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Output-only structural damage detection based on
transmissibility measurements and kernel principal
component analysis
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Abstract—Frequency response functions have been employed
as damage-sensitive features in the vibration-based structural
damage detection. However, the need for measuring the excitation
forces arises as a remarkable limitation on the application of
those features in real-world applications. As an alternative,
transmissibility measurements can be explored as features with
output-only nature, which implies the need for measuring only
the response signals. In this paper, an output-only damage
detection method is proposed, combining transmissibilities with
kernel principal component analysis (KPCA). This technique is
based on the pattern recognition paradigm for structural health
monitoring, where feature extraction and feature classification
phases are considered. In the first phase, the dimensionality
of the transmissibilities is appropriately reduced by applying
the KPCA algorithm. In the second phase, an outlier detection
strategy is used to determine the condition of the instrumented
structure. The possibility of clustering in the high-dimensional
space mapped by KPCA is also reported and discussed. The pro-
posed method is experimentally validated with transmissibilities
acquired, under distinct structural conditions, from a laboratory
steel beam instrumented with several accelerometers. The results
demonstrate that the output-only method has high potential to be
applied in a wide range of monitoring solutions, where economic
issues and life-safety are primary motivations.

Index Terms—Structural health monitoring, Transmissibility
measurements, Damage detection, Kernel principal component
analysis.

I. INTRODUCTION

N the structural health monitoring (SHM) field, damage
detection based on the vibration response measurements
from engineering structures has become a crucial research area
due to its potential to be applied in real-world scenarios [2],
[3]l. Assuming that the vibration signals are often available and
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can be measured by employing different types of monitoring
systems, damage-sensitive features can be then extracted and
used to assess early and progressive structural damage via
appropriate data treatment.

Frequency response functions (FRFs) play an important role
in the vibration-based damage detection area [4]. Many works
have been employed the FRFs as features to generate some
kind of damage indicators (DIs) that reveal the structural
condition of monitored structures [5]—[8]]. However, the need
for measuring the excitation forces arises as a remarkable
limitation on the application of FRFs in real-world SHM
solutions.

As an alternative, transmissibility measurements have been
widely explored as features in damage detection for SHM [9]]-
[12], due to their output-only nature [13]-[15]], which implies
the need for measuring only the response signals, without any
knowledge about the excitation forces.

Considering the successful use of transmissibilities to dis-
tinguish between undamaged and damaged conditions of mon-
itored structures, instead of generating a DI directly from the
transmissibility measurements, several studies have been at-
tempting to combine FRFs and transmissibilities with machine
learning (ML) algorithms to detect structural damage.

The combination between FRFs or transmissibilities and ar-
tificial neural networks (ANN) has been widely investigated. In
a first manner, the transmissibilities are the input of a complex
ANN that should detect damage simulated as stiffness changes
in a structure [[16], [[17]. However, the number of spectral lines
of the transmissibilities defines the number of input nodes
of the ANN, which may lead to an expensive computational
load in terms of algorithm training along with an information
criterion to select the neural architecture. In other attempt,
the FRFs, computed from a monitored railway wheel, have
their dimensionality reduced via principal component analysis
(PCA) and this reduced form is the input of the ANN [/18].
Although acceptable results were achieved with this technique,
a drawback appears when the FRFs or transmissibilities from
undamaged and damaged cases must be known in advance by
PCA, as damaged conditions might be prohibitive to simulate
in some practical cases.

An approach that uses outlier analysis, density estimation
and auto-associative neural network combined with measured
transmissibilities was proposed to assess damage in aerospace
structures [[19]-[21]. In this case, some parts of the transmissi-
bility measurements are selected as features in a visual manner,
which may not be generalized to other health monitoring cases.
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More recently, FRFs and transmissibilities were linked to
the approach based on Mahalanobis squared distance (MSD)
to determine the structural condition of a monitored beam via
different types of DIs [22]]. Similar to a first proposal [23]], the
MSD algorithm presents problems, namely numerical errors
to compute a large covariance matrix, when all spectral lines
of the damage-sensitive features are considered. Note that the
ML algorithms, such as MSD and ANN, often work with a
large number of observations (or measurements) and a small
dimensionality (or spectral lines).

