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Abstract—Blind deconvolution is a major theme in signal
processing and has been intensely investigated over the last
decades. Among its several applications, we can mention the
problem of seismic deconvolution and channel equalization in
telecommunications. In these two cases, predictive techniques
have been studied by different authors, and presented satisfactory
results when some suitables conditions were fulfilled. In fact,
the predictive deconvolution structure, when associated with the
classical mean squared error criterion is only effective when the
distortion system is minimum phase. In the case of nonminimum
phase systems, it only provides magnitude equalization, but
the phase response remains distorted. In order to overcome
this problem, we present in this work some interesting results
obtained with the use of `p norms, with p , 2, as optimization
criteria.

First we demonstrate that the `p prediction error filter works
as the Maximum Likelihood solution for blind deconvolution
when the signal to be recovered has a generalized Gaussian
distribution, with i.i.d. (identically and independently distributed)
samples. From this, we show how the best p can be chosen
according to the signal distribution. Then we further investigate
the phase response of the `p filter, emphasizing its potential as
well as some limitations in dealing with blind deconvolution,
even for nonminimum phase distortion system. Finally, some
performance simulations results are provided.

Index Terms—Predictive deconvolution, `p norms, nonmini-
mum phase deconvolution.

I. INTRODUCTION

The problem of estimating future values of a time series
from its present and past samples is a very challenging
problem in the field of signal processing. Its origins goes back
to the works of Kolmogorov [1], in the context of stationary
discrete time signals, and Wiener [2], where the continuous
time optimal predictor is formulated.

The objective in prediction consists in finding a mapping
F[·] that, when applied to a set of past samples of a time
series x(n − 1) = [x(n − 1) x(n − 2) · · · x(n − L)]T , results in
an estimative to its present value x(n) [3], [4]:
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F[x(n − 1)] = x̂(n). (1)

The generic mapping in (1) may be associated to a particular
filter structure, with a set of parameters to be adjusted. For the
case of linear prediction, this mapping can be represented by
a finite impulse response (FIR) filter, namely prediction filter,
which input-output relation is given by:

x̂(n) =
L∑
i=1

wi x(n − i) = wTx(n − 1), (2)

where w1, w2, · · · , wL are the prediction coefficients, x(n−i),
for i = 1, 2, ... L, are the past samples of x(n), and x̂(n) is its
estimative. Moreover, we can define w = [w1 w2 · · · wL]T
as the vector of parameters to be adjusted. The difference
between x(n) and x̂(n) leads to the so called prediction error
[5]:

e(n) = x(n) − x̂(n) = x(n) −
L∑
i=1

wi x(n − i). (3)

Meanwhile (2) stands for the prediction filter, the input-
output relation given by (3) stands for what we call the
prediction error filter (PEF), which structure is illustrated by
the diagram of Figure 1.

Predictor

x(n − L)
.
.
.

x(n − 2)
x(n − 1)

−x̂(n)
Σ

x(n)

e(n)

Prediction Error Filter

Fig. 1: The prediction filter consists in mapping the past
samples of x(n) in its estimative x̂(n). The prediction error
filter stands for the mapping of x(n) and its past samples in
the prediction error e(n).

The problem of linear prediction, as described above, is
of great relevance for the field of signal processing, and can
be applied for both parametric and nonparametric models. It
can be used to estimate the parameters of autoregressive (AR)
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models [6], such as in the linear predictive coding of speech
signals; in time series forecasting [7]; and in the deconvolution
problem, which is the problem of interest in this work [3].

It is well known in the literature that the classical prediction
error filter obtained through the mean squared error (MSE)
criterion is only effective for the deconvolution of minimum
phase systems, since this filter provides decorrelated output
samples. Hence, for signals that have been distorted by non-
minimum phase systems, the classical PEF equalizes only
magnitude, but the phase response remains distorted.

To overcome this problem, we need to explore a stronger
hypothesis: the independence between the samples. This can
be attained by means of a nonlinear PEF structure adjusted
by the MSE criterion, as proposed in [8], [9], or rather,
maintaining the linear PEF structure but employing alternative
criteria. We have investigated the latter solution in [10] and
presented some preliminary results. This work introduced an
approach based on `p PEF, showing that it works as a Max-
imum Likelihood solution for blind deconvolution when the
signal to be recovered has a generalized Gaussian distribution.

The present paper extends the study in [10], investigating
the zero location and phase response of the `p PEF, and
presents several new results. Such results concern specially
a deeper assessment about the zero location (and then, the
phase response) of the `p PEF, when the value of p is adjusted
according to the properties of sparsity and antisparsity [11] of
the signal to be recovered. All the results have been obtained
in a noise free scenario with real valued signals.

