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Tensor-Based Multiuser Detection in Cooperative
Multirelay Uplink

A. Augusto T. Peixoto and C. Alexandre R. Fernandes

Abstract—In this paper, four tensor-based receivers for a mul-
tiuser multirelay cooperative uplink are proposed, with the relays
employ the amplify-and-forward (AF) protocol and a time-spread
coding. Two different scenarios are considered regarding the
multiuser interference at the relays. When multiuser interference
at the relays is ignored, a quadrilinear PARAFAC model is
adopted for the received signals. Otherwise, a new tensor model
called Nested PARAFAC-Tucker decomposition (NPT1D) is used
to represent the received signals. The proposed receivers jointly
estimate the transmitted symbols, channel gains and spatial signa-
tures, two of them being based on the Alternating Least Squares
(ALS) algorithm and two of them using the non-iterative Least
Squares Khatri-Rao Factorization (LS-KRF) method. Uniqueness
is discussed and simulation results are provided to illustrate the
performance of the proposed techniques.

Index Terms—cooperative communications, tensor decomposi-
tions, PARAFAC, multirelay, multiuser detection.

I. INTRODUCTION

THE use of multilinear algebra concepts, such as tensor
decompositions, has found applications in several areas

[1], [2] and allowed the development of new receivers for
telecommunications systems. An advantage of using tensors
in comparison to matrices is the fact that they allow the direct
use of multidimensional data, providing a better understanding
and processing from a multidimensional perspective. One of
the motivations for using tensor models in wireless communi-
cations systems comes from the fact that they allow multiuser
signal separation and channel estimation under uniqueness
conditions more relaxed than the ones of conventional matrix-
based approaches [1], [2].

The most known tensor decomposition is the Parallel Factor
Analysis (PARAFAC), proposed by Harshman [3] and Caroll
& Chang [4] (Carroll & Chang’s work presented the same
decomposition as Canonical Decomposition). The PARAFAC
has been used as a component analysis tool in many fields
as, for instance, psychometrics [4], chemometrics [5], speech
processing [6], blind signal separation [7] and many others
[1]. One of the main motivations for using the PARAFAC
decomposition comes from its intrinsic uniqueness. In com-
parison to matrix decompositions, where we often have the
problem of rotational freedom, the PARARAC decomposition
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of high order tensors is unique up to scaling and permutation
ambiguity. This uniqueness property makes the PARAFAC
decomposition a good solution to many signal processing
problems [8], [9].

After the work of Sidiropoulos et al. [9], the use of tensor
decompositions in wireless communications proved to be valid
and effective. In the referred work, the authors showed that
a set of DS-CDMA (direct-sequence code-division multiple
access) signals received at an uniform linear array of antennas
can be viewed as a 3rd order tensor, admitting a PARAFAC
decomposition that allowed the proposition of a blind receiver.
Many other works in the literature have applied the PARAFAC
in different wireless communications systems [10]. More
general tensor decompositions were also proposed for mod-
eling wireless systems, as, for instance, the nested PARAFAC
decomposition (NPD) [11], the nested Tucker decomposition
(NTD) [12] and the PARATUCK [13], [14]. One of the main
features of the receivers proposed in these works is the fact
that they do not require the use of training sequences, nor
the channel knowledge, with weak identifiability conditions.
Moreover, these tensor decompositions do not rely on statisti-
cal independence between the transmitted signals. Instead, the
receiver algorithms are purely deterministic and explore the
multilinear algebraic structure of the received signal.

Tensor decompositions have also been successfully em-
ployed in wireless cooperative communications, as in [15],
where a receiver was proposed for a two-way relaying sys-
tem. In [16], a blind receiver for an AF relaying uplink
was proposed for multiuser and multirelay scenarios. [17]
extends the work of [16] by proposing an unified multiuser
receiver with a trilinear tensor model for different relaying
schemes. In [18], receivers based on a trilinear tensor model
for a cooperative scenario exploiting spreading diversity at the
relays are proposed.

More recent works include [19], where a semi-blind receiver
was proposed for a two-hop MIMO relaying system, adopting
two tensor decompositions (PARAFAC and PARATUCK). The
work [20] considers a similar system model than the one used
in [19], but adopting the NPD and employing space-time (ST)
coding at the transmitter and relay nodes. In [12], a one-
way two-hop MIMO AF cooperative scheme was employed
with a NTD, allowing the development of two semi-blind
receivers to jointly estimate the information symbols and the
relay channels. In [21], a three-hop one-way AF cooperative
system was considered and a semi-blind receiver based on the
PARATUCK-3 is proposed. The works [22] and [23] present
tensor-based approaches for channel estimation and multiuser
detection in cooperative MIMO systems, respectively.
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In the present paper, we propose four tensor-based receivers
for a multiuser multirelay cooperative uplink. In the considered
system model, the relays employ the AF protocol and a time-
spread coding [24], and an antenna array is employed at
the destination, taking advantage of cooperative and spatial
diversities. Two different scenarios are considered regarding
the multiuser interference at the relays. In the first scenario,
interference between users is not considered at the relays,
while the second scenario takes this interference into account,
representing a more realistic scenario than the first one.