PCA and its nonlinear version, kernel PCA (KPCA), have
been applied to reduce the dimensionality of the original
features such that a trade-off should be reached in the sense
that the appropriate dimensionality needs to be not only large
enough to account for all normal condition but also small
enough to be as sensitive as possible to damage [24[-[26].
To reach this appropriate reduced form of transmissibilities,
this paper proposes an output-only structural damage detection
method in the context of a statistical pattern recognition (SPR)
paradigm. In this paradigm, the proposed method is divided
into two phases [27]], [28]: feature extraction and feature
classification. In the first phase, the dimensionality of the
transmissibilities is reduced by application of KPCA. In the
second phase, based on outlier detection, DIs are generated for
new transmissibilities considering the data model computed
in the first phase. The proposed method is validated on a
monitored steel beam, under different structural conditions,
where the damage classification performance is evaluated
based on false-positive indications of damage (Type I errors)
and false-negative ones (Type II errors).

The remainder of this study is organized as follows. In
section [[I} a brief background related to transmissibility mea-
surements is emphasized and the feature extraction and feature
classification phases of the proposed method are described.
A description of the test structure is provided in section
along with a summary of the validation scenarios and their
measurement sets. Experimental results on measurement sets
from three scenarios are discussed in section a comparison
with the PCA algorithm is also presented. Finally, section [V]
highlights a discussion related to the strengths and challenges
of the proposed method.

II. OUTPUT-ONLY METHOD

This section deals with the background and unsupervised
phases related to the method proposed in this paper. First, a
brief background related to the transmissibility measurements
is introduced. Second, in the feature extraction or training
phase, the dimensionality of the transmissibilities is reduced by
application of KPCA. In the feature classification or test phase,
the damage assessment of the structure is performed by taking
into account the generalization of the reduced dimensionality
to new transmissibility measurements.

A. Transmissibility measurements

The motivation of using the transmissibilities to detect
structural damage relies on the assumption that they are local
quantities [[10]], which suggests a high sensitivity to detect

changes in the structural dynamics caused by some kind of
damage. The detection of any progressive damage implies a
regular monitoring of the structure at certain time intervals.
Transmissibility measurements are defined as relations be-
tween motion responses and motion reference-responses [29].
In practice, it is often convenient to obtain the transmissi-
bilities without the knowledge of the excitation forces. In
particular, the direct or scalar transmissibility measurement
T;; (w) between an output ¢ and and reference-output j is
defined as the ratio between the two response spectra,

Y; (w)
Yj (w)’

T;j (w) = (1
where Y; (w) and Y (w) are the complex amplitudes of the
responses y; (t) and y; (t), respectively, for a harmonic force
applied at a given coordinate, and for each frequency w.

In general, for a random input and considering an stationary
stochastic process, a transmissibility measurement can be
estimated in several manners. The most common option is
using an output-only H; estimator by dividing an estimate of
the cross-power spectrum .S; ; (w) between the output Y; (w)
and the reference-output Y; (w) by an estimate of the auto-
power spectrum S, ; (w) from the reference-output Y; (w),

7 (w) = ). @)
5.5 (w)

A set of transmissibilities is acquired by measuring re-
sponses on all coordinates and directions of interest at the
structure divided by the reference response from the same fixed
measurement coordinate.

It is worth noting that the phases described in the following
are unsupervised in the sense that the training or feature
extraction is performed only with undamaged data that should
cover nearly all the operational and environmental effects and
the test or feature classification is performed with data from
any structural condition (undamaged or damaged). Thus, one
should consider a training set, X € R™*? with d-dimensional
transmissibilities from n different conditions when the struc-
ture is undamaged and a test set, Z € R!? where [ is
the number of transmissibilities from the undamaged and/or
damaged conditions.