The paper is organized as follows: In Section II we revisit
the principle and main properties of the classical MSE PEF.
Then, in Section III, we introduce the problem of predictive
deconvolution, emphasizing the limits of the MSE solution.
In Section IV we demonstrate that the `p PEF works as
the Maximum Likelihood solution for blind deconvolution
when the signal to be recovered has a generalized Gaussian
distribution; from this, we show how the best p can be chosen
in according to the signal distribution. Then, in Section V,
we provide a deeper study about the phase response of the
`p filter, emphasizing its potential as well as some limitations
in dealing with blind deconvolution, even for nonminimum
phase distortion system. In Section VI we evaluate the perfor-
mance of the `1 deconvolution for a sparse signal and the `∞
deconvolution for an antisparse signal, considering first and
second order channels, with minimum and maximum phase
responses. Finally, in Section VII we close the paper with
some conclusion remarks and perspectives of future works.

II. THE MEAN SQUARED PREDICTION ERROR FILTER
REVISITED

The prediction coefficients wi , i = 1, ... , L are adjusted
in order to minimize a given cost function J(w), which,
classically, is chosen as the mean squared error criterion:

J(w) = E
[
e2(n)

]
= E

[(
x(n) − wTx(n − 1)

)2
]
=

= E [x(n)x(n)] − E
[
x(n)xT (n − 1)

]
w+

− wTE [x(n − 1)x(n)]+
+ wTE

[
x(n − 1)xT (n − 1)

]
w,

(4)

where E[·] stands for the expectation operator.
Besides the signal variance σ2

x = E [x(n)x(n)], other two
terms completely characterize J(w): the autocorrelation matrix
R = E

[
x(n − 1)xT (n − 1)

]
, and the autocorrelation vector p =

E [x(n − 1)x(n)]. Rewriting (4) in terms of σ2
x , R, and p results

in:
J(w) = σ2

x − pTw − wTp + wTRw. (5)

The cost function in (5) is a quadratic function of the
adjustable parameters and describes an elliptic paraboloid with
one single minimum point. To determine this point, we set the
gradient equal to the null vector:

∇J(w) = 2Rw − 2p = 0→ Rw = p. (6)

The solution of (6) is known in the literature as Wiener’s
solution [3] and is given by:

w∗ = R−1p. (7)

Now, in order to introduce the relationship between linear
prediction and deconvolution, let us consider two properties
of the mean squared prediction error filter, given by (7).

Due to the equivalence between MSE minimization and the
orthogonalization procedure, the error produced by the Wiener
filter is uncorrelated with its input [3]:

E
[
e(n)x(n − i)

]
= 0, 1 ≤ i ≤ L. (8)

Since the prediction error e(n) is a linear combination of
the past samples of x(n), we have, from (3) and (8):

E[e(n)e(n − k)] = 0, ∀ k > 1, (9)

which means that, for a sufficient number of coefficients L,
the PEF tends to generate an uncorrelated (white) output error.

Another property of the prediction error filter is related to
its phase response: in fact, it is possible to show that all of its
zeros lay inside the unit circle, so that the PEF is a minimum
phase filter [5].

III. PREDICTIVE DECONVOLUTION AND BLIND
EQUALIZATION OF MINIMUM PHASE SYSTEMS

These two properties of the mean squared prediction error
filter lead us to an interesting result: the possibility of remo-
ving, or attenuating, the effects of linear and time invariant
systems. This problem is known as the predictive deconvo-
lution [3]. The first application of predictive deconvolution
goes back to Robinson’s work [12] in the context of seismic
deconvolution.

In seismic data acquisition, an artificially and controlled
wave is emitted and, due to the difference between the acoustic
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impedance of the different earth layers, part of its energy is
reflected back to the surface. The reflected signals are captured
by sensors, originating the so called seismic traces. Therefore,
the seismic trace corresponds to the convolution between the
seismic wavelet and the earth impulse response.

From convolution commutative property [13] we can con-
sider the earth impulse response as an input signal s(n) and the
seismic wavelet as a system impulse response h(n), as shown
in Figure 2:

Earth Impulse Response

s(n)
Seismic wavelet

h(n)
Seismic Trace

x(n)

Fig. 2: Simple model of the seismic data acquisition. The
seismic trace x(n) can be seen as the convolution of the seismic
wavelet impulse response h(n) with the earth impulse response
s(n).

Seismic Trace

x(n)
Prediction Error Filter

w(n)

Earth Impulse Response
Estimative

ŝ(n)

Fig. 3: Simple model of seismic deconvolution. The prediction
error filter is applied in order to remove the effects introduced
by the seismic wavelet, providing an estimative of the earth
impulse response.

So, the output seismic trace is given by:

x(n) = s(n) ∗ h(n). (10)

Robinson’s approach consists in applying a prediction error
filter to the signal x(n) in order to remove, or attenuate, the
effects introduced by the seismic wavelet. Thus, the recovery
of the earth impulse response is based in two hypotheses [12]:

1) The earth impulse response behaves like a white noise
(i.e. all of its samples are uncorrelated);

2) The seismic wavelet corresponds to the impulse response
of a minimum phase system.

