appearing in the diagram were left aside not to pollute the
diagram.)

The reader is invited to refer to the seminal paper [15]
in order to obtain a detailed description of the α-η-κ-µ
fading model, its statistics and the mapping between different
parametrization formats.

III. ENERGY DETECTOR

As far as spectral sensing is concerned, the CR does not
have a priori information about the characteristics of the
signals to be detected. For these cases, the receiver can
be implemented by the ED. The detector will estimate the
energy present within the operation frequency range during
an observation interval and will compare the result with a
threshold λ, that depends on the noise power at the receiver
input. If the estimated value is below the threshold, the channel
is considered idle, representing a transmission opportunity for
the secondary user (SU). Otherwise, the channel is considered
busy.

The discrete time model for the hypothesis test associated
with spectral sensing can be written as

y(`) =

{
n(`) under hypothesis H0

rx(`) + n(`) under hypothesis H1.
(1)

In (1), H0 denotes the hypothesis that the channel is idle and
H1 denotes the busy channel condition, y(`) is the `-th sample,
` = 1, . . . , L, of the received signal collected by the CR during
the sensing interval, x(`) is a sample of the signal transmitted
by the PU and r represents the envelope of the fading channel,
assumed to be flat and static during the sensing interval. The
variable n(`) indicates a sample of additive white Gaussian
noise (AWGN) with zero mean and variance σ2

AWGN = N0B,
measured in a band B with unilateral power spectral density
N0, generated at the receiver input of CR.

The PU signal to be detected, x(`), is part of the un-
known deterministic signals class, initially analyzed in the
context of spectral sensing in a non-fading channel in [4]
and widely used in later works for performance analysis on
fading channels [33], [34]. In this model, the PU signal energy
to be detected must be deterministic, although unknown.
As an example, this class includes the signals in band-pass
modulated by phase shift keying (PSK). All the symbols of this
constellation have the same energy and there is no information
on the amplitude of the signal. Obviously, other types of
signals can be exercised. What changes in this case, is the
probability of detection since only this metric is influenced by
the PU signal.

From the received signal samples, the test statistic for an
ED can be calculated by

T =
1

σ2
AWGN

L∑
`=1

y(`)2. (2)

The number of samples L relates to the sensing interval tsens
and the band B by means of the parameter time-band product,
i.e. u = tsensB, resulting in L = 2tsensB [33].



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 180

α-η-κ-µ

η-κ-µ α-κ-µ α-η-µ α-η-κ

κ-µ η-µ η-κ α-µ α-κ α-η

Nakagami-m Rice Hoyt Weibull

Semi-Gaussian Rayleigh Negative Exp.

α = 2 η → 1 κ → 0 µ = 1

η → 1

κ → 0

µ = 1

α = 2

κ → 0

µ = 1

α = 2

η → 1

µ = 1

α = 2
η → 1

κ → 0

κ → 0

µ = 1 η → 1 µ = 1 η → 1 κ → 0 α = 2

µ = 1α = 2

κ → 0 α = 2

η → 1

µ = 1/2 µ = 1 κ → 0 η → 1 α = 2 α = 1

Fig. 1. Relationship between the parameters of the α-η-κ-µ distribution and the distributions with fewer parameters.

The average signal-noise ratio (SNR) follows the definition
found in [34], i.e.

γ̄ =
E[R2]Ex

N0
, (3)

where the average energy of the PU signal during the sensing
interval is given by Ex =

∑L
`=1 x(`)2/(2B) and E[R2] is

the second moment of the α-η-κ-µ fading envelope model.
Assuming E[R2] = 1 and using N0 = σ2

AWGN/B, the average
SNR can be simplified to γ̄ =

∑L
`=1 x(`)2/(2σ2

AWGN). If the
PU signal has the power Px = Ex/tsens =

∑L
`=1 x(`)2/L, the

variance (power) of the thermal noise can be determined from
the average SNR by applying the ratio

σ2
AWGN =

LPx

2γ̄
. (4)

It is worth mentioning that, in this paper, for convenience,
we address the problem for a low-pass process. In the litera-
ture [4], [33], it has been extensively verified that both band-
pass type and its low-pass equivalent process can be taken
interchangeably from the decision statistics perspective. By
doing this, systems with different transmission rates, carrier
frequencies, and bandwidths can be compared.

IV. NOISE POWER UNCERTAINTY

Usually, in detection methods, the thermal noise is assumed
to have white Gaussian nature, which is characterized by
AWGN. However, in practice, some factors affects the stability
of the noise power. On one hand, the variation of temperature
at the receiver end leads to the changes of the local thermal

noise power. On the other hand, the environment noise, which
is an aggregation of random signals from various sources in the
environment, also varies with time. As a result, it is difficult
to exactly know the current noise power.

