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Abstract—Over the past years, multimedia communication and voltage in order to reduce the power dem@{ﬁiﬁpart
technologies have demanded higher computing power availdty ~ from the scalability of voltage and clock (dynamic voltage
and, therefore, higher energy consumption. In order to meethe and frequency scaling, or DVFS), CPU manufacturers can

challenge to provide software-based video encoding solotis with : .
reduced consumption, we adopted a software implementatioofa  (U'N-Off parts of the CPU which are not being used (power

state-of-the-art video encoding standard and optimized i imple- 9ating), resulting in further savings in energy consumptio
mentation in the energy (£) sense. Thus, besides looking for the and lower heat dissipation. All these technologies allow fo

coding options which lead to the best fidelity in a rate-distction ~ modern processors to correlate computation throughpuit wit
(RD) sense, we constrain the video encoding process to fit within energy consumption.

a certain energy budgeti.e., anlRD E optimization. We considered Traditionallv. complexity can be considered as a measure
energy by integrating power measurements from the system I Y p X'Y . ! . u
power Supply unit. We present an RDE_Opt|m|Zed framework Of the effOI’t to accomp“sh certain Computa“on taSkS and

which allows for software-based real-time video compressn, can be accounted either as the amount of memory, or the
meeting the desired targets of electrical consumption, he®, time, or the number of operations it takes to perform some
controlling carbon emissions. The system can be made adapd, computation [10]. We propose to evaluate energy demand

dynamically tracking changes in image contents and in enesg . . . -
demands. We show results of energy-constrained compresgio instead of complexity [11], since energy is a fundamental

wherein one can save as much a%l% of the power consumption esource that can be directly mapped to operational costs,
with small impact on RD performance. and we will show that complexity estimation is not always

Index Terms— Green computing, video codec, H.264/AVC, a reliable indicator of energy consumptlorj. . . .
software implementation, tunable fidelity. The present work suggests new strategies in the direction of

saving energy in real-time computation. We present a figelit
energy (PF) optimization strategy to constrain the energy
. INTRODUCTION demanded by an application in a real-time scenario. In aovide
encoder, fidelity® can be evaluated in terms of the rate-
ISTORICALLY, processor manufacturers have re-. ! -
P uractu v %llstortlon (RD) performance [12], [13]. Then, the optimized

sponded to the demand for more processing pow ¢ d to imol ¢ B E-optimized |
primarily with faster processor speeds. Higher clock Speeearame €rs are used to implemen -optimized real-

tH'ne encoding framework. We chose an open-source high-

imply in higher power consumption and heat [1]. Image an

video processing are driving forces behind this Computg_erformance_ encoder, )_(264 [14], as the H'ZM/AVC software
tional power pursuit. Thestate-of-the-artvideo compression |mplementqt|on due to its excellent encoding speed and good
standard, H.264/AVC [2], [3], [4], is a computation—hungr)yate distortion (RD) performance. The proposed approach

application used throughout the industry. Neverthelassrgy suits, for example, mobile communication systems where

usage and carbon emissions are a major concern today. oH§'YY efficiency is still a major bottleneck [15]. The syste

centers are substantially strained by electricity costspower can be made adaptive, dynamically tracking changes in image

o . . tents and in energy demands.
dissipation is a major concern in portable, battery—o;m”atCon e :
devices [5], [6], [7]. Governments are providing incensive The present work is similar to another [16] in the as-

to save energy and to promote the use of renewable enePeCt of optimizing a video encoder constrained to energy

o : o e%enditure. However there are significant variations.ré&he
resources. Individuals, companies, and organizationsemaVv

towards energy-efficient products as energy costs havergro'vsv also work [17] proposing a power-rate-distortion modef f

: : wireless video communications under energy constraimis, a
to be a major factor. Saving energy has become a Iead'trr]]% dissimilarities to both works will be discussed in thatne
design constraint for computing devices through new energbyection

efficient architectures and algorithms [8]. .
. - Our framework allows for real-time software-based energy-
As results of this new design trend, we observe the emer-

. . . . gonstrained video coding. We provide a management mod-

gence of new energy efficiency technologies [9] which previ oo :
ule capable of delivering the user-demanded encoding speed
subsystems that are able to scale the processor frequen . :
whiile spending less energy and smoothly affecting ihe-
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energy savings (up t®1% less energy) on SD and HD There are many studies into managing H.264/AVC complex-
video (rather than CIF and QCIF), without resorting to framety. Some explore prediction techniques for reducing compu
skipping or resolution changes. Further novelty is that wations with smallRD penalties [22], [23], [24]. Assuming
analyze the encoder within a globRID E trade-off, wherein a correlation between computations and demanded energy,
encoding is performed in groups of frames and the energyreducing the computations can help in reducing the energy
actually measured. Also, it can all be done within a closedemands. A recent work provides substantial H.264/AVC
loop-adaptive framework. We have not found these featuresmplexity reduction [25] using the reference software as
elsewhere. baseline. Nevertheless, much of the complexity scalinglavou
The proposed encoding framework can be considerednat be perceived if the framework is implemented using faste
true example of green computing where the same taskaigorithms, high-performance libraries and platform depe
accomplished in the same hardware system with much leknt resources [26], [27]. Other works [28], [29] developed
energy consumption, reducing the carbon footprint of videmmplexity models. Their results are evaluated using the

compression systems. reference H.264/AVC software (which is not optimized in
terms of encoding complexity) and are tested on low-regniut
Il. BACKGROUND ON H.264/AVC IMPLEMENTATION material. There are recent investigations on providing com