Four receivers that jointly estimate the transmitted symbols,
channel gains and spatial signatures are then proposed, two
for each scenario. The proposed techniques are based on the
iterative ALS algorithm and on the non-iterative LS-KRF
method [25], [26]. A quadrilinear PARAFAC model is adopted
for the received signals of the first scenario, with two semi-
blind receivers being developed. For the second scenario, a
new tensor decomposition called nested PARAFAC-Tucker
(NPTD) is used to model the received signals, with two
supervised receivers being proposed. The NPTD can be viewed
as a special case of the NTD and a generalization of the NPD.

Some results of the present work have been preliminarily
presented in [27], where a semi-blind receiver for a coop-
erative multiuser DS-CDMA system was proposed. In this
work, we extend the work [27] by generalizing the system
model, proposing other receivers and presenting a new tensor
decomposition.

The present work can also be viewed as a generalization of
some works in the literature [9], [16]–[18]. Indeed, the present
paper extends [9] by considering a cooperative link with relays
instead of the direct link. Moreover, in contrast to [18], the
adopted system considers the relays transmitting in different
time-slots instead of all relays transmitting simultaneously to
the destination. In comparison to [16] and [17], our work
admits time-spread coding at the relays. In addition, [16]–
[18] do not consider the multirelay interference at the relay,
contrarily to one of the cases here presented.

The uniqueness conditions of the tensor decompositions
are discussed for both scenarios and simulation results that
illustrate the performance of the proposed techniques are
provided.

The present paper is structured as follows. Section II lays
out the adopted notation and tensor decompositions. Section
III presents the communication system models. Section IV
shows the tensor modeling of the communication systems and
their uniqueness properties. Section V presents the proposed
receivers algorithms. Section VI shows the simulations results
and Section VII summarizes the conclusions.

Notation: The notation used in this paper is presented
here. Scalars are denoted by Roman lowercase letters (a,b,...),
vectors as lower-case boldface letters (a,b,...), matrices as
upper-case boldface letters (A,B,...) and tensors as calligraphic
letters (A,B,...). The element (i,j) of the matrix A is denoted
by [A]i,j or ai,j , and the element (i1, ..., iN ) of the N th order
tensor A is denoted by [A]i1,...,iN or ai1,...,iN .

AT and A† stand for the transpose and the pseudo-inverse of
A respectively. â, â, Â and Â represent the estimations of a, a,
A and A, respectively. A(:,i) ∈ CR×1 is the i-th column of A

∈ CR×I . The operator diagj[A] is the diagonal matrix formed
by the j-th row of A. The operator ◦ denotes the outer product
of two vectors, � denotes the Khatri-Rao product between A
∈ CI×R and B ∈ CJ×R, resulting in A � B ∈ CIJ×R, and
the operator ⊗ denotes the Kronecker product between A ∈
CI×K and B ∈ CJ×L, resulting in A ⊗ B ∈ CIJ×KL. IR ∈
CR×R and IN,R ∈ CR×...×R denote, respectively, the identity
matrix of dimension R and the N th order identity tensor of
dimensions R× ...×R.

A N th order tensor X ∈ CI1×...×IN can be reexpressed as
a (N − 1)th order tensor by concatenating two of its indices.
For instance, by concatenating the indices iN−1 and iN in the
following way: j = (iN−1−1)IN + iN , for 1 ≤ j ≤ IN−1IN ,
we get X ∈ CI1×...×IN−2×IN−1IN .

The mode-n product between a N th order tensor X ∈
CI1×...×IN and a matrix A ∈ CJn×In yields a N th order
tensor Y = X ×n A ∈ CI1×...×IN−1×JN×IN+1×...×IN , defined
as [1]:

yi1,··· ,in−1,jn,in+1,··· ,iN =

In∑
in=1

ajn,inxi1,··· ,in−1,in,in+1,··· ,iN . (1)

Let X ∈ CI1×...×IN and W ∈ CJ1×...×JM be two ten-
sors sharing a common dimension, i.e. Ip = Jq = K,
with 1 ≤ p ≤ N and 1 ≤ q ≤ M . The contraction
over the common mode (ip = jq = k) between X and
W yields a (M + N − 2)th order tensor Y = X ∗

k
W

∈ CI1,··· ,Ip−1,J1,··· ,Jq−1,Jq+1,··· ,JM ,Ip+1,··· ,IN defined by:

yi1,··· ,ip−1,j1,··· ,jq−1,jq+1,··· ,jM ,ip+1,··· ,iN =

=

K∑
k=1

xi1,··· ,ip−1,k,ip+1,··· ,iNwj1,··· ,jq−1,k,iq+1,··· ,jM . (2)

II. NESTED TENSOR DECOMPOSITIONS

In this section, we present the so called nested decompo-
sitions, a group of tensor decompositions that can be viewed
as the nesting of two simpler tensor models. In particular, we
describe the Nested PARAFAC and Nested Tucker decompo-
sitions. At the end of the section, a new nested decomposition
called Nested PARAFAC-Tucker decomposition (NPTD) is
presented.