The estimated noise power has a great effect on the perfor-
mance of some spectrum sensing schemes such as ED [10],
[11]. Thus, it is a critical information. In practical scenarios,
the noise power is not known in advance and noise uncertainty
is always present. Let the estimated noise power be σ̂2

AWGN.
The actual noise power σ2

AWGN at a given location and time
period can be different from the expected one, that is, there
is noise power uncertainty. Let σ̂2

AWGN = aσ2
AWGN, where a

is the noise uncertainty factor. The upper bound of the noise
uncertainty factor (in dB) is defined as [12], [13]

B = sup {10 log10 a} , (5)

where B is the noise uncertainty bound. Let uncertainty bound
be described by the uniform distribution, as widely used model
in the literature. Then, a (in dB) is uniformly distributed in
the interval [−B,B) [8], [9]. In practice, the noise uncertainty
bound of a receiving device is normally below 2 dB. The noise
uncertainty factor a changes in the interval of [10−

B
10 , 10

B
10 ).

The PDF of a can be found as

fa(a) =


0 a < 10−

B
10

5
Ba loge(10) 10−

B
10 < a < 10

B
10

0 a > 10
B
10 .

(6)
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V. PERFORMANCE METRICS

Sensing performance is commonly measured by the prob-
ability of false alarm and by the probability of detection,
the former corresponding to the probability that the detector
decides in favor of the presence of PU, even though it is not in
the sensed band, and the latter corresponding to the probability
of the correct detection of an unknown signal, which is actually
present in the sensed band.

Based on the test statistic T of ED defined in (2) and con-
sidering the α-η-κ-µ fading channel, the theoretical probability
of false alarm and the probability of detection are calculated
for ED as [33]

Pfa = Pr{T > λ |H0} =
Γ(u, λ2 )

Γ(u)
(7)

and

Pd = Pr{T > λ |H1}=
∫ ∞

0

Qu

(√
2γ,
√
λ
)
fΓ(γ)dγ, (8)

where Pr{·} is the probability of occurrence of any event,
λ is the decision threshold, Γ(·, ·) is the upper incomplete
Gamma function [35], u is the time-band product, Qu(·, ·) is
the generalized Marcum-Q function of u-th order [36], γ is
the instantaneous SNR and fΓ(γ) is the is the PDF of the
α-η-κ-µ distribution as a function of γ. One of the possible
manners to obtain fΓ(γ) is by applying the transformation of
variables Γ = γ̄R2 in [15, Eqn. (10)], which results in

fΓ (γ) =
αγ

α−2
2

2γ̄α

∫ ( γγ̄ )
α
2

0

fX

((
γ

γ̄

)α
2

− y

)
fY (y) dy, (9)

where the PDFs fX (x) and fY (y) are given
by [15, Eqn. (2)].

When noise uncertainty is present in the system, the esti-
mated noise power influences the test statistic defined in (2),
resulting in an estimated test statistic being T̂ = T /a. At
the reception end, the estimated test statistic is compared with
the decision threshold, that is T̂ > λ, which in terms of the
actual test statistic results in T > aλ [31]. Furthermore, by
the definition given in (4), the estimated average SNR will
be ˆ̄γ = γ̄/a, that is, the actual instantaneous SNR relates to
the estimated instantaneous SNR as γ = aγ̂. Thus, in the
presence of noise uncertainty, the probability of false alarm
and the probability of detection, considering the influence
of the uncertainty factor on the decision threshold and the
instantaneous SNR, are obtained by averaging over the noise
uncertainty factor as [12]

Pfa =

∫
a

fa(a)Pfa da

=

∫ 10
B
10

10− B
10

5Γ(u, aλ2 )

Ba loge(10)Γ(u)
da

(10)

and

Pd =

∫
a

fa(a)Pd da

=

∫ 10
B
10

10− B
10

∫ ∞
0

5Qu

(√
2aγ̂,

√
aλ
)
afΓ(aγ̂)

Ba loge(10)
dγ̂ da.

