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Abstract— Over the past years, multimedia communication
technologies have demanded higher computing power availability
and, therefore, higher energy consumption. In order to meetthe
challenge to provide software-based video encoding solutions with
reduced consumption, we adopted a software implementationof a
state-of-the-art video encoding standard and optimized its imple-
mentation in the energy (E) sense. Thus, besides looking for the
coding options which lead to the best fidelity in a rate-distortion
(RD) sense, we constrain the video encoding process to fit within
a certain energy budget i.e., anRDE optimization. We considered
energy by integrating power measurements from the system
power supply unit. We present anRDE-optimized framework
which allows for software-based real-time video compression,
meeting the desired targets of electrical consumption, hence,
controlling carbon emissions. The system can be made adaptive,
dynamically tracking changes in image contents and in energy
demands. We show results of energy-constrained compression
wherein one can save as much as31% of the power consumption
with small impact on RD performance.

Index Terms— Green computing, video codec, H.264/AVC,
software implementation, tunable fidelity.

I. I NTRODUCTION

H ISTORICALLY, processor manufacturers have re-
sponded to the demand for more processing power

primarily with faster processor speeds. Higher clock speeds
imply in higher power consumption and heat [1]. Image and
video processing are driving forces behind this computa-
tional power pursuit. Thestate-of-the-artvideo compression
standard, H.264/AVC [2], [3], [4], is a computation-hungry
application used throughout the industry. Nevertheless, energy
usage and carbon emissions are a major concern today. Data
centers are substantially strained by electricity costs and power
dissipation is a major concern in portable, battery-operated
devices [5], [6], [7]. Governments are providing incentives
to save energy and to promote the use of renewable energy
resources. Individuals, companies, and organizations move
towards energy-efficient products as energy costs have grown
to be a major factor. Saving energy has become a leading
design constraint for computing devices through new energy-
efficient architectures and algorithms [8].

As results of this new design trend, we observe the emer-
gence of new energy efficiency technologies [9] which provide
subsystems that are able to scale the processor frequency
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and voltage in order to reduce the power demands.1,2 Apart
from the scalability of voltage and clock (dynamic voltage
and frequency scaling, or DVFS), CPU manufacturers can
turn-off parts of the CPU which are not being used (power
gating), resulting in further savings in energy consumption
and lower heat dissipation. All these technologies allow for
modern processors to correlate computation throughput with
energy consumption.

Traditionally, complexity can be considered as a measure
of the effort to accomplish certain computation tasks and
can be accounted either as the amount of memory, or the
time, or the number of operations it takes to perform some
computation [10]. We propose to evaluate energy demand
instead of complexity [11], since energy is a fundamental
resource that can be directly mapped to operational costs,
and we will show that complexity estimation is not always
a reliable indicator of energy consumption.

The present work suggests new strategies in the direction of
saving energy in real-time computation. We present a fidelity-
energy (ΦE) optimization strategy to constrain the energy
demanded by an application in a real-time scenario. In a video
encoder, fidelityΦ can be evaluated in terms of the rate-
distortion (RD) performance [12], [13]. Then, the optimized
parameters are used to implement anRDE-optimized real-
time encoding framework. We chose an open-source high-
performance encoder, x264 [14], as the H.264/AVC software
implementation due to its excellent encoding speed and good
rate distortion (RD) performance. The proposed approach
suits, for example, mobile communication systems where
energy efficiency is still a major bottleneck [15]. The system
can be made adaptive, dynamically tracking changes in image
contents and in energy demands.

The present work is similar to another [16] in the as-
pect of optimizing a video encoder constrained to energy
expenditure. However there are significant variations. There
is also work [17] proposing a power-rate-distortion model for
wireless video communications under energy constraints, and
the dissimilarities to both works will be discussed in the next
section.

Our framework allows for real-time software-based energy-
constrained video coding. We provide a management mod-
ule capable of delivering the user-demanded encoding speed
while spending less energy and smoothly affecting theRD-
performance. Part of the novelty of our approach is that we
take a standard video encoder to achieve significant encoding

1AMD R© Cool’n Quiettm: http://www.amd.com/us/products/technologies/cool-
n-quiet/Pages/cool-n-quiet.aspx

2Intel EISTR©: http://www.intel.com/technology/product/demos/eist/demo.htm
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energy savings (up to31% less energy) on SD and HD
video (rather than CIF and QCIF), without resorting to frame-
skipping or resolution changes. Further novelty is that we
analyze the encoder within a globalRDE trade-off, wherein
encoding is performed in groups of frames and the energy is
actually measured. Also, it can all be done within a closed-
loop-adaptive framework. We have not found these features
elsewhere.