B. Feature extraction

For the feature extraction phase, the KPCA algorithm [30]
is used to reduce the dimensionality of the transmissibility
measurements. Let X € R? be the input space such that the
transmissibilities x; € X, ¢ = 1,...,n. Every transmissibility
x is then mapped to a dg-dimensional feature space H by
applying the mapping functions ¢,,, m = 1,...,dg, where

B(x) = [¢1(%) da(x) ¢, (@] . B

By employing the kernel trick [31], £ : & x X — R
is defined as a positive semi-definite scalar kernel function
satisfying for all x;, x; € &,

K (xi,%;) = ¢ (x:) | ¢ (x;) @)
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KC (+) defines an inner product that allows to map the trans-
missibilities implicitly to a high-dimensional kernel space. Let

e =[p(x1) (x2) ¢(xn)] )
be the dg x n matrix of the mapped transmissibilities and
K = &' ® be the n x n kernel (Gram) matrix. According
to Mercer’s theorem, any continuous, symmetric, and posi-
tive semi-definite function that maps (x;,x;) onto a high-
dimensional feature space can represent a kernel [32]]. The
kernel trick then consists of specifying the kernel K (-) instead

of the mapping ¢. Herein, a Gaussian kernel [33] is employed,

2
K (xi,%;) = exp (W) : ©)
where this kernel implicitly defines a high-dimensional feature
space with a bandwidth o2.
To avoid that the first principal component becomes much
larger than the other components, the kernel matrix K should
be replaced by a centered version [30]],

1, 1,  1n 14
K-> K-2K-K=242K™2 (7
n n n n

with 1, as the n X n matrix composed of ones.

The eigenvalues ¥ and the corresponding eigenvectors U
can be then derived by using singular value decomposition
(SVD) to solve the generalized eigenvalue problem [30]],

KU = UX. (®)

Afterwards, the 31 and U; should be defined as follows,

Y= [21 Eg] , 2 € RTXT;U = [Ul UQ} ,Up € R”XT,

(€))
where 3; comprises the r largest eigenvalues and U; the cor-
responding eigenvectors. The transmissibility measurements X
can be then represented in a reduced form as the transpose of

X, =/, U7.

In addition, the estimation of parameters required for the
KPCA algorithm is discussed in the following. There are
multiple methods to optimize the bandwidth parameter o2 of
the Gaussian kernel [34]]. However, those methods require that
n > d and when transmissibility measurements are used, often
n < d. Thereby, a rule-of-thumb is employed,

(10)

d
V:var(X),azzgz:vi, (11)
i=1

where var (X) is the variance of the training data. Several cri-
teria have been proposed to determine the number of principal
components r retained in the high-dimensional feature space
[35]. In this study, r is derived to comprise nearly all normal
variability of the training data,

(12)

being X;; the i-th diagonal element of 3. Note that the
variance retained in the standard PCA is usually 0.9-0.95 [35]].
On the other hand, the KPCA has been often used with 0.99
because there are potentially n nonzero principal components
for the Gaussian kernel.

C. Feature classification

Since an undamaged data model was established in the
previous phase by training the KPCA, in this phase a DI is
generated to any new transmissibility measurement z; € R,
i=1,...,1L

First, a new transmissibility measurement should be mapped
onto the high-dimensional kernel space in the form of
® (z;) ® (or &P (2;)), by using X and z; in Equation
@ Besides, a centering should be performed, such as,

in 1, In.,1n

P(z;) &> ®(z) &— 2K-—P(z;) 24+ 2K=2,
n n o n

(13)

with 1, as the I x n matrix where all elements are equal to 1.