. o ) _ plexity scalability to a high-performance encoder [30]hirit

The H.264/AVC is a hybrid video codec, i.e. along with & somewhat short range. Energy-awareness in video compres-
transform module, it has a prediction module, a dlfferdnt_lgion was first presented by Sachs et al [31], who propose a
stage and a feedback loop [12]. The H.264/AVC predigs oprietary video encoder for general purpose proceskats t
tion module has techr1|ques which can be categorized (3 je computational complexity for compression efficieircy
two classes: temporal (“Inter-prediction”) and spatidh{fa- - orger to minimize total system energy. As we mentioned, the
prediction”) techniques. AVC brought significant advancesyesent work is similar to the one by Shafique et. al. [16] in
in Inter-prediction in comparison to earlier video stamfar yany aspects. Nevertheless, while there the focus is in the
which include the support for a wide range of block siz&gqion estimation (ME) stage of the video coder (varying the
(16x16-pixels and smaller), multiple reference frames angarch patterns and the motion vector precision), we cover
refmed motion vectors (quarter—samp_le resolut|on_for the lihe whole prediction stage and its different parameters; An
minance component). In Intra-prediction, the predicteathl change in pattern can be easily re-trained and we incomorat
can have different sizes (pe&de_sd:lﬂi—mxelsae macroblockj many other parameters such as number and types (I, P, or
blocks of 8<8 and 4<4-pixel size are also allowed) and isg) of reference frames and multi-threading. Furthermdrat t
formed based on planar extrapolation of previously encodgfbrk [16] uses lower-resolution content (the largest fresize
blocks in the same frame. The prediction residue is trangsted was CIF), focuses on a hardware implementation, and
formed and quantized through the use of integer transformgies on energy consumption estimation. We, however,gocu
[18]. ] on real-time software-based standard-definition (SD) agld-h

The data set composed by block size and Intra (spat{fdinition (HD) video coding on general purpose computers
extrapolation) choice or Inter parameters,_hk_e MOMIONIOEX  4q we use actual energy measurements. Additionally, our
and reference frames, forms the “prediction mode” of famework is adaptive to changes in video contents and power
block. The encoder typically selects the prediction mod thargets. He et. al. [17] proposed a power-rate-distortiodeh
minimizes the difference between the predicted block ard thyr wireless video communications under energy conssaint
block to be encoded, constrained to a given bitrate. ‘They analyze the encoding mechanism of typical video coding

In order to scale the encoder complexity, one may modifystems and developed a parametric video encoding arehitec
the prediction stage, which is one of the most computatipnayre which is fully scalable in a computational sense, fows
intensive steps in digital video encoding, as the numbers dRly on DVFS and stock processors. The baseline video
Table[] suggest. These results are for Platform 1 and x284coder was H.263 [32] applied to low-resolution (QCIF . i.e

implementation (see Sdc.ill) set to High Profile [f9Bimilar 176x 144-pixel) frames of head and shoulder sequences and
tables can be verified in [20] and [21] for the referencgno\,\,ing for frame dropping.

software implementation.

TABLE | Ill. OURH.264/AVCTEST SYSTEMS
X264 RELATIVE COMPUTATIONAL COMPLEXITY FOR ENCODING

“M OBILE” (CIF) AND “M OBCAL” (720F) SEQUENCES A software-based video solution implies platform-deperide

results. Nevertheless, the collected data suggests thah, e

Resolution for different processors and underlying hardware for oéfe
Coding Stage | CIF 720p PCs, the power profile can be well characterized to reduce
Péﬁgg'iﬁgs %1.627% 969‘14320;? consumption in the mean power sense for a group of frames.
Other Stages| 2.69% | 3.45% Analyzing hardware implementations is beyond the scope of
Total 100.0% this paper and we use two systems as our test platforms