Under these two simplifying hypothesis, it is possible to
show that a sufficient length prediction error filter is able
to remove the effects introduced by the seismic wavelet, as
depicted in Figure 3.

Another related problem of interest is that of Channel
Equalization, in which the main goal is to retrieve the signal
transmitted though a communication channel, usually modeled
by an FIR filter. The received signal is given by the convolution
of the transmitted signal with the impulse response of the
channel. In this case, a prediction error filter can be used to
perform deconvolution if the transmitted signal is composed
of a sequence of uncorrelated samples and the channel is
minimum phase.

An important difference between the above mentioned
problems, seismic deconvolution and channel equalization, is
related to the characteristics of the input signals. In seismic
deconvolution, the samples of the earth impulse response can

be modeled by i.i.d. sparse and continuous random variables
[14]. On the other hand, the samples of the transmitted signal
in the channel equalization problem are usually modeled
by i.i.d. discrete and uniformly distributed random variable
[15]. However, in both cases, the seismic wavelet and the
communication channel may be given by a nonminimum phase
system [16], [17].

In the case of nonminimum phase systems, the mean
squared prediction error filter is not able to remove nor atte-
nuate the effects of the seismic wavelet or the communication
channel. It provides only amplitude equalization, i.e., it acts
as a whitening filter only. In other words, to explore the
decorrelation property of the signal to be recovered is not
sufficient to provide blind deconvolution when the distortion
system is nonminimum phase. To overcome this limitation, we
aim to search for a cost function that could explore a stronger
property of the desired signal s(n): the i.i.d. hypothesis. In
fact, while correlation provides only second order statistic
information, exploring independence implies dealing with all
the statistic behavior of the signal, so that it could be properly
recovered, as explained next.

IV. THE `p PEF AS AN ALTERNATIVE FOR BLIND
DECONVOLUTION

As posed in the previous sections, the MSE criterion is given
by the equation (4) and deals with the second order statistic
behavior of the signals. Once such information is not always
available in practical scenarios, an alternative consists in using
temporal means of the prediction error signal, as follows:

JLS(w) =
N−1∑
n=0

λ(n)e2(n), (11)

where λ(n) is a weight factor that controls the degree of
relevance of the error sample at time instant n, e(n) is the
error signal and w are the filter coefficients.

Considering stationary and ergodic processes [18], the crite-
ria given by (4) and (11) are equivalent for practical purposes.
So, minimizing the MSE criterion is equivalent to minimize
the least squares (LS) criterion in (11).

A particular version of (11) is obtained when we use λ(n) =
1
N , for all n:

JLS(w) =
1
N

N−1∑
n=0

e2(n). (12)

From an optimization point of view, the scaling factor 1/N
does not change the value for the optimal filter w∗ and so we
have an equivalence between the two optimization problems:

arg min
w

1
N

N−1∑
n=0

e2(n) = arg min
w

N−1∑
n=0

e2(n). (13)

Considering the definition of `p norm [19]

| |e| |p =
(
N−1∑
n=0
|e(n)|p

)1/p

, (14)
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we have that the right hand side in equation (13) corresponds
to the square of `2 norm of the prediction error. From the
previous analysis, we have that, for our purposes here, the
MSE criterion is equivalent to the `2 norm.

As said in the previous section, the `2 norm (or MSE
criterion) can only provide linear decorrelation, what can be
seen as a weak independence, and is efficient when dealing
only with minimum phase systems. From this we can verify
two restrictions of the `2 norm: one with respect to a signal
property (linear decorrelation), and the second as a system
restriction (minimum phase).

Our objective is to investigate how `p norms, with p , 2,
can deal with these restrictions. For this, let us analyze these
norms from two different perspectives:

1) `p norm as a Maximum Likelihood estimator for gene-
ralized Gaussian distribution, in order to take advantage
of the signal probability distribution as well as sparsity
properties;

2) `p PEF, with p , 2, as a nonminimum phase system,
showing the potentiality to deal with the minimum phase
restriction.

In the next subsections we show the development of these
two perspectives of the `p prediction error filters, as summa-
rized in Figure 4:

`p norm

ML estimator

(signal distribution property)

nonminimum phase

(system property)

Fig. 4: Summary of the two perspectives of `p PEF: Maximum
Likelihood estimators and nonminimum phase response.

A. `p norms and Maximum Likelihood Criterion

The Maximum Likelihood (ML) criterion can be viewed
as a particular case of the Infomax principle [20]. It was
derived in the context of neural networks and used in the
Blind Source Separation problem [21], [3], which can be seen
as an extension of the deconvolution problem. To obtain the
ML criterion, we just need to set the nonlinearities fi(·) as the
cumulative distribution functions of the sources [3]. Cardoso’s
work (1998) [22] presents a deep study (in the context of BSS)
of this criterion, given by:

max
W

JInf omax(W) = E
[

M∑
i=1

log(psi (wix))
]
+ log(|det(W)|),

(15)
where psi (·) is the probability distribution function of the i-th
source, for i = 1, 2, · · · M .