The proposed encoding framework can be considered a
true example of green computing where the same task is
accomplished in the same hardware system with much less
energy consumption, reducing the carbon footprint of video
compression systems.

II. BACKGROUND ON H.264/AVC IMPLEMENTATION

The H.264/AVC is a hybrid video codec, i.e. along with a
transform module, it has a prediction module, a differential
stage and a feedback loop [12]. The H.264/AVC predic-
tion module has techniques which can be categorized in
two classes: temporal (“Inter-prediction”) and spatial (“Intra-
prediction”) techniques. AVC brought significant advances
in Inter-prediction in comparison to earlier video standards,
which include the support for a wide range of block sizes
(16×16-pixels and smaller), multiple reference frames and
refined motion vectors (quarter-sample resolution for the lu-
minance component). In Intra-prediction, the predicted block
can have different sizes (besides 16×16-pixel size macroblock,
blocks of 8×8 and 4×4-pixel size are also allowed) and is
formed based on planar extrapolation of previously encoded
blocks in the same frame. The prediction residue is trans-
formed and quantized through the use of integer transforms
[18].

The data set composed by block size and Intra (spatial
extrapolation) choice or Inter parameters, like motion vectors
and reference frames, forms the “prediction mode” of a
block. The encoder typically selects the prediction mode that
minimizes the difference between the predicted block and the
block to be encoded, constrained to a given bitrate.

In order to scale the encoder complexity, one may modify
the prediction stage, which is one of the most computationally
intensive steps in digital video encoding, as the numbers in
Table I suggest. These results are for Platform 1 and x264
implementation (see Sec. III) set to High Profile [19]3. Similar
tables can be verified in [20] and [21] for the reference
software implementation.

TABLE I

X264 RELATIVE COMPUTATIONAL COMPLEXITY FOR ENCODING

“M OBILE” (CIF) AND “M OBCAL” (720P) SEQUENCES.

Resolution
Coding Stage CIF 720p

Predictions 91.24% 90.42%
Encoding 6.07% 6.13%

Other Stages 2.69% 3.45%
Total 100.0%

3We analyzed encoder executions usinggprof, an open source profiler.
Available at http://www.gnu.org/software/binutils.

There are many studies into managing H.264/AVC complex-
ity. Some explore prediction techniques for reducing compu-
tations with smallRD penalties [22], [23], [24]. Assuming
a correlation between computations and demanded energy,
reducing the computations can help in reducing the energy
demands. A recent work provides substantial H.264/AVC
complexity reduction [25] using the reference software as
baseline. Nevertheless, much of the complexity scaling would
not be perceived if the framework is implemented using faster
algorithms, high-performance libraries and platform depen-
dent resources [26], [27]. Other works [28], [29] developed
complexity models. Their results are evaluated using the
reference H.264/AVC software (which is not optimized in
terms of encoding complexity) and are tested on low-resolution
material. There are recent investigations on providing com-
plexity scalability to a high-performance encoder [30] within
a somewhat short range. Energy-awareness in video compres-
sion was first presented by Sachs et al [31], who propose a
proprietary video encoder for general purpose processors that
trade computational complexity for compression efficiencyin
order to minimize total system energy. As we mentioned, the
present work is similar to the one by Shafique et. al. [16] in
many aspects. Nevertheless, while there the focus is in the
motion estimation (ME) stage of the video coder (varying the
search patterns and the motion vector precision), we cover
the whole prediction stage and its different parameters. Any
change in pattern can be easily re-trained and we incorporate
many other parameters such as number and types (I, P, or
B) of reference frames and multi-threading. Furthermore, that
work [16] uses lower-resolution content (the largest frame-size
tested was CIF), focuses on a hardware implementation, and
relies on energy consumption estimation. We, however, focus
on real-time software-based standard-definition (SD) and high-
definition (HD) video coding on general purpose computers
and we use actual energy measurements. Additionally, our
framework is adaptive to changes in video contents and power
targets. He et. al. [17] proposed a power-rate-distortion model
for wireless video communications under energy constraints.
They analyze the encoding mechanism of typical video coding
systems and developed a parametric video encoding architec-
ture which is fully scalable in a computational sense, focusing
only on DVFS and stock processors. The baseline video
encoder was H.263 [32] applied to low-resolution (QCIF , i.e.
176×144-pixel) frames of head and shoulder sequences and
allowing for frame dropping.