(PCs): Platform 1 has an Inf&lCore i7 CPU 950 processor
SWe analyzed encoder executions usigrof, an open source profiler. in an Asu§® P6X58D-E motherboard, while P!atform 2 has
Available at http://iwww.gnu.org/software/binutils. an AMD® Phenom Il X6 1055T processor in an ASus
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M4A78LT-M motherboard. Both systems have 8GB RAMolarized, regardless of clock rates and usage. This static
DDR3, a solid-state disk Cors&irCSSD-F115GB2-A and no power is mainly determined by the type of transistors and the
monitors are attached. fabrication process technology. Reduction of the statiwgyo
Both platforms run LINUX Operating System (Debiarrequires changes at the low-level system design.
2.6.32) in multi-user mode and the coding processes run affThe dynamic power profile is created by circuit activ-
maximum priority, set to real-time scheduling. All unnes®y ity (transistors switching, memory components varyingrthe
processes are made inactive and we assume that only one gtses etc.) and depends on the usage. It has two sourc#s: sho
requests the coding of video frames. circuit current and switched capacitance. The short-itircu
The reference H.264/AVC standard implementation, alsurrent causes only 10-15% of total power consumption and
known as JM, tries to provide the most complete enthere is no effective way to reduce it without compromising t
coder/decoder implementation. The IfiePerformance Prim- performance [36]. Switched capacitance is the primaryc®ur
itives (IPP) library [27] has a proprietary implementatioh of dynamic power consumption described as
the H.264/AVC video codec built upon its high performance 5
primitives. Even though we can control complexity within FPaynamicoc aCphysV"f, @)

an IPP implementation [33], we feel that x264, an op@fhereCyys is the physical capacitanck, is voltage,f is the
source H.264/AVC standard-compliant implementation [14)ock frequency and is an activity factor. In order to change
is better suited for the present work, yielding better pephysical capacitance, changes in low-level system design a
formance. Hence, we opted for only using x264 in oUaprication methodologies are required. The combinededu
tests. x264 uses assembly-optimized routines for the m@gh of f andV is achieved with widely-adopted DVFS, which
complexity-intensive operations [14] and explores “eatyp” intentionally down-scales the CPU performance, when it is
tests during rate-distortion optimization, yielding a ties not fully demanded. DVFS should ideally change dynamic
speed-up over JM without significantly sacrificifgD per- power dissipation in a cubic factor because dynamic power is

formance. We ran x264 in H.264/AVC High profile: 684- quadratically affected by voltage and is linearly affectsd
pixel motion-estimation window, 5 reference-frames, ®din clock frequency [9].

RD-optimization in all macroblock predictions, quartexel-  2) Addressing power consumption at the infra-structure
precision motion vectors, uneven multi-hexagon searst8 8 |evel: Studies show that the main part of the energy consumed
integer transform and CABAC entropy coder. by a server is drawn by the CPU, followed by the memory and
by losses due to the power supply unit (PSU) inefficiency,[37]
IV. POWER AND ENERGY IN COMPUTING SYSTEMS [38]. Nowadays, the systems can dynamically enable low-

In the scope of computing, work is related to activiiefower CPU modes, saving resources. Current desktop and
associated with running programs (the microprocessor igerver CPUs can consume less than 30% of their peak power
structions involved in certain computation), poweP)(is atlow-activity modes, leading to a dynamic power range of up
the rate at which the computer consumes electrical enefgy70% of peak power [39]. In contrast, dynamic power ranges
while performing these activities, andl is the accumulated of all other server’'s components are much narrower: less tha
electrical energy demanded by the computer during a cert&@% for DRAM, and 25% for disk drives [40]. The reason
time interval. Complexity [11] can be expressed as the numde that many components cannot be partially switched off and
of iterations of an algorithm, or as the amount of memory dhay have current surges while transitioning from inagfivit
even the time necessary to execute it. 3) Addressing power consumption at the application level:

The distinction among energy, power and complexity ihe application software can also allow for power reduction
important because optimizing for one does not always ensw@ng compiler tools such as statistical optimizations and
the others will be optimized. For example, an application calynamic compilation [36]. Holistic approaches give appli-
be implemented using specific instructions provided by tif@tions a large role in power management decisions. Some
execution platform. This can raise the instantaneous pderer works adopted an “architecture centric” view of applicao
mand, but should reduce the execution time, perhaps bgngihat allows for some high-level transformations capable of
energy savings. So, in this example, compared to not using fleducing the system power demand [41]. Sachs et al. [31]
specific instructions, the second implementation wouldehagxplored a different adaptation method which involvesitrgd
the same complexity, higher power, but reduced energy. Tiie accuracy of computations for reduced energy consumptio
could be an issue for a mobile battery-operated platform. F video encoding.

a high-performance server, the temperature profile is aejss The energy consumption of a computing device is not only
so that power surges should be avoided [34], [35]. Powdetermined by the efficiency of its physical devices, busit i
consumption can be addressed at different levels. also dependent on resource management and on applications

1) Addressing power consumption at the device level:usage patterns [37], [34], [42], [5], [43], [44], [45], [46]

CMOS technology prevails in modern electronic devices [1]
and is usually profiled according to two power models: static V. ENERGY VS. COMPLEXITY

and dynamic. The static (leakage) power profile is compos&t'j Saving Energy in a PC-based platform

by the leakage currents that occur while keeping circuits ) e )
We first define idle and full-power states. In idle state only

4«JM.” Available: http://iphome.hhi.de/suehring/tml the basic operations are executed and the scheduler keeps th



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 30NO. 1, MARCH 2015. 38

processor “sleeping” almost at all times. In full-powertsta
the processor carries intensive operations and the sdredul Py
never allows the processor to “sleep”.