By applying this criterion into the deconvolution task, the
following optimization problem holds:

max
W

JML = max
W
EN

[
N∑
i=1

log(ps(wix))
]
, (16)

where EN represents the temporal mean of the N available
data; W is the convolution matrix associated with the filter
w(n); wi is its i-th row; pS(·) is the probability distribution of
the input signal s(n); and x = [x(0) x(1) · · · x(N − 1)]T .

The Maximum Likelihood criterion provides an unbiased
and efficient estimator, i.e., its variance reaches the Crammer-
Rao limit as the number of samples goes to infinity [3], [23].
However, it requires the explicit knowledge of the input sig-
nal distribution function. Fortunately, many distributions with
real applications can be unified in the generalized Gaussian
distribution [24], given by:

pS(s) =
β

2αΓ(1/β) e
−
( |s − µ|

α

) β

, (17)

where α is the dispersion parameter and β is the shape para-
meter, both related by:

αβ = βE[|s |β]. (18)

For β = 1, (17) corresponds to the Laplacian distribution;
if β = 2, we have the classical Gaussian distribution; and as
β→∞, we obtain the uniform distribution.

Applying the Maximum Likelihood criterion (using the
natural base for the logarithm) in the generalized Gaussian
distribution, with µ = 0, we have:

JML(W) = EN

[
N∑
i=1

ln(ps(wix))
]
=

= EN

[
N∑
i=1

ln
( β

2αΓ(1/β)

)
− |wix|β

αβ

]
=

= Nln
( β

2αΓ(1/β)

)
− 1
αβ
EN

[
N∑
i=1
|wix|β

]
=

= Nln
( β

2αΓ(1/β)

)
− 1
αβ
EN

[
‖e‖ββ

]
.

(19)

Once the parameters α and β are fixed, we have the
following optimization problem:

max
W

JML(W) = max
W
−EN

[
‖e‖ββ

]
= min

W
EN

[
‖e‖ββ

]
. (20)

Equation (20) shows that maximizing the Likelihood cri-
terion is equivalent to minimize the temporal mean of the
associated `p norm. Also, this equation establishes a relation
between the signal distribution and the more suitable value for
p, as summarized next:
• For super Gaussian distributions [21], we choose 1 ≤ p <

2, with p = 1 for Laplacian distribution.
• For a Gaussian distribution, we choose p = 2;
• For sub Gaussian distributions [21], we adopt p > 2, with

p→∞ for uniform distribution.
From these results we observe two dual potential scenarios

for predictive deconvolution:
1) the case where the desired signal is super Gaussian

(sparsity property to be explored) and an `p predictor
may be used with 1 ≤ p ≤ 2 and
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2) the case where the desired signal is sub Gaussian (anti-
sparsity property [11] to be explored) and it is suitable
to use p > 2.

B. `p norms and the PEF phase response

The location of the PEF zeros has been investigated in a
number of works, especially during the 70s and 80s [25]–
[27]. Usually, in the context of application of these works, the
classical MSE (or `2) criterion was employed.

In order to get phase information in the deconvolution
problem, alternative approaches have explored the use of `p
norms, with p , 2, as a criterion to optimize the PEF
coefficients. To the best of our knowledge, the work by Scargle
[28] derived the first results on the location of `p PEF’s zeros,
for p , 2. The work of Bednar [29] showed an application in
seismic predictive deconvolution. The work of Knockaert [30]
showed that all `p predictors (with p , 2) are unstable, in
the sense that some of its zeros are outside the unit circle.
Knockaert’s paper also claimed that such zeros cannot go
outside of a circle with radius 2. Hence, Knockaert’s works
shows the potentiality of `p (with p , 2) PEF, since the
predictor can put some zeros outside the unit circle, but also
shows a restriction: the filter zeros cannot be located in an
arbitrary point of the complex plane.

These instigating results motivate us to perform a deeper
study about the `p PEF zeros location, analyzing how flexible
the filter phase response can be and how much it impacts
the deconvolution performance. Next, we show the results
obtained from this study in our context of application.

V. ASSESSMENT ON THE BEHAVIOR OF THE `p PEF PHASE
RESPONSE

In order to study the `p PEF phase response, this section
has a twofold objective.

First, we obtain a set of simulations results. Then, we assess
more deeply the behavior of the PEF zeros by approximating
a situation in which we have a one pole distortion system. The
proposed FIR approximation allows us to study the location
of the zeros of the `1 and `∞ PEFs, according to this pole
position.