Second, the eigenvectors U; should be replaced by a
normalized version,

U,
m=1

) Sy
vV Z:m,m

being the transmissibilities used in the test phase, Z, repre-
sented in a reduced form as

U, — T, (14)

Z,=®(z;) ®U,. (15)
A DI is then generated for the i-th new transmissibility
measurement as follows,
DI(z;) = ®(z;)' ®U U, & @ (z,). (16)
Finally, any DI can be classified by a threshold estimated
from the training data, considering a given level of signif-
icance. The general idea is an anomaly or outlier detection
strategy. By considering the undamaged model estimated in
the training phase, when a new observation comes from the
undamaged conditions learned by the model, it should be
classified as a normal behavior, whereas if a new observation
comes from any unknown condition, it should be classified as
a possible anomaly or abnormal behavior.

D. The possibility of clustering in high-dimensional space

It is worth to mention the possibility of clustering in
the high-dimensional space learned by KPCA. The theory
provided for feature extraction in this study can be extended
to classify undamaged and damaged cases via a density-based
procedure which is widely known in computer vision as mean
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shift clustering (MSC) [36]. MSC is a nonparametric algorithm
that does not require prior knowledge of the number of clusters
and does not constrain their shapes. It iteratively discovers the
modes in the data by maximizing the kernel density estimate.
In addition, the number of clusters is automatically estimated
by the number of discovered modes.

Although the MSC is applied in the Euclidean or original
space, it can be formulated to act in high-dimensional spaces
with aid of a kernel function [37]. The motivation to the
aforesaid adaptation is that in the original space if the clusters
are not linearly separable and/or the distance metric is not
adequate, poor clustering performance is usually obtained. On
the other hand, in high-dimensional spaces as the one mapped
by KPCA, data becomes linearly separable and meaningful
cluster can be achieved.

In the context of damage detection, a kernel MSC comprises
the following steps: i) feature extraction via KPCA on training
data; ii) application of MSC in the learned space to estimated
the undamaged modes or clusters; iii) mapping of test data
onto the learned space and afterwards application of MSC
on them to classify as undamaged when they are close to
the undamaged modes and damaged when they are far from
these clusters. In the last step, with the application of MSC
on mapped test data, the normal cases should converge to the
undamaged modes and abnormal ones should diverge from
them forming new modes that denote new structural condi-
tions. These new conditions might be classified as damage.

III. TEST STRUCTURE AND DATA SETS

For the experimental validation of the proposed method, a
steel beam was used, with rectangular cross-section, dimen-
sions L x b x h = 1002 x 35 x 6 mm® and weight 1.740
kg. Two inextensible cables simulating “free-free” support
conditions suspended the test structure. The test structure was
excited at locations 3 and 12 with a pseudo-random signal by
a Briiel & Kjaer 4809 shaker, powered by a Briiel & Kjaer
2706 power amplifier. The force was transmitted through a
stinger and measured by a Briiel & Kjaer 8200 force trans-
ducer; the responses were measured by 23 piezoelectric CCLD
accelerometers (equally spaced coordinates). The response
signals were fed into the multi-channel data acquisition unit
Briiel & Kjaer 2816 (PULSE) and analyzed with the Labshop
6.1 Pulse software. The experimental setup is shown in Figure
[[] and more details can be found in Sampaio et al [g].

Fig. 1. Experimental setup with the identification of the accelerometers and
damage location.

The damage was simulated with a reduction in the height i
by a saw cut, as depicted in Figure 2] Basically, saw cuts, with

several depths, were inflicted to the beam between locations
15 and 16 to create nine damage levels, as synthesized in Table
M and exemplified in Figure [3] for the second level of damage.

Damage (saw cut)

Response

Fig. 2. Beam in transverse vibration.

TABLE I
DAMAGE LEVELS INFLICTED TO THE EXPERIMENTAL BEAM BY SAW CUTS.
Damage level =~ Width (mm) Depth (mm)
DO1 1.0 0.5
D02 1.0 1.0
D03 1.0 1.25
D04 1.0 1.6
D05 1.0 3
D06 1.0 35
D07 1.0 4
D08 1.0 4.5
D09 1.0 5

Fig. 3. Detail of the second level of damage caused by a saw cut [8].