Because of energy management techniques like DVFS,
when in idle state, our Platforms 1 and 2 demand 105W and
80W, respectively. When the computation workload increase
the power demand also increases. When in full-power state,
our platforms 1 and 2 drive 240W and 180W, respectively, of time
active power to provide the currents to feed the increasesl ga a)
switching, and to keep up with higher access rates to memory,
hard-disks, buses and other components. P,

We consider a real-timelocked video coding scenario,
where frames are periodically made available to be encoded
at a given ratef,, e.g. at 30 Hz, or 30 frames/second (fps).
Hence, we hav&, = 1/ f, seconds to encode each frame, and
that is the period that governs the compression system. If we
use onlyT, seconds to encode each frame, in the remaining
time (I; = T, — T,) the processor may go idle. If we let
P, and Py, be the power demanded in idle and full-power (b)
states, respectively, such a power profile can be illugtrate
as in Fig.[1(a). It is also useful to define the processing (or Py,
encoding) speed af, = 1/T,, which indicates the speed (in
fps) the encoder would be capable of encoding frames if they
are available at once, say off-line. What should be cleanfro
Fig.[d(a) is that we can save energy consumption if we reduce
T,, i.e. if we increase the encoder spegd In this way, the
sooner the encoder is done encoding a frame, the longer the time
processor goes idle (high&k).

In this binary utilization model, in which the prOCGSSOl’:ig. 1. Power profile for video goding. (a) Frames are avlah T,
is either fully idle or fully busy, one can save energy byatervals. The frame is encoded i, seconds and the processor returns to

increasing the encoding speed ie. redudl'pgas in FigD.(b). idle state forl; = T, — T}, seconds until a new frame arrives. (b) Profile for
An i . di ,d is tvpicall btained at treduced consumption by making the encoder faster. (c) Erédil reduced
n increase In encoding speed IS typically obtained a ansumption by making the processor less consuming andeslow

expense of RD performance. While the profile in Higj. 1(b)

would demand less energy than the one in Eig. 1(a), one could

also use dynamic frequency/voltage scaling to slow down thg can expect experimental errors-62 ms. Considering the
processor and do the same task as in [Hig. 1(b) but at a I0Wgkqding speeds provided by our platforms, which can allow
pace [47]. In the case depicted in Higj. 1(c) the proces;o_thOltlhe encoding of SD and 720p video sequences of @5adps,

run longer using less power. Here, we are not examining thig measurement of short time intervals used to encode a
case, but rather considering the energy savings provided,jgeo frame can be compromised. One way to overcome the

Power (W)

Power (W)

time

Power (W)

Fig.[Ii(b) by increasing the encoding speed. scheduler-induced variances is the grouping of frames IR0
(Group of Pictures).
B. Measuring energy The GOP grouping of frames can also affect the demanded

L . igl)ower waveforms. To illustrate this, we monitored our test
Energy consumption is here measured in two ways. T

computer is connected by itself (no monitor or other peniph{?atform’ while compressing 300 high-definition (720p 32)H

als) to a wattmeter and from there to the local power su rames in real time, at different GOP sizes. As the processor
. P PP faster than necessary to guarantee real-time coding, the
We can read the energy consumption from the wattmeter Qn

processor can “sleep” from the time it is done compressing
another computer at every second, through a USB port, a . : : .
. . e a GOP until the next GOP is available for compression. The
shown in Fig[2. This is sufficient for steady state tests. . . :
. ) . . power waveform is registered by measuring the demanded
However, in order to investigate the energy consumpti

behavior at very fast cycles (e.g. 30 Hz or 60 Hz video wer according to Fid.]3. The results from oscillography ar

: resented in Fid:f1
which are comparable to the voltage cycles of the energy o . .