(11)

The probability of false alarm and the probability of detec-
tion are used to construct the receiver operating characteristic
(ROC) curve. It is a two-dimensional graph given by Pfa versus
Pd, as the threshold λ is varied. The performance of the system,
analyzed by ROC, is higher as the curve approaches the point
(0, 1). However, in this article, a single figure of merit is
also used, calculated from ROC, which can provide a better
understanding of the overall detection capacity of spectral
sensing. This measure is the area under ROC curve (AUC), an
alternative metric that does not account for specific values of
Pfa and Pd but the area below ROC. Then, the average AUC,
denoted hereafter as AUC, can be evaluated as [37, Eqn. (4)]

AUC =

∫ 1

0

Pd dPfa. (12)

Since Pfa and Pd are both functions of the threshold λ, the
threshold averaging method [38] can be used in the evaluation
of AUC. Noting that Pfa and Pd varies from 0→ 1 as λ varies
from ∞→ 0, (12) can be rewritten as [37, Eqn. (5)]

AUC = −
∫ ∞

0

Pd
dPfa

dλ
dλ. (13)

Note that, in both ROC and AUC, the values of Pfa and
Pd are calculated by (7) and (8), in the absence of noise
uncertainty, and by (10) and (11), in the otherwise case,
considering the α-η-κ-µ fading channel. Several authors have
evaluated the performance, numerically or analytically, of the
spectral sensing of the ED technique in terms of the AUC,
under several types of fading channels [2], [24], [30], [37],
[39].

VI. NUMERICAL RESULTS

Simulation results of the global spectral sensing perfor-
mance of several scenarios will be assessed in order to verify
the influence of the main parameters that characterize the α-η-
κ-µ fading model, also considering the influence of SNR and
noise uncertainty. The sensing channel is considered slow and
therefore is constant within a given sensing interval, varying
only between one period and another. For the estimation of
each value of Pfa and Pd for the construction of the ROCs 105

realizations of the process by Monte Carlo simulation of the
spectral sensing have been performed, and also 100 AUCs for
the calculation of AUC. The activity of the PU was simulated
as a Bernoulli random variable, with 50% of time active, to
account for the detections and 50% of time inactive, for the
false alarms. The α-η-κ-µ fading channel samples, and its
particular cases, were generated as in [20], [21].

In Fig. 2 and Fig. 3, ROC curves are shown, for fixed
parameters of the α-η-κ-µ distribution, with different average
SNR values and with the absence and presence of noise
uncertainty, for different values of noise uncertainty bound
B. The solid lines represent the theoretical results, calculated
and solved numerically by (7) and (8) in the absence of noise
uncertainty, and by equations (10) and (11), otherwise, and the
marks, the simulated results. In Fig. 2 the number of collected
samples at a given sensing interval is L = 20 and in Fig. 3,
L = 30. Comparing the two Figures, it can be noticed that
a higher value of collected samples L results in a drop in
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performance. Given the definition of SNR adopted in (3), it is
seen that an increase in L will simply result in a degradation
of the global performance in terms of ROC and, consequently,
AUC. Because all the transmitted PU symbols have the same
energy (power) (refer to Section III), notice from (4) that as
L increases, the noise power also increases. Also, when the
number of collected samples increases, the detection and false
alarm probabilities both increase. Nonetheless, the probability
of false alarm increases faster than the probability of detection,
leading to a lower overall detection capability, here measured
by AUC. This result was already reported in the literature,
for instance [33], [37]. In general, for the Figs. 2 and 3, a
higher value of average SNR results in an improvement in
the sensing performance. On the other hand, in the presence
of noise uncertainty the performance of the sensing is always
worse, with increased degradation for higher values of B.

In Figs. 4, 5 and 6, average curves of AUC are shown,
in which the symbols are the simulated points and lines the
theoretical curves, calculated from equation (13). The Pfa and
Pd values of this equation are calculated by equations (7) and
(8) in the absence of noise uncertainty and by equations (10)
and (11) otherwise.

In Fig. 4, average curves of AUC are shown as a function
of average SNR values, for fixed parameters of the α-η-κ-
µ distribution, with different number of collected samples L
and with the absence and presence of noise uncertainty, for
different values of noise uncertainty bound B. It is noted in
all situations that for higher values of average SNR always
results in a higher AUC values, that is, an improvement
in performance of the spectral sensing. In the absence of
noise uncertainty, the AUC value is always higher, for any
average SNR value, when compared to the presence of noise
uncertainty at detection. In these cases, the AUC value is
always lower when noise uncertainty bound B value is greater.
Note that for the same set of parameters, a higher value of
collected samples L results in a lower AUC value, that is, a
decrease in the sensing performance.