Therefore, from Table E], one can infer that the response
signals from the accelerometers deployed on the beam were
measured in ten conditions; the undamaged or baseline one
(D00), and the nine levels of damage (D01 to D09) inflicted
in the middle of the locations 15 and 16. Furthermore, the
frequency range used for the analysis of the beam was 0-800
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Hz (3200 spectral lines) and 15 averages have been taken to
acquire the accelerations.

Firstly, according to the location of the excitation force,
two scenarios are considered; a force at location 3 and a
force at location 12. For both cases, 30 measurement sets
have been performed from the instrumented beam. The first
three measurement sets are related to the undamaged beam
(Baseline condition — BC). The following 27 measurement
sets correspond to the nine saw cuts of the beam with three
measurements sets each (Damaged condition — DC).

In the aforementioned case, considering all possible combi-
nations to output and reference-output, 506 transmissibilities
can be generated for each measurement set. For convenience,
only 100 transmissibilities are selected at random from each
measurement set, yielding 3000 transmissibilities to compose
the training and test measurement sets, where the first 300
are transmissibilities from the undamaged condition and the
last 2700 transmissibilities corresponding to the nine levels
of damage. The training data is composed of 90% of the
transmissibility measurements from the undamaged condition.
The remaining 10% of the transmissibility measurements are
used during the test phase to make sure that the DIs do not
fire off before the damage starts and to evaluate the level
of generalization of the proposed method. The test data is
composed of all the measurement sets, even the ones used
during the training phase. Note that the training process is
unsupervised, which imposes serious limitations for a cross-
validation procedure.

A third scenario was carried out with the excitation force
applied at location 12, where 21 measurement sets have been
performed from the monitored beam. Once again, the first
three measurement sets comprise the undamaged condition
(MO00). The following three measurement sets are different
measurements under the following condition: an added bolt
with 2 g between locations 17 and 18 (MO1). The next
three measurement sets are different measurements under the
following condition: an added nut, with 0.7 g, to the previous
condition of the beam (M02). And so on until 5 nuts are added
(MO03 to M06). An example of the third scenario is presented
in Figure 4] The training and test data are composed in the
same manner as described to the first two scenarios.

Fig. 4. Example of the third scenario (an added mass) [8].

IV. RESULTS AND DISCUSSION

In this section, the proposed method is demonstrated by
application to the aforementioned scenarios and their measure-
ment sets, which were obtained by monitoring a steel beam
under different structural conditions. The methods based on the
KPCA and PCA algorithms are employed and their damage
detection performances are compared. Besides, the application
of kernel MSC is briefly demonstrated on the first scenario.

A. First scenario: force at location 3 and nine levels of
damage

Examples of transmissibilities and FRFs derived from the
monitored beam under different conditions are shown in Figure
[l Although, in contrast to FRFs, the peaks in the magnitude
of the transmissibility measurements do not at all coincide
with the resonances of the structural system, there are notable
differences between the undamaged condition and the max-
imum level of damage for both transmissibilities and FRFs.
However, the large number of spectral lines and small number
of measurements make the transmissibilities inappropriate to
be suitably processed by the ML algorithms. Thereby, this fact
highlights the need for dimensionality reduction.

150 ‘
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Fig. 5. First scenario: T5 3 (w) (top) and FRFs5 (w) (bottom) for three

different conditions.
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After the algorithms have reduced the dimensionality of
the transmissibility measurements, the DIs derived from the
KPCA and PCA algorithms are shown in Figure @ along with
a threshold defined for a level of significance of 5% over
the training data. The KPCA, which selected 181 principal
components, can maintain a monotonic relationship between
the progressive level of damage and the amplitude of the DI
and minimizes quite well the Type I and II errors. In opposi-
tion, the PCA, which selected only 14 principal components,
fails to achieve the monotonic relationship and exhibits many
false-negative indications of damage. The performances of the
algorithms are summarized in Table [l where approximately
13 Type I errors are expected due to the threshold selected
for 95% of confidence in the training data and the disparity
between the total errors from both algorithms is evident.