. The waveforms show distinctive GOP grouping signatures.
provided by our local power company (60 Hz), we resorteriﬁb

to oscillography. For these tests we used an Elspec G4 e rapiq processor switching .between idle and busy states i
BlackBox and a California Instruments 5001ix sinusoidal'g'm(a) is represented by an irregular sequence of peaks an

power supply, as illustrated in Figl 3. 5 _
Ti ¢ be disturbed by the OS schedule.i For Figs[3 td b, we coded the head and shoulder sequencedB3etn
Ime measurements can be disturbed by the schedu edfﬂ'.!;]sequence, there is a person seated behind the tablenindfr a detailed

real-time systems. We used a 250 Hz scheduler frequency aagkground (high-frequency content background).
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Fig. 2. On-line measurement setup. ) (a)
Encoding @ 30fps GOP 2 - AMD Phenom
64500 1201
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- —> 1011100... g
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Prng 95
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Fig. 3. Off-line measurement setup. o5 U |
217 2:8 219 3 3:1 312 33
Time [s]
valleys. The plot is a zoom of the process of compres8ihg (b)
frames. When measuring power at the PC’s PSU, the “sleep” Encoding @ 30fps GOP 8 — AMD Phenom
moments are not well determined, as the processor does not 170f ‘ ‘ ‘ ‘ ‘
remain in the “idle” state for a long period. This is the resul 160}
of various factors: a filtering effect at the PSU related te th 150k
AC-DC conversion; the processor scaling due to DVFS; and Lol
the ACPI activity over other PC components [1], [9], [38]. As 5
the GOP size is increased (Fig$. 4(b) and (c)), the waveforms g 1307
approach the model of Fifj] 1(a). Basically, the GOP grouping & 1201
reduces the processor state oscillation and the waveform 110t
frequency, giving the energy efficiency embedded to the P(_: 100 ]
enough time to put the processor (and other subsystems) in ool |
the “idle” state. We chose to use a 50-frame GOP to conform ‘ ‘
the waveform to the model from Fif] 1 and also to avoid OS WL AAL2 1813 g > e T e

scheduling jitter in the time measurements required by our ©
framework. The oscillography of such a setup is presenteddiy. 4. Power waveforms for the encoding of 24 720p-videanga
Fig. [B. Furthermore, the overall energy consumption is 3%ade available (and compressed)3atHz and grouped in different GOPs

: . : _ configurations: (a) 1-frame GOP; (b) 2-frame GOP and (c)a@&r GOP. As
lower in a GOP of 50 than it is for a single-frame GOP. the GOP size is increased, the waveform tends to the[TFig.mgalel.

C. Complexity Issues

Computers are very complex systems, where many simul-
taneous events are treated by the CPU while it interacts with
the user and with all the peripherals. Most applications are
multi-threaded to guarantee the proper handling of all szenthese enhancement techniques, albeit improving perfacean
Complexity evaluation in a single task situation is not vergre sources of high unpredictability in time measurements,
precise. Nevertheless, complexity is still useful to perfo which, in turn, are also affected by the operating system
comparisons of memory and time requirements [37], [9]. activities and the concurrency of other executing appbost
The precision of complexity estimation in terms of opemore variance is induced by DVFS and ACPI [36]. Therefore,
ations and time measurements is disturbed by the variantes accounting of computing effort only in terms of the numbe
induced by computing speedup techniques, caching, camgpiliof computations is imprecise and can be considered unseiitab
optimizations and the availability of multi-core CPUs. Allin evaluating critical real-time applications.
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we can somehow measure its cost. For signal compression, the
cost measure can be a measure of quality, like distortion (

or the bit-rate ) or a combination of both. The compression

is assumed parameterized, i.e., one has the freedom to chose
the values ofV parameterg P, },—; .. ~. Let P be the vector

with all P;. The encoder runs on a given set of datahat

may be different at every instantiation. For every choice of

P and Z, we can have a measute of the encoder cost. In
essence, we can have a mapping

C = f(P,2).

Another attribute we can derive from each instantiation is

the effort taken to execute the encoding task, which can be
measured as demanded enefgy= g(P, Z). It is expected
that some parameters like number of iterations, data sizes,
etc. would influence the demanded energy while some others
would not. The central idea in this paper derives from the
D. Energy as a computational effort measure fact that the correlation off and C is different for different

We just argued that complexity measurements based Rarameters. We will use this to find points that minimize
estimates of operations can be very imprecise. Furthermdfte energy consumption. The idea is illustrated in Fig. 7,
we also argued that energy consumption is completely defin&hich depicts a cloud of points in the cost-energy space of
by f, for a binary utilization model. However, while there aréll achievableP at a given system and input data. Along with
some applications where the correlation between the psece§e cloud, the figure highlights a subset after optimization
ing frequencyf, and power can be linear, for more complethe lower convex hull (LCH) of all points, represented by
tasks that relationship is not so well behaved, as illusttatgreen square-points. Points that lie on the LCH represent
in Fig.[@. This figure shows typical results relatifigand P instantiations that yield the lowest energy for a given cost
for a video coding task, where we compute both the powand is where we would like to operate. Another subset in the
demand and speed. Note that the curve is not very linear {#igstration is composed by points traversed as we increase
expected in a logarithmic scale plot) and there are dispergearameter, with all the remaining fixed, which are illustcht
points. The reason is because the real power profile is newéih red stars. Changing one parameter may lead to a sub-