A. Nested PARAFAC

The Nested PARAFAC decomposition (NPD) of a 4th order
tensor Y ∈ CI1×I2×I3×I4 was defined in [11] as:

yi1,i2,i3,i4 =

Q1∑
q1=1

Q2∑
q2=1

a
(1)
i1,q1

a
(2)
i2,q1

bq1,q2a
(3)
i3,q2

a
(4)
i4,q2

, (3)

where A(1) ∈ CI1×Q1 , A(2) ∈ CI2×Q1 , B ∈ CQ1×Q2 , A(3) ∈
CI3×Q2 and A(4) ∈ CI4×Q2 . Fig. 1 shows a block diagram
of the NPD. By concatenating the indices i3 and i4 in the
following way: j1 = (i3 − 1)I4 + i4, for 1 ≤ j1 ≤ J1, with
J1 = I3I4, (3) can be rewritten as:

yi1,i2,j1 =

Q1∑
q1=1

a
(1)
i1,q1

a
(2)
i2,q1

wj1,q1 , (4)
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Fig. 1. Block Diagram of the Nested PARAFAC Decomposition.

Fig. 2. Block Diagram of the Nested Tucker Decomposition.

where wj1,q1 = [W]j1,q1 , W ∈ CJ1×Q1 being an unfolded
matrix of the tensor W ∈ CQ1×I3×I4 , defined by:

wq1,i3,i4 =

Q2∑
q2=1

bq1,q2a
(3)
i3,q2

a
(4)
i4,q2

. (5)

It can be concluded from (4) and (5) that Y can be viewed
as the nesting of two PARAFAC decompositions. Indeed, Y
follows a PARAFAC model with factor matrices A(1), A(2)

and W, with W being an unfolding of a PARAFAC model
with factors B, A(3) and A(4).

The NPD can also be written as the contraction over the
mode q1 between two PARAFAC tensors, as follows:

Y = R ∗
q1
W (6)

where

R = I3,Q1
×1 A

(1) ×2 A
(2) ∈ CI1×I2×Q1 (7)

and

W = I3,Q2
×1 B×2 A

(3) ×3 A
(4) ∈ CQ1×I3×I4 . (8)

In a similar manner, Y can be expressed as a PARAFAC
decomposition with factor matrices U, A(3) and A(4), with
U ∈ CJ2×Q2 being an unfolding of a PARAFAC model with
factors A(1), A(2) and B, where J2 = I1I2. In this case, Y
could be expressed as a contraction between two PARAFAC
tensors, similarly as in (6)-(8), however, the matrix B would
be a factor of the tensor R, instead of being a factor of W ,
and the contraction would be over the mode q2. The matrix
B can then be viewed as a factor that can be shared by the
two PARAFAC tensors and the indices q1 and q2 correspond
modes of B that interact with the tensors R and W by means
of the contraction operation.

B. Nested Tucker

The Nested Tucker decomposition (NTD) of a 4th order
tensor Y ∈ CI1×I2×I3×I4 is defined as [12]:

yi1,i2,i3,i4 =

Q1∑
q1=1

Q2∑
q2=1

Q3∑
q3=1

Q4∑
q4=1

c
(1)
i1,q1

d
(1)
q1,i2,q2

×

× c(2)q2,q3d
(2)
q3,i3,q4

c
(3)
i4,q4

,

(9)

Fig. 3. Block Diagram of the Nested Parafac-Tucker Decomposition.

where C(1) ∈ CI1×Q1 , D(1) ∈ CQ1×I2×Q2 , C(2) ∈ CQ2×Q3 ,
D(2) ∈ CQ3×I3×Q4 and C(3) ∈ CI4×Q4 . Fig. 2 shows a block
diagram of the NTD. By concatenating the indices i3 and i4
in the following way: j1 = (i3 − 1)I4 + i4, for 1 ≤ j1 ≤ J1
and J1 = I3I4, the NTD can be re-expressed as:

yi1,i2,j1 =

Q1∑
q1=1

Q2∑
q2=1

c
(1)
i1,q1

d
(1)
q1,i2,q2

gj1,q2 , (10)

where gj1,q2 = [G]j1,q2 , G ∈ CJ1×Q2 being an unfolding of
matrix the tensor G ∈ CQ2×I3×I4 , defined by:

gq2,i3,i4 =

Q3∑
q3=1

Q4∑
q4=1

c(2)q2,q3d
(2)
q3,i3,q4

c
(3)
i4,q4

. (11)

From (10) and (11), one can see that Y is the nesting of two
Tucker-2 decompositions. In (10), Y is expressed as a Tucker-
2 tensor with core tensor D(1) and factor matrices C(1) and
G, where (11) expresses G as an unfolding of a Tucker-2
tensor with core tensor D(2) and factors C(2) and C(3).