BC (training)
11 = BC (test)
- DC
0971 o Outliers
08l ™~ Threshold
0.7
0.6
o

1200 1500 1800 2100 2400
Observations

0 : i
1 300 600 900

1000 ; T T T T T T T |
= BC (training) | : : : : : :
900! BC (test) :
DC
|| © Outliers
80071 Threshold
7001 Do7 ,
D03 D04 U|395@2 D06 age
600} D02: ™ ot B,

DI

-'*' M
d'l.-'.'qniH ;
E?f?;& :

1200 1500 1800 2100 2400 2700 3000
Observations

1 300 600 900

Fig. 6. First scenario: outlier detection based on the KPCA (top) and PCA
(bottom) algorithms.

TABLE II
FIRST SCENARIO: NUMBER AND PERCENTAGE OF TYPE I AND TYPE II
ERRORS.
. Error
Algorithm Type 1 Type II Total
KPCA 15 (5.00%) 1 (0.037%) 16 (0.53%)
PCA 14 (4.67%) 2032 (75.26%) 2046 (68.20%)

The large difference between the performances of the algo-
rithms is explained through Figure [7] In the high-dimensional
feature space mapped by KPCA, the principal components
are distributed in a more representative manner than those
distributed onto the feature space projected by PCA. Thus,
the transmissibilities that have been reduced by KPCA, in the
training phase, from 3200 to 181 dimensions can be general-
ized to new transmissibilities, ensuring an adequate dimension
to detect structural anomalies, whereas the reduction from
3200 to 14 dimensions by PCA impacted in an overfitting
regarding the training measurement sets.
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Principal components
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-
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Fig. 7. First scenario: distribution of principal components for the KPCA
(top) and PCA (bottom) algorithms. The number of principal components
selected is highlighted by a red dashed line.

Often the input or Euclidean space of transmissibility mea-
surements imposes limitations for a suitable processing in
terms of damage classification. For instance, in this space
is hard to discover clusters or density modes that group
together transmissibilities from the same structural conditions,
due to the many spectral lines of these measurements mainly.
Thereby, the learned space via KPCA can be an alternative
for the aforesaid task. Figure [8] shows non-separable clusters
in the input space and modes estimated by kernel MSC in
the feature space mapped with KPCA. Unlike the Euclidean
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space, the modes in the mapped space are linearly separable
and readily computed. Note that, for visualization purposes,
only two dimensions and ten test transmissibilities for each
condition (D00-D09) were considered.
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Fig. 8. First scenario: features in Euclidean space (top) and learned kernel
space after the application of kernel MSC (bottom). Transmissibilities and
modes are markers with colored and non-colored face, respectively.

Figure [9) provides a better understanding of the clustering
procedure. Ten modes were estimated; a baseline one in
the training phase and the nine damaged ones in the test
phase. Each transmissibility was correct classified according
to the condition to which it belongs. It is clear that, after the
application of kernel MSC, the transmissibilities converged
to the neighborhood of the closest mode. Some transmis-
sibilities from the condition D00 seem belong to D01, but
this minor ambiguity is related to the visualization from only
two principal component and disappears when one takes into
account the contributions of all principal components selected
by KPCA. In this mapped kernel space one can also infer
the progressive level of damage by comparing the distance
between the maximum levels of damage (D08 and D09) with
a intermediary one (D07), for example.
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Fig. 9. First scenario: zoom of learned kernel space after the application
of kernel MSC. Transmissibilities and modes are markers with colored and
non-colored face, respectively.

B. Second scenario: force at location 12 and nine levels of
damage

In the second scenario, examples of FRFs from the mon-
itored beam present relative large differences between the
undamaged condition and the maximum level of damage when
compared to examples of transmissibilities, as indicated in
Figure In this case, despite the relative minor sensitivity
of the transmissibilities to damage against FRFs, the former
remains useful to distinguish between undamaged and dam-
aged conditions, and its output-only nature plays an important
role in SHM solutions where the forces can not be measured.