Fig. 5. Power waveforms for the encoding of 100 720p-franeesnded and
compressed &30 Hz and grouped in a 50-frame GOP. In red, we highligh
the time intervals of interest for the Figl 1(a) power modgJ; T, and T;.

as well behaved as in Fi] 1, which does not account feptimal set, away from the LCH.

imperfections and oscillations caused by the many hardwareOut of the many definitions of the LCH, one easy solution
nuances involvedf, cannot be easily measured with smalthat leads to a slightly non-convex set is to include a paint i
GOP sizes as in Fifl] 4. Because of that, we decided to meadb@LCH such that no other point has simultaneously lo@wer
real energy/power demand rather than estimating it in aryy wand lower E/ than it. Hence, the algorithm to find the LCH

300

LCH - SD @ 60Hz Training Set

2501

Power [W]
N
o
o

1501

100

Fig. 6.

Encoding Speed - f b (fps)

Correlation of demanded power and compression sfggd

V1. ENERGY-AWARE OPTIMIZATION
A. RDE optimization

Typical optimization tasks deal with cost functions or suconfiguration would achieve bett@&D performance. Figurel 8
cess measures. Let a software encoder execute its job fohwhillustrates the LCH inRDE space.

points, in this case, is rather simple. We make a list of LCH
points (initially empty). A new candidate poitit to the LCH

has to be compared to all the points in the LCH list. If no
point in the list has simultaneously lowér and lowerFE, the
candidate point is inserted in the LCH list. Before the point
is inserted in the list, we also need to be check if any point
in the LCH needs to be removed because of the new one, i.e.
if it has simultaneously lowe€ and lowerE. We repeat the
process for all points in the cloud.

Despite the easier explanation using a scalar cost, in video
coding, the mapping is conveniently addressed by a multidi-
mensional variable a€ = [R, D]. Hence,C = f(P, Z).

P and Z are mapped tak, D and E, adding the energy
dimension to the usud? D optimization problem. We measure
active power from which we can derive accumulated energy
consumption. We want to find the parameters that allow us
to operate on the LCH inRDE space. In this manner,
we can be assured that no configuration would yield lower
energy consumption for a given cost value. Conversely, we
can assure that, for a given energy consumption level, rner oth
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Cloud of points in the energy vs. cost space. The LChitpaare
indicated by the green squares. A suboptimal path is adhigee example,

by varying just one parameter is illustrated by the red stars

Fig. 8. lllustration on the set aRDE points that compose the Pareto front.Fig. 9.
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into L.

3) Count/Ny, the number of itens id.. Note that the itens in
L are still in ascending order of energy and all parameters
are supposed to achieve similar bit-rate.

4) SpanL, fork=1,..., N;, until B, < E™ < Ej41, then
stop.

5) Find P’ as a proportional interpolation d&; and Py
in L.

6) Output parameter vectd@’.

Inputs: 2 Lists
- Q, LCH points;
- L, empty.

N
get_user_input(E~r,R"r) @

Y

‘ select_from_Q(Q_k, such that [R_k-R~k|) ‘ ‘ get(P (kL) o e ‘

i h encode GOP using P_(k+1) setup
insert_in_L(Q_k)

|

find_in_L(L_k and L_(k+1) such that
E k <= E*ran

E~r<=E_(k+1) )

find(s) such that Er = s*E_k + (1-s)*E_(k+1)
and 0<s<1

N ¢

‘ encode 50*s frames using P_k setup ‘

|

encode 50%(1-s) frames

Framework for multidimensional parameters int&afon used in

‘ get(P_k from L_k) ‘

encode GOP using P_k setup

using P_(k+1) setup

The visible green points belong to the lower convex hull; egpoints are €nergy-control.
hidden due to the viewpoint.

Parameter séP’ is then used to compress data ZetFig.[9

Our approach is to use training data sets. {Bj.} be the presents our interpolation approach to encode a GOP. We used
set of all parameter choices, ordered in some fashion. ket aénergy targetdy” constrained to a bitrat&”, but it is trivial
P have element#,,. If we use a representative data skt to replace it with a distortion targeb”. Of course, many
we can sparf{P}, computingE, R and D for each choice parameters do not assume continuous values and some action
and identifying the points that belong to the LCHBfx R x

D. If the n-th point belongs to the LCH, we recoq@,,

has to be taken to properly assign them. For example, the
m-th parameter may use the value fraf,, if E" — Ey <

[En,ARn,Dn,Pn], which contains the optimal points for theEy; — E”, or, otherwise, the value fromff1 .

setZ, but which are also assumed good enough for other datayf feedback control is turned on, one can monitor the system
The off-line training algorithm is:

1) Input a representative data sétand create an empty listIf the energy consumption is not as predicted, it is because

Q.