III. O UR H.264/AVC TEST SYSTEMS

A software-based video solution implies platform-dependent
results. Nevertheless, the collected data suggests that, even
for different processors and underlying hardware for different
PCs, the power profile can be well characterized to reduce
consumption in the mean power sense for a group of frames.
Analyzing hardware implementations is beyond the scope of
this paper and we use two systems as our test platforms
(PCs): Platform 1 has an IntelR© Core i7 CPU 950 processor
in an AsusR© P6X58D-E motherboard, while Platform 2 has
an AMD R© Phenom II X6 1055T processor in an AsusR©
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M4A78LT-M motherboard. Both systems have 8GB RAM
DDR3, a solid-state disk CorsairR© CSSD-F115GB2-A and no
monitors are attached.

Both platforms run LINUX Operating System (Debian
2.6.32) in multi-user mode and the coding processes run at
maximum priority, set to real-time scheduling. All unnecessary
processes are made inactive and we assume that only one user
requests the coding of video frames.

The reference H.264/AVC standard implementation, also
known as JM4, tries to provide the most complete en-
coder/decoder implementation. The IntelR© Performance Prim-
itives (IPP) library [27] has a proprietary implementationof
the H.264/AVC video codec built upon its high performance
primitives. Even though we can control complexity within
an IPP implementation [33], we feel that x264, an open
source H.264/AVC standard-compliant implementation [14]
is better suited for the present work, yielding better per-
formance. Hence, we opted for only using x264 in our
tests. x264 uses assembly-optimized routines for the most
complexity-intensive operations [14] and explores “earlystop”
tests during rate-distortion optimization, yielding a 50-times
speed-up over JM without significantly sacrificingRD per-
formance. We ran x264 in H.264/AVC High profile: 64×64-
pixel motion-estimation window, 5 reference-frames, refined
RD-optimization in all macroblock predictions, quarter-pixel-
precision motion vectors, uneven multi-hexagon search, 8×8
integer transform and CABAC entropy coder.

IV. POWER AND ENERGY IN COMPUTING SYSTEMS

In the scope of computing, work is related to activities
associated with running programs (the microprocessor in-
structions involved in certain computation), power (P ) is
the rate at which the computer consumes electrical energy
while performing these activities, andE is the accumulated
electrical energy demanded by the computer during a certain
time interval. Complexity [11] can be expressed as the number
of iterations of an algorithm, or as the amount of memory or
even the time necessary to execute it.

The distinction among energy, power and complexity is
important because optimizing for one does not always ensure
the others will be optimized. For example, an application can
be implemented using specific instructions provided by the
execution platform. This can raise the instantaneous powerde-
mand, but should reduce the execution time, perhaps bringing
energy savings. So, in this example, compared to not using the
specific instructions, the second implementation would have
the same complexity, higher power, but reduced energy. This
could be an issue for a mobile battery-operated platform. For
a high-performance server, the temperature profile is an issue,
so that power surges should be avoided [34], [35]. Power
consumption can be addressed at different levels.

1) Addressing power consumption at the device level:
CMOS technology prevails in modern electronic devices [1]
and is usually profiled according to two power models: static
and dynamic. The static (leakage) power profile is composed
by the leakage currents that occur while keeping circuits

4“JM,” Available: http://iphome.hhi.de/suehring/tml

polarized, regardless of clock rates and usage. This static
power is mainly determined by the type of transistors and the
fabrication process technology. Reduction of the static power
requires changes at the low-level system design.

The dynamic power profile is created by circuit activ-
ity (transistors switching, memory components varying their
states etc.) and depends on the usage. It has two sources: short-
circuit current and switched capacitance. The short-circuit
current causes only 10-15% of total power consumption and
there is no effective way to reduce it without compromising the
performance [36]. Switched capacitance is the primary source
of dynamic power consumption described as

Pdynamic∝ aCphys.V
2f, (1)

whereCphys. is the physical capacitance,V is voltage,f is the
clock frequency anda is an activity factor. In order to change
physical capacitance, changes in low-level system design and
fabrication methodologies are required. The combined reduc-
tion of f andV is achieved with widely-adopted DVFS, which
intentionally down-scales the CPU performance, when it is
not fully demanded. DVFS should ideally change dynamic
power dissipation in a cubic factor because dynamic power is
quadratically affected by voltage and is linearly affectedby
clock frequency [9].

2) Addressing power consumption at the infra-structure
level: Studies show that the main part of the energy consumed
by a server is drawn by the CPU, followed by the memory and
by losses due to the power supply unit (PSU) inefficiency [37],
[38]. Nowadays, the systems can dynamically enable low-
power CPU modes, saving resources. Current desktop and
server CPUs can consume less than 30% of their peak power
at low-activity modes, leading to a dynamic power range of up
to 70% of peak power [39]. In contrast, dynamic power ranges
of all other server’s components are much narrower: less than
50% for DRAM, and 25% for disk drives [40]. The reason
is that many components cannot be partially switched off and
may have current surges while transitioning from inactivity.