A. Duality between `1 and `∞ filters

With the optimization criteria chosen as the most suitable
for each case, our objective here is to study the location of the
`1 and `∞ PEF zeros. For comparison, we have also considered
the supervised case. In this situation, we perform `1 and `∞
minimization of the error signal, which is produced by having
access to the signal we are aiming to recover, possibly with a
delay:

e(n)supervised = s(n − d) − y(n), (21)

with y(n) = w(n) ∗ x(n) as the filter output signal and d as the
delay in the reference signal.

The sparse signal is generated accordingly to a Bernoulli-
Gaussian distribution: we first generate a Bernoulli sequence
with Pr{s(n) = 1} = 0.02; then, we multiply each element of

this sequence by a random variable N(0, 1) (note that we have
a different realization of this variable for each sample of the
sequence). For the uniform signal, we have chosen a binary
alphabet (+1,−1).

The experiments consider three typical cases of channel:
• Minimum phase: H1(z) = 1 + 0.5z−1 + 0.3z−2;
• Mixed phase: H2(z) = 0.5 + 1z−1 + 0.3z−2;
• Maximum phase: H3(z) = 1 + 1.5z−1 + 1.8z−2.
For the unsupervised case, we used a PEF with one zero

(and so, just one adjustable coefficient, p1), i.e., P(z) =
1 − p1z−1. In the supervised scenario, we have also employed
a deconvolution filter with one zero (but two adjustable coeffi-
cients, w0 and w1): W(z) = w0+w1z−1. After the optimization,
we have normalized the filter in w0, just for comparison with
the corresponding PEF.

A very important issue for the supervised case is the optimal
delay in the reference signal: zero delay for the minimum
phase, one sample for the mixed phase and three samples for
the maximum phase channel.

To minimize the `1 norm, the filter coefficients were ad-
justed by the error signal LMS [31], while the `∞ PEFs coef-
ficients were minimized with the populational meta heuristic
of differential evolution [32], described in the Appendix of
this paper.

The obtained results are depicted in Table I, where P1(z)
and P∞(z) denote the PEFs obtained by minimizing the `1
and `∞ norms, respectively, and W1(z) and W∞(z) denote the
filters obtained by minimizing the error `1 and `∞ norms,
respectively, in the supervised case:

TABLE I: Deconvolution filters obtained in sparse and an-
tisparse deconvolution for both supervised and unsupervised
scenarios.

Supervised Unsupervised
Minimum phase channel

W1(z) = 1 − 0.4997z−1 P1(z) = 1 − 0.5z−1

W∞(z) = 1 − 0.5000z−1 P∞(z) = 1 − 0.5z−1

Mixed phase channel
W1(z) = 1 − 0.2993z−1 P1(z) = 1 − 0.3z−1

W∞(z) = 1 − 0.2997z−1 P∞(z) = 1 − 0.3z−1

Maximum phase channel
W1(z) = 1 − 1.4969z−1 P1(z) = 1 − 1.2z−1

W∞(z) = 1 − 1.4885z−1 P∞(z) = 1 − 1.2z−1

From the Table I we have two interesting results:
• Minimizing the `1 norm to retrieve a sparse signal leads

to the same filters obtained by minimizing the `∞ norm
for deconvolution of an antisparse signal, for all channels
considered, in both supervised and unsupervised scenari-
os. This result confirms the duality relationships involving
the `p norms and the signal distributions.

• Comparing the supervised and unsupervised filters, ad-
justed by both `1 and `∞ norms, we have the same zeros
for the minimum (zero at 0.5) and mixed (zero at 0.3)
phase channels. On the other hand, for maximum phase
response, the filters obtained are slightly different: the
supervised one put its zero at 1.5 (for both criteria), while
the PEF put its zero at 1.2 (for `1 and `∞). From this
difference we can see a limitation of the `p PEF, with
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p = 1 or p = ∞, but also, we can see the potential of
such a structure, since it positioned a zero outside the unit
circle. This potential is deeply explored in the following.

B. `p prediction error filter zeros

In order to proceed with our study, let us first consider a very
simple case of distortion system that can be easily deconvolved
by an MSE PEF: a first order AR channel

H(z) = 1
1 − az−1 . (22)

Deconvolution is clearly attained by applying a single zero
`p PEF:

W(z) = 1 − w1z−1. (23)

Clearly, W(z) will put its zero on the same position of the
channel pole, i.e., w1 = a, to eliminate all system distortion.

It is worth observing that the channel in (22) can be
arbitrarily approximated by an FIR filter as follows:

1
1 − az−1 ≈ 1+ az−1 + a2z−2 + ...+ aK z−K =

K∑
i=0
(az−1)i . (24)

This kind of approximation is particularly suitable in our
study since it allows to simulate the effect of a pole outside
the unit circle, i.e., the case where |a| > 1 in (22).