2) For all k, compute By, = g(Py,Z) and [Ry, Dy
f(Pg, Z). If point belongs to LCH, recordQj

[Ek, Rk, Dk, Pk] into Q
3) Output a list@) of points in the LCH.
After finding the N, points which belong to LCH, we energy expenditure (or cost). Assume that at any givennbsta
sort Q in an ascending order of energy, i.€E;} in @ in
non-decreasing. When running on-line, the parameter findif £(n) < E" one should moveP’ towardsP;.; or even
algorithm is as follows. Initially, consider a target bétte R"
(channel constraint) and a desired energy tafgetThen:
1) Input a list@ of points in the LCH, the energy targét’
and the rate targe®R”. Create an empty list.
2) Span@, fork=1,...,N,. If |[R, — R"| < e insertQy,

energy consumption and continuously adjust the parameters

of discrepancies betwee#@ and Z, so thatZ is not as
representative as one would assume. Such a mismatch may
also depend upon the non-linear mappingOne solution is

to start with a targef’” and to periodically measure the energy
E(n). We then adapt the parameters in order to control the

n, P’ is taken somewhere as an interpolatiofPgfandP ;.

P;.». Conversely, ifE(n) > E” one should move in the
opposite direction, i.e. toward3; or evenP;_;.

The control loop enjoys all the properties of trivial adapti
systems and there are many techniques to choose adaptation
steps and to deal with convergence issues [48].
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Wattimeter

B. Practical approach Measured Measured

Energy Power
We use x264 as our H.264/AVC encoder, withbeing the 2
aggregation of the following parameters: the number of B- Eergy % 1
frames ¢ B), the number of references framegKefs), the
motion vectors precision (MVP) used in motion compensation

the mode decision technique (MD ), the quantization paramet
(QP) and the number of encoding threagstirds). Hence,

P = {#B, #Refs MVP,MD, QP, #Thrds} .
The first step to optimize the H.264/AVC in tHe-sense is

RDE
Controller — Encoded Video
> 1011100...

]

Bitrate +

Target

Processing
PC

Measured
Bitrate

to determine a representative training ﬁn‘rpm where we
will derive the encoder Pareto front. To built, we opted to ~ RawVideo

use standard definition (SD, 70%76-pixels) video sequences

re_corded_ at 60Hz and high definition (720p, 1280- Fig. 10. Energy controller scheme. The closed-loop framkwgaarantees to
pixels) video sequences recorded at 30Hz and at 50Hz. TihiRw the energy target required by the user. Deviatiomsnfithe requested
SD training sequence was obtained by concatenating taéie are minimized by the framework which adjust the encagitings in
sequences “Harbour”, “Crew” and “Soccer”. The 50Hz HL3™e" © vary its energy demand.

training set is composed by sequences “Parkrun,” “Stogkhol

and *Tractor’. The 30Hz HD training set is composed bYess energy/power demanding setup which, in turn, yields

videoconference sequences 5, 6 and 17. o )
E h \uti de the traini t and nferior RD-performance. If there is any surplus, the encoder
or each resolution, we encode the training set and, 19l 4,yveqd to use parameters which are more energy/power

each encoder instantiation, we record the bitrate, thdtiegu demanding, but also yield better performance in term& bk
distort?on and thg demanded electric energy. We also measlrpq resu’Iting parameters are platform dependent but the
encoding speed in orQer to allow for real-'ume.cor_npressmrr]lq.ethod is not, just requiring retraining once for each piaf,
Those va}lues oP Wh'Ch are not capable of deln{er.lrjg, 2 which is not excessively complex in light of a continuoud+ea
fo are disregarded, in such a way that the optimized COdt%%e operation
WlI_:_r(]JgIymzct_:;ptmser;tu&sb(\;vrh:;hrg;lé)r\/(\a/chgg rs:;tlmeeisr'l)cz(rillgg An important issue is the human sensitivity to variations in
ximu u AR ) uality over time. Such variations can be made smooth enough
of threads #Thrds) were set to 5 and 8, respectively. Th%

maximum number of B-frames#B) is restricted by x264 vi(')stik;[l(; c:tulso %Lr?%?;_rsgge.svgfhzﬁpt?;kf;gghlearrvsrleantleorns,spe:hap
which bounds the maximum number of B-frames betwe ' g larg gy 8gs

f course, there may be curious situations which would cause
P-frames to the number of reference frames. The ofPer Y

L rapid oscillating behavior in quality control and cause no-
components (QP, MD_ and MVP). are freely varied in thelﬁceable flickering. However, our one-measurement-peo:se
ranges. In summary, in the training slﬁgwe focused on

finding the fastest settings leading to lower energy demal sgtup in FigLP only provides for very slow transitions and we

assuring thaf, > f,, by varying the motion vectors precision, dve not observed any impairment,
the mode decision technique (the level of optimization reffo
in RDO), the QP, the number of reference frames and the VIl. RESULTS
number of B-frames. At every sequence that is compressed we obtaitRanE