3) Addressing power consumption at the application level:
The application software can also allow for power reduction
using compiler tools such as statistical optimizations and
dynamic compilation [36]. Holistic approaches give appli-
cations a large role in power management decisions. Some
works adopted an “architecture centric” view of applications
that allows for some high-level transformations capable of
reducing the system power demand [41]. Sachs et al. [31]
explored a different adaptation method which involves trading
the accuracy of computations for reduced energy consumption
in video encoding.

The energy consumption of a computing device is not only
determined by the efficiency of its physical devices, but it is
also dependent on resource management and on applications
usage patterns [37], [34], [42], [5], [43], [44], [45], [46].

V. ENERGY VS. COMPLEXITY

A. Saving Energy in a PC-based platform

We first define idle and full-power states. In idle state only
the basic operations are executed and the scheduler keeps the
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processor “sleeping” almost at all times. In full-power state
the processor carries intensive operations and the scheduler
never allows the processor to “sleep”.

Because of energy management techniques like DVFS,
when in idle state, our Platforms 1 and 2 demand 105W and
80W, respectively. When the computation workload increases,
the power demand also increases. When in full-power state,
our platforms 1 and 2 drive 240W and 180W, respectively, of
active power to provide the currents to feed the increased gate
switching, and to keep up with higher access rates to memory,
hard-disks, buses and other components.

We consider a real-timeclocked video coding scenario,
where frames are periodically made available to be encoded
at a given ratefa, e.g. at 30 Hz, or 30 frames/second (fps).
Hence, we haveTa = 1/fa seconds to encode each frame, and
that is the period that governs the compression system. If we
use onlyTp seconds to encode each frame, in the remaining
time (Ti = Ta − Tp) the processor may go idle. If we let
Pi and Pfp be the power demanded in idle and full-power
states, respectively, such a power profile can be illustrated
as in Fig. 1(a). It is also useful to define the processing (or
encoding) speed asfp = 1/Tp, which indicates the speed (in
fps) the encoder would be capable of encoding frames if they
are available at once, say off-line. What should be clear from
Fig. 1(a) is that we can save energy consumption if we reduce
Tp, i.e. if we increase the encoder speedfp. In this way, the
sooner the encoder is done encoding a frame, the longer the
processor goes idle (higherTi).

In this binary utilization model, in which the processor
is either fully idle or fully busy, one can save energy by
increasing the encoding speed, i.e. reducingTp, as in Fig. 1(b).
An increase in encoding speed is typically obtained at the
expense of RD performance. While the profile in Fig. 1(b)
would demand less energy than the one in Fig. 1(a), one could
also use dynamic frequency/voltage scaling to slow down the
processor and do the same task as in Fig. 1(b) but at a lower
pace [47]. In the case depicted in Fig. 1(c) the processor would
run longer using less power. Here, we are not examining this
case, but rather considering the energy savings provided in
Fig. 1(b) by increasing the encoding speed.

B. Measuring energy

Energy consumption is here measured in two ways. The
computer is connected by itself (no monitor or other peripher-
als) to a wattmeter and from there to the local power supply.
We can read the energy consumption from the wattmeter on
another computer at every second, through a USB port, as
shown in Fig. 2. This is sufficient for steady state tests.

However, in order to investigate the energy consumption
behavior at very fast cycles (e.g. 30 Hz or 60 Hz video),
which are comparable to the voltage cycles of the energy
provided by our local power company (60 Hz), we resorted
to oscillography. For these tests we used an Elspec G4500
BlackBox and a California Instruments 5001ix sinusoidal
power supply, as illustrated in Fig. 3.

Time measurements can be disturbed by the OS scheduler in
real-time systems. We used a 250 Hz scheduler frequency and

(a)

(b)

(c)
Fig. 1. Power profile for video coding. (a) Frames are available in Ta

intervals. The frame is encoded inTp seconds and the processor returns to
idle state forTi = Ta−Tp seconds until a new frame arrives. (b) Profile for
reduced consumption by making the encoder faster. (c) Profile for reduced
consumption by making the processor less consuming and slower.

we can expect experimental errors of±2 ms. Considering the
encoding speeds provided by our platforms, which can allow
the encoding of SD and 720p video sequences of up to250 fps,
the measurement of short time intervals used to encode a
video frame can be compromised. One way to overcome the
scheduler-induced variances is the grouping of frames in GOPs
(Group of Pictures).