We can rewrite equation (24) in a more compact form:

H(z) =
K∑
i=0
(az−1)i = 1 − (az−1)K+1

1 − az−1 . (25)

Equation (25) shows that the channel zeros correspond to
the K + 1 complex roots [33], except the one at a. Therefore,
the channel tries to approximate a pole by a crown of complex
and symmetric zeros of magnitude a, except at z = a. When
the complete inversion is achieved, the zeros of the combined
response H(z)W(z) (channel and filter) in the complex plane
will form a complete crown with radius a.

To illustrate it, let us consider a channel of order K = 15
(for symmetry purposes), adopting the `2 norm as optimization
criterion and adjusting the filter coefficients by differential
evolution 1, with a population of 30 individuals in 800
generations. In this first case, we have used a = 0.7 (so the
channel is minimum phase) and we have adopted an input
signal with a Gaussian distribution N(0, 1). The result of this
example is shown if Figure 5:

1When we use `2 norm, we have a convex optimization problem, with
a closed solution and so it is not necessary the use of a heuristic. But the
differential evolution has shown a faster convergence when compared to the
LMS algorithm, which, alongside the simplicity of this meta heuristic, justifies
its application to this problem.
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Fig. 5: Diagram of the channel (red circles) and filter (blue
cross) zeros, for a Gaussian signal and a = 0.7. We can see a
crown of zeros, which indicates the complete inversion of the
channel.

In Figure 5 we can see the crown of zeros, which indi-
cates that the obtained filter completely inverts the channel,
providing magnitude and phase equalization.

Repeating the experiment for a = 1.2 (maximum phase
channel) we have the following result:
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Fig. 6: Diagram of the channel (red circles) and filter (blue
cross) zeros, for a Gaussian signal and a = 1.2. In this case,
the filter cannot put its zero outside the unit circle, elucidating
the minimum phase restriction.

As we can see in Figure 6, the filter cannot put its zero out-
side the unit circle. Therefore, deconvolution is not achieved
in this case: the filter performed only a decorrelation between
the signal samples, but not independence. This is equivalent
to provide magnitude equalization only.

Next, we will repeat the same experiment for `1 and `∞
filters, again with a K = 15 and a first order filter W(z) =
1 − w1z−1.

For the input signal distribution we consider 3 cases:

1) Gaussian distribution, N(0, 1);
2) Bernoulli-Gaussian, Pr(s(n) = 1) = 0.02 e N(0, 1);
3) Uniform distribution, with support [−1, 1].

In all cases, the filter coefficients were adjusted by differ-
ential evolution, with a population of 40 individuals in 2000
generations. We have also considered 2000 samples for the
involved signals. The results for the `1 filter are depicted in
Figures 7, 8 and 9:
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(a) a = 0.4.
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(b) a = 1.
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(c) a = 1.6.

Fig. 7: Zero diagram for a `1 filter and a Gaussian signal. For
this type of signal, the `1 PEF zero remained inside the unit
circle.
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(a) a = 0.4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
a
g
in

a
ry

 a
x
is

(b) a = 1.
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(c) a = 1.6.

Fig. 8: Zero diagram for a `1 filter and a Bernoulli-Gaussian
signal. For this type of signal (i.e. a sparse one), the filter put
its zero outside the unit circle, showing its potential to perform
nonminimum phase deconvolution.
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(a) a = 0.4.
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(b) a = 1.
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(c) a = 1.6.

Fig. 9: Zero diagram for a `1 filter and a antisparse signal.
Another case where the filter zero remained inside the unit
circle.

As we can see, the `1 filter places a zero outside the unit cir-
cle for the Bernoulli-Gaussian signal (8c), which has a sparse
structure to be explored. For this kind of signal, deconvolution
was well succeeded even in maximum phase cases and the
filter provides both magnitude and phase equalization.

However, in both cases of Figures 7 (Gaussian distribution)
and 9 (uniform distribution), where there the input signal is not
sparse, the filter zero remains inside the unit circle, showing
the same limitation of the `2 case.

Repeating the experiment (i.e., one coefficient for the filter,
a K = 15 order channel, optimization carried out by differ-
ential evolution with 40 individuals, in 2000 generations and
signals with 2000 samples) for `∞ filter, we have the results
in Figures 10, 11 and 12:
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(a) a = 0.4.
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(b) a = 1.
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(c) a = 1.6.

Fig. 10: Zero diagram for a `∞ filter and a Gaussian signal. As
occurred with the `1 case, the filter cannot put its zero outside
the unit circle.
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(a) a = 0.4.
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(b) a = 1.
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(c) a = 1.6.

Fig. 11: Zero diagram for a `∞ filter and a Bernoulli-Gaussian
signal. Again, the filter zero remained inside the unit circle,
as a consequence of the signal distribution.
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(a) a = 0.4.
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(b) a = 1.
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(c) a = 1.6.

Fig. 12: Zero diagram for a `∞ filter and a uniform signal.
When we use an antisparse signal, the `∞ PEF put its zero
outside the unit circle.