The DIs computed by the KPCA and PCA algorithms are
shown in Figure [TT] along with a threshold defined for a level
of significance of 5% over the training data. The KPCA, which
selected 133 principal components, once again, can maintain
a monotonic relationship between the progressive level of
damage and the amplitude of the DI and minimizes quite well
the Type I errors. On the other hand, some Type II errors arise
mainly in the first level of damage (DO01). These additional
errors are related to a minor loss of information due to the
assumption that the principal components are retained based
on 99% of variance, which implies on the selection of less
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Fig. 10. Second scenario: T'g,12 (w) (top) and FRF1q (w) (bottom) for three
different conditions.

principal components compared to those selected in the first
scenario.

By selecting only 10 principal components, the PCA, once
again, fails to establish the monotonic relationship and outputs
more Type II errors than those presented in the previous
scenario. The performances of the algorithms are synthesized
in Table [[TT] where in an overall analysis the KPCA has better
damage detection performance than the PCA.

For both algorithms, the force at location 12 seems make
the minimization of false-negative indications of damage more
difficult. A possible reason for this challenge is that the force
location becomes more close to the source of damage and
few transmissibility measurements selected at random from
the nine levels of damage might be generated by the relation
between output and reference-output sensors relatively far
from the force and source of damage locations. This fact
corroborates the increase in the number of Type II errors for
this scenario, besides the minor loss of information inherent
in the working principles of KPCA.

C. Third scenario: force at location 12 and added masses

In contrast to the previous scenarios, this scenario presents
examples of transmissibilities and FRFs from the monitored
beam which demonstrate minor differences between the un-
damaged condition and the maximum level of added mass,
as evidenced in Figure [T2] Therefore, this case is more
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Fig. 11. Second scenario: outlier detection based on the KPCA (top) and
PCA (bottom) algorithms.

TABLE III
SECOND SCENARIO: NUMBER AND PERCENTAGE OF TYPE I AND TYPE II
ERRORS FOR EACH ALGORITHM.

. Error
Algorithm Type 1 Type 11 Total
KPCA 14 (4.67%) 15 (0.56%) 29 (0.97%)
PCA 15 (5.00%) 2207 (81.74%) 2222 (74.07%)

challenging to the unsupervised ML algorithms because the
success of these methods depends highly on the sensitivity
of the transmissibility measurements (or FRFs). Note that in
the SHM literature, the addition of masses is an operational
condition which is often assumed to be an undamaged or
normal case. In this study, this operational behavior is assumed
to be a damaged or abnormal condition only to emphasize the
ability of the algorithms to distinguish between the BC (M00)
and other conditions (M01-MO06).

The DIs computed by the KPCA and PCA algorithms are
represented in Figure [I3] along with a threshold defined for
a level of significance of 5% over the training data. The
KPCA, which selected 133 principal components as expected,
satisfactorily minimizes the Type I errors and reaches a
monotonic relationship between the progressive level of added
mass and the amplitude of the DI. This is an important fact,
since the increment of mass, between each level, is very low
compared to the total mass of the beam. On the other hand,
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some Type II errors appear in different levels of added mass
and they are mainly related to the differences which are barely
visible from the transmissibility measurements under distinct
structural conditions.

The worst performance of the PCA is achieved in this
scenario where only 10 principal components (as expected)
were chosen, which negatively influences the discrimination
of two different conditions with imperceptible differences. The
algorithm approximately attributes the same amplitude of the
DI to different levels of added mass and 92% of damage cases
are misclassified, as shown in Table m

The number of principal components selected by KPCA (or
PCA) was expected since the force location is the same chosen
for the second scenario, i.e., the condition DOO from the second
scenario is similar to the condition M0O. As the algorithms are
unsupervised, their training phases are conducted only with
undamaged data and due to DOO and MOO are similar, the
numbers of Type I errors in Tables [[TI] e [[V] are identical.