The GOP grouping of frames can also affect the demanded
power waveforms. To illustrate this, we monitored our test
platform, while compressing 300 high-definition (720p 30-Hz)
frames in real time, at different GOP sizes. As the processor
is faster than necessary to guarantee real-time coding, the
processor can “sleep” from the time it is done compressing
a GOP until the next GOP is available for compression. The
power waveform is registered by measuring the demanded
power according to Fig. 3. The results from oscillography are
presented in Fig. 45

The waveforms show distinctive GOP grouping signatures.
The rapid processor switching between idle and busy states in
Fig. 4(a) is represented by an irregular sequence of peaks and

5For Figs. 3 to 6, we coded the head and shoulder sequence “Seq.06”. In
this sequence, there is a person seated behind the table in front of a detailed
background (high-frequency content background).
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Fig. 2. On-line measurement setup.

Fig. 3. Off-line measurement setup.

valleys. The plot is a zoom of the process of compressing24
frames. When measuring power at the PC’s PSU, the “sleep”
moments are not well determined, as the processor does not
remain in the “idle” state for a long period. This is the result
of various factors: a filtering effect at the PSU related to the
AC-DC conversion; the processor scaling due to DVFS; and
the ACPI activity over other PC components [1], [9], [38]. As
the GOP size is increased (Figs. 4(b) and (c)), the waveforms
approach the model of Fig. 1(a). Basically, the GOP grouping
reduces the processor state oscillation and the waveform
frequency, giving the energy efficiency embedded to the PC
enough time to put the processor (and other subsystems) in
the “idle” state. We chose to use a 50-frame GOP to conform
the waveform to the model from Fig. 1 and also to avoid OS
scheduling jitter in the time measurements required by our
framework. The oscillography of such a setup is presented in
Fig. 5. Furthermore, the overall energy consumption is 3%
lower in a GOP of 50 than it is for a single-frame GOP.

C. Complexity Issues

Computers are very complex systems, where many simul-
taneous events are treated by the CPU while it interacts with
the user and with all the peripherals. Most applications are
multi-threaded to guarantee the proper handling of all events.
Complexity evaluation in a single task situation is not very
precise. Nevertheless, complexity is still useful to perform
comparisons of memory and time requirements [37], [9].

The precision of complexity estimation in terms of oper-
ations and time measurements is disturbed by the variances
induced by computing speedup techniques, caching, compiling
optimizations and the availability of multi-core CPUs. All
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Fig. 4. Power waveforms for the encoding of 24 720p-video frames
made available (and compressed) at30 Hz and grouped in different GOPs
configurations: (a) 1-frame GOP; (b) 2-frame GOP and (c) 8-frame GOP. As
the GOP size is increased, the waveform tends to the Fig. 1(a)model.

these enhancement techniques, albeit improving performance,
are sources of high unpredictability in time measurements,
which, in turn, are also affected by the operating system
activities and the concurrency of other executing applications.
More variance is induced by DVFS and ACPI [36]. Therefore,
the accounting of computing effort only in terms of the number
of computations is imprecise and can be considered unsuitable
in evaluating critical real-time applications.
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Fig. 5. Power waveforms for the encoding of 100 720p-frames recorded and
compressed at30 Hz and grouped in a 50-frame GOP. In red, we highlight
the time intervals of interest for the Fig. 1(a) power model:Ta, Tp andTi.

D. Energy as a computational effort measure

We just argued that complexity measurements based on
estimates of operations can be very imprecise. Furthermore,
we also argued that energy consumption is completely defined
by fp for a binary utilization model. However, while there are
some applications where the correlation between the process-
ing frequencyfp and power can be linear, for more complex
tasks that relationship is not so well behaved, as illustrated
in Fig. 6. This figure shows typical results relatingfp andP
for a video coding task, where we compute both the power
demand and speed. Note that the curve is not very linear (as
expected in a logarithmic scale plot) and there are dispersed
points. The reason is because the real power profile is never
as well behaved as in Fig. 1, which does not account for
imperfections and oscillations caused by the many hardware
nuances involved.fp cannot be easily measured with small
GOP sizes as in Fig. 4. Because of that, we decided to measure
real energy/power demand rather than estimating it in any way.
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Fig. 6. Correlation of demanded power and compression speed(fp).

VI. ENERGY-AWARE OPTIMIZATION

A. RDE optimization

Typical optimization tasks deal with cost functions or suc-
cess measures. Let a software encoder execute its job for which

we can somehow measure its cost. For signal compression, the
cost measure can be a measure of quality, like distortion (D)
or the bit-rate (R) or a combination of both. The compression
is assumed parameterized, i.e., one has the freedom to chose
the values ofN parameters{Pi}i=1,...,N . Let P be the vector
with all Pi. The encoder runs on a given set of dataZ that
may be different at every instantiation. For every choice of
P andZ, we can have a measureC of the encoder cost. In
essence, we can have a mapping

C = f(P, Z).