From these results, we can see that the `∞ filter places a zero
outside the unit circle (Figure 12c) and performs magnitude
and phase deconvolution for maximum phase channels. The
key feature for this is that the input signal has a uniform
(antisparse) distribution, which is the suitable one for the `∞
norm. For the other two distributions, no zero was positioned
outside the unit circle, as seen in Figures 10 and 11, and only
magnitude equalization is provided, as in the `2 case.

Therefore, we can see that the `p PEFs have the potential to
perform blind deconvolution in nonminimum phase channels,
as long as the input signals have compatible structures (like
sparsity or antisparsity). Exploring such characteristics, the `p
norm can go further the decorrelation condition and towards
to independence, as desired.

To close our study, in the next section we show some
performance results in the deconvolution of first and second
order channels, using `1 and `∞ PEFs and comparing them
with the classical `2 PEF.
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VI. RESULTS ON THE PERFORMANCE OF THE `p PEF IN
BLIND DECONVOLUTION

Now let us evaluate the performance of the `1 deconvolution
for a sparse signal, and the `∞ deconvolution for an antisparse
signal. Our results consider first and second order channels,
of both minimum and maximum phases.

For the first order case, we have varied the channel (real)
zero from 0.1 to 1.5. For the second order channel we have
used complex-conjugated zeros in polar coordinates:

z1 = re jθ, z2 = re−jθ . (26)

In this case, we have varied r in the interval [0.1, 1.5] and
θ in

[
π
2 , π

]
.

In all cases, we used a L = 10 order filter, with coefficients
adjusted by differential evolution; for the `1 filter we have used
a population of 20 individuals in 2000 generations and for the
`∞ filter we used 30 individuals in 4000 generations.

To decide whether deconvolution was well succeeded, we
considered the inter symbol interference (ISI), in decibel scale
(dB), of the global response (i.e. g(n) = h(n) ∗ w(n)):

ISIdB(g(n)) = 10 log10

∑
i |g2

i | − maxi |gi |2

maxi |gi |2
. (27)

When ISIdB(g(n)) ≤ −5 dB, the channel was considered
equalized. For a better visualization, we will show our results
in a zero diagram in complex plane: the red circles in the
diagram represent the channel zero (or complex-conjugated
zeros) for which deconvolution was well succeeded (accord-
ingly to (27)). For example, if the channel with a zero at 0.2
was equalized, we will have a red circle at 0.2 in the complex
plane.

Figure 13 presents the results for sparse deconvolution,
using `1 and `2 PEF:
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(b) Second order channel, `1
norm.
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(c) First order channel, `2
norm.
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Fig. 13: Sparse deconvolution for first and second order
channels, using `1 and `2 norm. The red circles represent the
equalized channel zeros.

Figure 13 shows the zeros of the equalized channels, i.e.,
channels that achieve the threshold set for ISIdB(g(n)), when
using `1 and `2 PEF for the retrieval of a sparse signal. As
Figures 13a and 13b show, `1 PEF performs deconvolution
in maximum phase channels, but not in all of them (ideally,
we must have all the left half of the complex plane marked,
indicating a well succeeded deconvolution for all channels).
This result shows both the potential and limitation of this
criterion. On the other hand, the `2 PEF performs deconvo-
lution essentially in minimum phase channels (although we
can see some maximum phase channels near the unit circle),
as expected due to the restriction of the `2 norm.

We obtained very similar results for the `∞ deconvolution,
with antisparse signal, as shown in Figure 14:
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norm.
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Fig. 14: Antisparse deconvolution for first and second order
channels, using `∞ and `2 norm. The red circles represent the
equalized channel zeros.

As illustrated by Figures 14a and 14b, the `∞ PEF also
performs blind deconvolution in some nonminimum phase
channels. For the `2 filter with an antisparse signal we have the
same limitations as before. Comparing Figures 13a and 13b
with 14a and 14b, respectively, we can see again the duality
between the `1 and `∞ filters, since the channels equalized in
both cases are very similar.

Another interesting result is that there is a gap near the unit
circle (radius 1.1) between the channels equalized by `2 filters
and those equalized by `1/`∞ ones: at the point that the `2
is no longer effective (i.e., from where the red circles are no
longer present), we can apply the `1/`∞, depending on signal
structure, to carry out the deconvolution. This suggests that
these criteria can be used together, in a cascaded hybrid-norm
filter: the first filter could be adjusted by `2 norm, dealing
with the minimum phase component of the system, and the
second one by `1/`∞ norm, dealing with the maximum phase
component left.
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Finally, we analyze the ISI(g(n)) evolution while the filter’s
coefficients are adjusted. For this, we considered two particular
channels: a first order one, with a zero at 1.5 and a second
order one, with r = 1.3 and θ = 7π/10. For each channel, we
have used a `1 PEF for sparse deconvolution and a `∞ PEF
for the antisparse case. We show these results in Figure 15:
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(a) First order channel, sparse de-
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(b) First order channel, antisparse
deconvolution.
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(c) Second order channel, sparse
deconvolution.
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Fig. 15: ISI(g(n)) evolution during the filter adaptation, for
first and second order channels, in sparse and antisparse
deconvolution.