The simulations results delivered &1 E-point cloud from triplet. In order to display results in 2D, we can use R®
which we derive the LCH. Once the LCH for the representatiysiots as in Figl_Tl1(b), one curve for each energy (power).leve
sequences is found, we derived look-up tables from wheltds important to note that not all points in a curve indictte
we can adaptively control the encoder energy demands. Theaee power consumption. We simply labeled the curve by its
tables are inserted in the energy controller framework,sehoaverage as shown Fig.J11(a), which indicates the actual powe
diagram is depicted in Fid._10. The closed-loop controllefonsumption as the controller tracks the demanded energy
in Fig. [10 manages the desktop computer power profile &sget for various bit-rates.
discussed in Section_VIA. It measures the actual encodingRD curves for encoding an SD sequence at different power
energy and adjusts settings. The central idea is to scileels are shown in Figi_11(b) and Fig.]12. Similar plots
the ratio 7;,/T,, in order to adjust the demanded energsire shown in Fig[ 13 and 114 for 720p sequences at 50 Hz
to the desired target. The closed-loop adjusts the codecaied 30Hz, respectively. The controller acts by forcing the
different Py, and P; levels and guarantees the target energgnergy demand to comply to the available budget. The higher
If the encoder is spending more energy than it should bsaseline speed, required to handle 50Hz and 60Hz sequences,
the control module adjusts the encoding parameters todemands increased power compared to the compression of

videoconferencing sequences, recorded at 30Hz.

6Th_is stage is done once for each processor. Its derive_d paee_em_are The curves in Figﬂl tb_l4 are close to each other. In
used in a closed-control framework, which tries to cope veitly deviation . .
from expected reference levels. As the system is traine@,ome opted to order to compare them, it is convenient to analyze averaged
not account the total energy spent in this stage. PSNR differences between twBD curves as described in
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Fig. 13. RD-curves for sequences (a) “Mobcal” and (b) “Stéélencoded at
10% of deviation is allowed for both bitrate and power. (afuat demanded different averaged power levels. These sequences wenedraind evaluated
power for various bit-rates and several target power demafil RD curves in the Intef® Coré™ i7-powered PC.
for real-time compression.

52

Seql12
X264 performance - 720p @ 30Hz

PSNR [dB]

50

15 2 25
Bitrate [Mbps]

(a)
Seq21
X264 performance - 720p @ 30Hz

PSNR [dB]

15 2 25
Bitrate [Mbps]

(b)

Fig. 14. RD-curves for videoconference sequences (a) “Beqhd (b)
“Seg21” encoded at different averaged power levels.

the best RD-performance setup, which, in turn, has the
[49]. For each sequence, eadhD-curve is compared to highest averaged power expenditure. Power expenditure is
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also presented in relative numbers. The averaged resdts ar VIIl. CONCLUSIONS
iIIustra_ted in Fig[[Ib(a) for SD video sequences. The gdneray,e proposed an energy-optimized framework for an
behavior suggests that, as we reduce the available power (@1264/AvC software implementation that allows for real-

energy) used to encode a video sequence, the performafi¢fe coding. Rather than using all prediction tools, we can
penalties increase. In Fig.]115(b) the results are shownZop7 optimally choose a subset of them, constrained by an energy

sequences. budget.We have trained and adjusted parameters in order to
yield the bestRD-performance within a given power con-
Average PSNR Drop vs. Average Demanded Power Ratio sumption budget. We also inserted a control module capable
s X264 performance ~720p of continuously adjusting the encoder speed and throtttieg
energy expenditure. Our tests have shown thatReperfor-
mance is smoothly affected by the framework, which does not
5 1t Ty ] make use of frame-skipping or resolution change. Neverthe-
g PRTE less, it provides significant encoding complexity scalabil
I~ Seqt2@3okz |, e In essence, we can perform the requested task (H.264/AVC
D 05l | == Seql5@30Hz ] encoding) using the requested computing system (softwate a
Seqz1@30Hz hardware) using up t81% less energy! Our framework can
= Mobcal N . . . .
—— Shields X be readily used to build PC-based video encoder appliances
85 07 o7 o8 o085 09 o0e5 1 that can adjust themselves to the availaBI® E conditions
Power Ratio [W/W] without the need of changing the decoder implementation.
(a) Eventual changes in image contents and in energy demands
Average PSNR Drop vs. Average Demanded Power Ratio . .
X264 performance - SD @ 60Hz can be dynamically tracked by the adaptive control system.

0.8

This is a true example of green computing where the
—mice same task is accomplished in the same hardware system with
city ] much less energy consumption, incurring in only snfalD
performance penalties.
Algorithms and implementation of the upcoming HEVC
] (High Efficiency Video Coding) [50] are not mature enough
R for tests yet. Nevertheless, the concepts here discusgdyg ap

' soccer

o
i

o
)

[ ad
3

PSNR Drop [dB]
o o
w

o
)
1
1

wl T ] as well to HEVC.
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