Another attribute we can derive from each instantiation is
the effort taken to execute the encoding task, which can be
measured as demanded energyE = g(P, Z). It is expected
that some parameters like number of iterations, data sizes,
etc. would influence the demanded energy while some others
would not. The central idea in this paper derives from the
fact that the correlation ofE andC is different for different
parameters. We will use this to find points that minimize
the energy consumption. The idea is illustrated in Fig. 7,
which depicts a cloud of points in the cost-energy space of
all achievableP at a given system and input data. Along with
the cloud, the figure highlights a subset after optimization,
the lower convex hull (LCH) of all points, represented by
green square-points. Points that lie on the LCH represent
instantiations that yield the lowest energy for a given cost,
and is where we would like to operate. Another subset in the
illustration is composed by points traversed as we increaseone
parameter, with all the remaining fixed, which are illustrated
with red stars. Changing one parameter may lead to a sub-
optimal set, away from the LCH.

Out of the many definitions of the LCH, one easy solution
that leads to a slightly non-convex set is to include a point in
the LCH such that no other point has simultaneously lowerC
and lowerE than it. Hence, the algorithm to find the LCH
points, in this case, is rather simple. We make a list of LCH
points (initially empty). A new candidate pointP to the LCH
has to be compared to all the points in the LCH list. If no
point in the list has simultaneously lowerC and lowerE, the
candidate point is inserted in the LCH list. Before the point
is inserted in the list, we also need to be check if any point
in the LCH needs to be removed because of the new one, i.e.
if it has simultaneously lowerC and lowerE. We repeat the
process for all points in the cloud.

Despite the easier explanation using a scalar cost, in video
coding, the mapping is conveniently addressed by a multidi-
mensional variable asC = [R,D]. Hence,C = f(P, Z).
P andZ are mapped toR, D andE, adding the energy

dimension to the usualRD optimization problem. We measure
active power from which we can derive accumulated energy
consumption. We want to find the parameters that allow us
to operate on the LCH inRDE space. In this manner,
we can be assured that no configuration would yield lower
energy consumption for a given cost value. Conversely, we
can assure that, for a given energy consumption level, no other
configuration would achieve betterRD performance. Figure 8
illustrates the LCH inRDE space.
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E
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Fig. 7. Cloud of points in the energy vs. cost space. The LCH points are
indicated by the green squares. A suboptimal path is achieved, for example,
by varying just one parameter is illustrated by the red stars.
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Fig. 8. Illustration on the set ofRDE points that compose the Pareto front.
The visible green points belong to the lower convex hull; some points are
hidden due to the viewpoint.

Our approach is to use training data sets. Let{Pk} be the
set of all parameter choices, ordered in some fashion. Let also
Pk have elementsPkn. If we use a representative data setẐ,
we can span{Pk}, computingE, R andD for each choice
and identifying the points that belong to the LCH ofE×R×
D. If the n-th point belongs to the LCH, we recordQn =
[En, Rn, Dn,Pn], which contains the optimal points for the
setẐ, but which are also assumed good enough for other data.
The off-line training algorithm is:

1) Input a representative data setẐ and create an empty list
Q.

2) For all k, computeEk = g(Pk, Ẑ) and [Rk, Dk] =
f(Pk, Ẑ). If point belongs to LCH, recordQk =
[Ek, Rk, Dk,Pk] into Q.

3) Output a listQ of points in the LCH.

After finding the Nq points which belong to LCH, we
sort Q in an ascending order of energy, i.e.{Ei} in Q in
non-decreasing. When running on-line, the parameter finding
algorithm is as follows. Initially, consider a target bit-rateRr

(channel constraint) and a desired energy targetEr. Then:

1) Input a listQ of points in the LCH, the energy targetEr

and the rate targetRr. Create an empty listL.
2) SpanQ, for k = 1, . . . , Nq. If |Rk − Rr| < ǫ insertQk

into L.
3) CountNl, the number of itens inL. Note that the itens in

L are still in ascending order of energy and all parameters
are supposed to achieve similar bit-rate.

4) SpanL, for k = 1, . . . , Nl, until Ek ≤ Er ≤ Ek+1, then
stop.

5) FindP′ as a proportional interpolation ofPk andPk+1

in L.
6) Output parameter vectorP′.

Fig. 9. Framework for multidimensional parameters interpolation used in
energy-control.

Parameter setP′ is then used to compress data setZ. Fig. 9
presents our interpolation approach to encode a GOP. We used
energy targetsEr constrained to a bitrateRr, but it is trivial
to replace it with a distortion targetDr. Of course, many
parameters do not assume continuous values and some action
has to be taken to properly assign them. For example, the
m-th parameter may use the value fromPkm if Er − Ek <
Ek+1 − Er, or, otherwise, the value fromPk+1,m.