For the first order channel, we can see that the ISI(g(n))
level reaches its steady value in 1500 iterations, for both sparse
and antisparse cases. In the second order channel, we have
a constant ISI(g(n)) level in 1500 iterations for the sparse
scenario, and in 2000 iterations for the antisparse one.

As we can see in Figure 15, the Differential Evolution
approach has a fast converge rate, and once the steady value
is reached, we do not observe the typical misadjustments of a
gradient approach.

VII. CONCLUSION

This work discussed the application of `p norms in unsuper-
vised deconvolution problem, using a predictive structure. We
have shown that the `p criterion corresponds to the Maximum
Likelihood estimator for generalized Gaussian distributions.
Supported by this relation, we have applied a `1 PEF in order
to retrieve a sparse signal and a `∞ PEF for an antisparse one.
Our experiments illustrated that both filters could place some
of its zeros outside the unit circle, providing nonminimum
phase responses.

We also evaluated `1 and `∞ deconvolution, for first and
second order channels, with minimum and maximum phase
responses. We compared the results of these two experiments
with the classical `2 deconvolution. For a suitable input signal,
i.e., a sparse signal for the `1 case and an antisparse signal for

the `∞, the proposed alternative criteria have shown a superior
performance when compared to the classical `2 deconvolution,
especially for nonminimum phase distorting systems.

Above all, the present work confirms the potential of
`p predictors in overcoming the minimum phase restriction,
which open interesting perspectives in different applications of
unsupervised deconvolution. In this sense, we are particularly
interested in testing the proposed approach in more realistic
models for telecommunications channels and for geophysics.
As far as theoretical investigations are concerned, future works
will focus on the application of the `p norms alongside with
alternative filter structures, as well as in the extension to
other challenging problems, like Blind Source Separation and
multichannel equalization.

APPENDIX
DESCRIPTION OF DIFFERENTIAL EVOLUTION HEURISTIC

In this appendix we describe the meta heuristic of differen-
tial evolution, which has been employed in the present work.
The differential evolution meta heuristic uses a population
of P individuals, formed by K-dimensional vectors, at each
generation G. In our application, each individual represents
a prediction error filter with K + 1 coefficients (i.e. a indi-
vidual wi,G = [wi1 wi2 ... wiK ] is associated with the filter
w(wi,G) = [1 − wi1 − wi2 ... − wiK ]).

First, we randomly initialize the population in a way to
better explore the search space. In cases where one has some
information about the solution, like promising regions or even
partial solutions, it can be used in the initialization process;
otherwise, the population must be uniformly initialized, as
done here: for each individual in the population, we generate
K independent and uniformly distributed random variables in
the interval [−1, 1], for each candidate set of filter coefficients.

Differential evolution generates new individuals by a muta-
tion process. This processes is performed by the addition of
weighted differences between two vector to a third one, as
shown next:

ti.G+1 = wr1,G + F(wr3,G − wr2,G), (28)

where ti,G+1 is the new generated vector; wrl,G , with l =
1, 2, 3, are individuals present in the population at generation
G; and r1, r2, r3 are mutually different indexes in the interval
[1, P] and also different from i. F is a real constant in the
range [0, 2], which determines the step towards the difference
vector wr3,G − wr2,G .

Once the mutation is done, the mutated vectors are com-
bined with the target vectors, generating the called trial vec-
tors, accordingly with the following rule:

z ji,G+1 =

{
tji,G+1, if rj ≤ CR or j = li,
wji,G, if rj > CR and j , li,

where zi,G+1 = [z1i z2i ... z ji ...zPi] is a trial vector, with
j = 1, 2, ...D; rj is a random variable uniformly distributed
in the interval [0, 1]; CR ∈ [0, 1] its a real constant defined
accordingly to the application and defines the crossover rate;
and li is a randomly chosen index in the interval [1, P],
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which guarantees that zi,G+1 receives at least one component
of ti,G+1.

Finally, we have the selection step. If the trial vector’s fitness
value is better than the fitness of the associated target value,
the first takes the place of the latter in the next generation.
Here, we have adopted the following fitness function:

f itness(wi,G) =
1

| |y| |pp + 1
, (29)

where y = [y(0) y(1) ... y(N − 1)] is the signal generated at
the output of the filter associated with wi,G .

For the `∞ norm case, we have used the min max estimator,
so the fitness function is given by:

f itness(wi,G) =
1

max(|y|) + 1
. (30)

All the process described above (mutation, crossover and
selection) are repeated until the maximum number of genera-
tions is achieved. Once the process is concluded, we take the
best individual (i.e. the one with the highest fitness value) as
the solution to our problem.
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