D. Execution time on measurement sets

The average execution time for each algorithm on measure-
ment sets from the three scenarios considered in this study is
presented in Table All the experiments ran on an Intel
Core i17-4500U processor 1.8-GHz (2.4-GHz) system with
4 GB of main memory. In an overall analysis, the KPCA
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Fig. 13. Third scenario: outlier detection based on the KPCA (top) and PCA
(bottom) algorithms.

algorithm has the best time performance for all measurement
sets mainly because the kernel matrix has the dimensions
equal to the number of transmissibility measurements, which
is small compared to the number of spectral lines. Thus, the
steps of KPCA regarding the computation of eigenvalues and
eigenvectors, as well as the feature classification phase, run
very fast.

TABLE IV
THIRD SCENARIO: NUMBER AND PERCENTAGE OF TYPE I AND TYPE II
ERRORS FOR EACH ALGORITHM.

. Error
Algorithm Type 1 Type II Total
KPCA 14 (4.67%) 92 (5.11%) 106 (5.05%)
PCA 15 (5.00%) 1656 (92.00%) 1671 (79.57%)

TABLE V
EXECUTION TIME FOR EACH ALGORITHM ON EACH TEST SCENARIO
CONSIDERING TRAINING AND TEST PHASES (AVERAGE FOR 20
EXECUTIONS).

Average time (seconds)

Algorithm

First Second  Third
KPCA 0.281 0.283 0.199
PCA 24.805  25.063 22.317
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As mentioned before for the MSD algorithm, the PCA also
calculates a large covariance matrix with dimensions equal to
the number of spectral lines, which may introduce numerical
errors and increase the total execution time of this algorithm.

V. CONCLUSIONS

This paper proposed an output-only structural damage de-
tection method, for which transmissibility measurements and
ML algorithms were used to assess the condition of monitored
structures. Feature extraction and feature classification phases
were developed, based on the SPR paradigm, to reduce the
dimensionality of transmissibilities via KPCA (training) and to
generate a DI that establishes the level of damage for each new
transmissibility measurement (test), respectively. By consider-
ing three distinct scenarios, the damage classification perfor-
mance of the proposed method on challenging transmissibility
measurement sets from a monitored beam was evaluated and
compared to a state-of-the-art method. The extension of the
training phase to provide damage classification by clustering
was also demonstrated on the first scenario.

The damage detection performances on three different sce-
narios confirmed that the proposed method is better than the
alternative one. When the KPCA is compared to the PCA,
the improvement of the mapped feature space proved to have
a direct and positive impact on the dimensionality reduction
step and consequently damage detection. This explains, in part,
the relatively poor performance of the PCA on measurement
sets from all scenarios. In addition, the KPCA had better
execution time than the PCA on all scenarios due to the
appropriate formulation of the former algorithm to work on
transmissibility sets with large number of spectral lines and
small number of measurements.

Unlike the other approaches from the literature, the output-
only strategy introduced in this study presents two main advan-
tages. First, the transmissibility measurements are processed
by KPCA such that an appropriate dimensionality is achieved
for ML applications, solving the problem of many spectral
lines and small number of measurements. Second, the training
and test phases can be seen as separated steps, i.e., in the
feature extraction phase, only some part from the undamaged
cases should be used to train the KPCA algorithm and in
the feature classification phase, any new case (undamaged or
damaged) is tested. In other words, after the training phase,
the KPCA does not need to know in advance whether a new
transmissibility is from the undamaged condition or not.

In general, the choice of parameters, as well as the tuning
of them, for ML algorithms becomes very challenging when
different scenarios are considered. To deal with this issue, few
recommendations were suggested for the KPCA algorithm,
taking into account the heterogeneity of monitoring data
and parameter settings widely tested and established in the
specialized literature. Moreover, the KPCA is sensitive to some
loss of information in the high-dimensional feature space as
only a certain fraction (herein 99%) of the normal variability
is retained.

As future works, the present method will be tested on
other real-world engineering structures and a new method for
damage detection will be developed based on kernel MSC.
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