If feedback control is turned on, one can monitor the system
energy consumption and continuously adjust the parameters.
If the energy consumption is not as predicted, it is because
of discrepancies betweenZ and Ẑ, so that Ẑ is not as
representative as one would assume. Such a mismatch may
also depend upon the non-linear mappingg. One solution is
to start with a targetEr and to periodically measure the energy
E(n). We then adapt the parameters in order to control the
energy expenditure (or cost). Assume that at any given instant
n, P′ is taken somewhere as an interpolation ofPj andPj+1.
If E(n) < Er one should moveP′ towardsPj+1 or even
Pj+2. Conversely, ifE(n) > Er one should move in the
opposite direction, i.e. towardsPj or evenPj−1.

The control loop enjoys all the properties of trivial adaptive
systems and there are many techniques to choose adaptation
steps and to deal with convergence issues [48].
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B. Practical approach

We use x264 as our H.264/AVC encoder, withP being the
aggregation of the following parameters: the number of B-
frames (#B), the number of references frames (#Refs), the
motion vectors precision (MVP) used in motion compensation,
the mode decision technique (MD ), the quantization parameter
(QP) and the number of encoding threads (#Thrds). Hence,

P = {#B,#Refs,MVP,MD,QP,#Thrds} .

The first step to optimize the H.264/AVC in theE-sense is
to determine a representative training setẐ from where we
will derive the encoder Pareto front. To build̂Z, we opted to
use standard definition (SD, 704×576-pixels) video sequences
recorded at 60Hz and high definition (720p, 1280×720-
pixels) video sequences recorded at 30Hz and at 50Hz. The
SD training sequence was obtained by concatenating the
sequences “Harbour”, “Crew” and “Soccer”. The 50Hz HD
training set is composed by sequences “Parkrun,” “Stockholm”
and “Tractor”. The 30Hz HD training set is composed by
videoconference sequences 5, 6 and 17.

For each resolution, we encode the training set and, for
each encoder instantiation, we record the bitrate, the resulting
distortion and the demanded electric energy. We also measure
encoding speed in order to allow for real-time compression.
Those values ofPk which are not capable of deliveringfp ≥
fa are disregarded, in such a way that the optimized codec
will only accept setups which allows for real-time encoding.

The maximum number of references frames (#Refs) and
of threads (#Thrds) were set to 5 and 8, respectively. The
maximum number of B-frames (#B) is restricted by x264
which bounds the maximum number of B-frames between
P-frames to the number of reference frames. The otherP

components (QP, MD and MVP) are freely varied in their
ranges. In summary, in the training stage6, we focused on
finding the fastest settings leading to lower energy demand,
assuring thatfp > fa, by varying the motion vectors precision,
the mode decision technique (the level of optimization effort
in RDO), the QP, the number of reference frames and the
number of B-frames.

The simulations results delivered anRDE-point cloud from
which we derive the LCH. Once the LCH for the representative
sequences is found, we derived look-up tables from where
we can adaptively control the encoder energy demands. These
tables are inserted in the energy controller framework, whose
diagram is depicted in Fig. 10. The closed-loop controller
in Fig. 10 manages the desktop computer power profile as
discussed in Section V-A. It measures the actual encoding
energy and adjusts settings. The central idea is to scale
the ratio Tp/Ta, in order to adjust the demanded energy
to the desired target. The closed-loop adjusts the codec to
differentPfp andPi levels and guarantees the target energy.
If the encoder is spending more energy than it should be,
the control module adjusts the encoding parameters to a

6This stage is done once for each processor. Its derived parameters are
used in a closed-control framework, which tries to cope withany deviation
from expected reference levels. As the system is trained once, we opted to
not account the total energy spent in this stage.

Fig. 10. Energy controller scheme. The closed-loop framework guarantees to
follow the energy target required by the user. Deviations from the requested
value are minimized by the framework which adjust the encoder settings in
order to vary its energy demand.

less energy/power demanding setup which, in turn, yields
inferior RD-performance. If there is any surplus, the encoder
is allowed to use parameters which are more energy/power
demanding, but also yield better performance in terms ofRD.

The resulting parameters are platform dependent but the
method is not, just requiring retraining once for each platform,
which is not excessively complex in light of a continuous real-
time operation.

An important issue is the human sensitivity to variations in
quality over time. Such variations can be made smooth enough
not to cause impairing. We expect higher variations, perhaps
visible, at lower bit-rates when tracking large energy savings.
Of course, there may be curious situations which would cause
rapid oscillating behavior in quality control and cause no-
ticeable flickering. However, our one-measurement-per-second
setup in Fig. 2 only provides for very slow transitions and we
have not observed any impairment.