In Fig. 5, curves for AUC are shown as a function of
noise uncertainty bound B, for fixed parameters of the α-η-
κ-µ distribution, with different number of collected samples
L and for different values of average SNR. It is observed that
for higher values of the noise uncertainty bound B the AUC
value is always lower, that is, the global sensing performance is
worse. When B = 0 dB, meaning absence of noise uncertainty,
the highest AUC value occurs. It can be noted that for any
value of the noise uncertainty bound B, a higher average
SNR value results in higher AUC values and higher value
of collected samples L results in lower AUC values, which
means that in the first case an improvement in the sensing
performance occurs and in the second case, the opposite
occurs.

In Fig. 6, curves for AUC are shown as a function of the
parameters α, η, κ, µ, q and p for different values of SNR,
in the absence and presence of noise uncertainty. The number
of collected samples at a given sensing interval is L = 20
and, in the presence of noise uncertainty, the noise uncertainty
bound used is B = 2 dB. For comparison purposes, theoretical
curves of some conventional models are also drawn: α-µ [2,
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Eqn. (48)], η-µ Format 1 [2, Eqn. (41)], η-κ [2, Eqn. (27)] e
κ-µ [2, Eqn. (29)].

For all cases, the sensing performance is worse under the
influence of noise uncertainty, that is, lower value of AUC.
Regarding the fading parameters, for higher values of α, κ,
or µ, represented respectively in parts (a), (c) and (d) of Fig.
6, more deterministic the channels become, resulting in an
improvement in the performance of the sensing, i.e., higher
AUC values. This performance improvement will be limited
to the case of the evaluation of a system under only the
effect of thermal noise. Looking at part (b) of Fig. 6, the
optimal performance is reached around η = 1, and minimum
values of AUC occur when η → 0 and η → ∞. The overall
performance of spectral sensing is more sensitive to variations
of the α parameter, followed by the µ, κ, and η parameters.
The unbalance parameters q and p, represented in parts (e)
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and (f) of Fig. 6, do not significantly affect the AUC.
It is clear that the inclusion of additional parameters of the

α-η-κ-µ model impacts the analysis of system performance
decisively. More specifically, the inclusion of the parameters
κ and η in the α-µ model; α and κ in η-µ model; α and µ in
η-κ model; and α and η in κ-µ model. In all of these cases, the
difference in performance between the α-η-κ-µ model and the
conventional one is greater for higher SNR values. Similarly,
this difference in performance is more pronounced for lower
values of α, κ and µ, tending to cancel out to high values
of α, κ and µ since in this scenario the two models tend to
become deterministic. In the comparison between the models
α-η-κ-µ and η-µ (Fig. 6(b)), the performances when η →∞
are the same when η → 0, consequence of the symmetry of
the model around η = 1 [40].

In parts (e) and (f) of Fig. 6, curves are plotted for η = 0.5

and η = 2. Note the symmetry of the performance curves
around q = 1 and p = 1. In general, for a set of parameters
(α,η,κ,µ,p,q) has the same performance for (α,1/η,κ,µ,p,1/q)
or (α,1/η,κ,µ,1/p,q).

VII. CONCLUSION

This article contributed to the knowledge advancement of
the recently proposed α-η-κ-µ distribution. More specifically,
the objective was to better understand the influence of the
various fading phenomena in the performance of the spectral
sensing technique by the ED, in the absence and presence of
noise uncertainty. At first, for fixed parameters of the α-η-κ-µ
distribution, an analysis of spectral sensing performance was
made through ROC and AUC curves for different values of
average SNR, with different values of collected samples and
in the absence and presence of noise uncertainty, for different
values of noise uncertainty bound. For all cases, higher val-
ues of average SNR and lower values of collected samples
result in an improvement in spectral sensing performance.
On the other hand, the presence of noise uncertainty always
degrades the performance of the spectral sensing, and more
significantly when noise uncertainty bound is higher. In the
sequence, the effect of the α-η-κ-µ distribution parameters was
analyzed by means of AUC curves. In the several scenarios
investigated, the significant impact on the analysis of spectral
sensing performance was demonstrated by including the fading
parameters α, η, κ, and µ. On the other hand, it was observed
that both the ratio of the power of the dominant component
to the power of the scattered and quadrature scattering signal
and the clustering imbalance have a smaller impact on the
overall performance. The system model, and consequently the
transmitted signal model, adopted was the same one used in
[4], [33], [34]. However, based on the information available
about the transmitted signal x(`), the receiver can use other
appropriate models that will be useful in analyzing the distri-
bution of the test statistic, as described in (2), under hypothesis
H1. Thus, as a possible extension of this work, aiming at a
broader approach, and analysis of other models available in
the literature can be done, such as those described in [41,
Section 2.3.1], to provide more information and complement
the conclusions presented here.
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