VII. R ESULTS

At every sequence that is compressed we obtain anRDE
triplet. In order to display results in 2D, we can use theRD
plots as in Fig. 11(b), one curve for each energy (power) level.
It is important to note that not all points in a curve indicatethe
same power consumption. We simply labeled the curve by its
average as shown Fig. 11(a), which indicates the actual power
consumption as the controller tracks the demanded energy
target for various bit-rates.

RD curves for encoding an SD sequence at different power
levels are shown in Fig. 11(b) and Fig. 12. Similar plots
are shown in Fig. 13 and 14 for 720p sequences at 50 Hz
and 30Hz, respectively. The controller acts by forcing the
energy demand to comply to the available budget. The higher
baseline speed, required to handle 50Hz and 60Hz sequences,
demands increased power compared to the compression of
videoconferencing sequences, recorded at 30Hz.

The curves in Figs. 11 to 14 are close to each other. In
order to compare them, it is convenient to analyze averaged
PSNR differences between twoRD curves as described in
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Fig. 11. Energy scaling for compressing SD sequence “City”.A range of
10% of deviation is allowed for both bitrate and power. (a) Actual demanded
power for various bit-rates and several target power demands. (b) RD curves
for real-time compression.
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Fig. 12. RD-curves for sequences (a) “Ice” and (b) “Soccer” encoded at
different averaged power levels.

[49]. For each sequence, eachRD-curve is compared to
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Fig. 13. RD-curves for sequences (a) “Mobcal” and (b) “Shields” encoded at
different averaged power levels. These sequences were trained and evaluated
in the IntelR© CoreTM i7-powered PC.
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Fig. 14. RD-curves for videoconference sequences (a) “Seq12” and (b)
“Seq21” encoded at different averaged power levels.

the bestRD-performance setup, which, in turn, has the
highest averaged power expenditure. Power expenditure is
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also presented in relative numbers. The averaged results are
illustrated in Fig. 15(a) for SD video sequences. The general
behavior suggests that, as we reduce the available power (and
energy) used to encode a video sequence, the performance
penalties increase. In Fig. 15(b) the results are shown for 720p
sequences.
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Fig. 15. PSNR drop vs. mean power ratio for (a) SD and (b) 720p video
sequences. Video quality increases as we increase the powerbudget. A energy
ratio of 1.0W/W represents the case of bestRD-performance for real-time
coding.

The main result is an energy-controlled framework which
allows the user to choose the desired energy budget while real-
time encoding HD and SD7 video sequences. As expected, the
RD-perfomance tends to be penalized as the encoding speed
is raised. However, the curves are close to each other and
the worst case is represented by high-motion high-frequency
(50Hz) detailed sequences (“Shields” and “Mobcal”). For
less demanding video sequences, like those in 30 Hz video-
conferencing (“Seq15” and “Seq21”)8, PSNR reduction is
less than1.3dB on average while providing up to31% of
mean power and energy savings. The SD results, besides the
increased baseline compression speed for real-time coding
(60Hz), delivered lower PSNR drops (less than0.6dB) for
similar energy savings, even for very detailed video sequences.
Better training sets may also lead to better results.

7“Soccer” is present in the training and in the evaluation steps; however,
the frames used to evaluate the encoder are from a different set from those
used to build the training sequence.

8“Seq15” and “Seq21” are scenes where there is a couple of speakers on
a table: the background is plain on “Seq15” and is detailed on“Seq21”.

VIII. C ONCLUSIONS

We proposed an energy-optimized framework for an
H.264/AVC software implementation that allows for real-
time coding. Rather than using all prediction tools, we can
optimally choose a subset of them, constrained by an energy
budget.We have trained and adjusted parameters in order to
yield the bestRD-performance within a given power con-
sumption budget. We also inserted a control module capable
of continuously adjusting the encoder speed and throttlingthe
energy expenditure. Our tests have shown that theRD perfor-
mance is smoothly affected by the framework, which does not
make use of frame-skipping or resolution change. Neverthe-
less, it provides significant encoding complexity scalability.
In essence, we can perform the requested task (H.264/AVC
encoding) using the requested computing system (software and
hardware) using up to31% less energy! Our framework can
be readily used to build PC-based video encoder appliances
that can adjust themselves to the availableRDE conditions
without the need of changing the decoder implementation.
Eventual changes in image contents and in energy demands
can be dynamically tracked by the adaptive control system.

This is a true example of green computing where the
same task is accomplished in the same hardware system with
much less energy consumption, incurring in only smallRD
performance penalties.

Algorithms and implementation of the upcoming HEVC
(High Efficiency Video Coding) [50] are not mature enough
for tests yet. Nevertheless, the concepts here discussed apply
as well to HEVC.
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