The NTD can be expressed as the contraction over the mode
q2 between two Tucker tensors, in the following way:

Y = T ∗
q2
G (12)

where

T = D(1) ×1 C
(1) ∈ CI1×I2×Q2 (13)

is a Tucker-1 tensor and

G = D(2) ×1 C
(2) ×3 C

(3) ∈ CQ2×I3×I4 (14)

is a Tucker-2 tensor.
Similarly, Y can be expressed as a Tucker-2 decomposition

with core tensor D(2) and factors C(3) and R, where R ∈
CJ2×R3 is an unfolding of a Tucker-2 tensor with core tensor
D(1) and factor matrices C(1) and C(2), where J2 = I1I2. In
this case, Y could be expressed as a contraction between two
Tucker tensors, similarly as in (12)-(14), however, the matrix
C(2) would be a factor of T , instead of being a factor of G,
and the contraction would be over the mode q3. The matrix
C(2) can then be viewed as a factor that can be shared by
the two Tucker tensors and the indices q2 and q3 correspond
modes of C(2) that interact with the tensors T and G by means
of the contraction operation.

Note that if Q1 = Q2, Q3 = Q4 and the following matrix
slices of the core tensors [D(1)]·,i2,· and [D(2)]·,i3,·, for 1 ≤
i2 ≤ I2 and 1 ≤ i3 ≤ I3, are diagonal, the NPD and NTD are
equivalent.
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C. Nested PARAFAC-Tucker

In this subsection, we present a new nested decomposi-
tion called Nested PARAFAC-Tucker decomposition (NPTD),
which can be viewed as a special case of the NTD and a
generalization of the NPD. Let us consider the case of a NTD
with one of the core tensors having diagonal slices. Without
loss of generality, let us consider that Q1 = Q2 and that
[D(1)]·,i2,·, for 1 ≤ i2 ≤ I2, are diagonal matrices. (9) can
then be re-expressed as:

yi1,i2,i3,i4 =

Q1∑
q1=1

Q2∑
q2=1

Q3∑
q3=1

c
(1)
i1,q1

d
(1)
i2,q1

c(2)q1,q2d
(2)
q2,i3,q3

c
(3)
i4,q3

, (15)

where D(1) ∈ CI2×Q1 is a matrix formed from the diagonal
elements of [D(1)]·,i2,·, for 1 ≤ i2 ≤ I2. Fig. 3 shows a block
diagram of the NPTD. By concatenating the indices i3 and i4
in the following way: j1 = (i3 − 1)I4 + i4, for 1 ≤ j1 ≤ J1,
with J1 = I3I4, (15) becomes:

yi1,i2,j1 =

Q1∑
q1=1

c
(1)
i1,q1

d
(1)
i2,q1

gj1,q1 , (16)

where gj1,q1 = [G]j1,q1 , the matrix G ∈ CJ1×Q1 being an
unfolding matrix of the tensor G ∈ CQ1×I3×I4 , given by:

gq1,i3,i4 =

Q2∑
q2=1

Q3∑
q3=1

c(2)q1,q2d
(2)
q2,i3,q3

c
(3)
i4,q3

. (17)

(16) and (17) shows that Y is the nesting of a PARAFAC
and a Tucker-2 decomposition. Indeed, Y can be viewed as
a PARAFAC model with factor matrices C(1), D(1) and G,
with G being an unfolded matrix of a Tucker-2 model with
core tensor D(2) and factors C(2) and C(3).

The NPTD can be viewed as the contraction over the mode
q1 between a PARAFAC and a Tucker tensor, as follows:

Y = R ∗
q1
G (18)

where

R = I3,Q1
×1 C

(1) ×2 D
(1) ∈ CI1×I2×Q1 (19)

is a PARAFAC tensor and

G = D(2) ×1 C
(2) ×3 C

(3) ∈ CQ1×I3×I4 (20)

is a Tucker-2 tensor.
In a similar way, Y can be expressed as a Tucker-2 decom-

position with core tensor D(2) and factors C(3) and U, where
U ∈ CJ2×R1 is an unfolding of a PARAFAC model with
factors C(1), D(1) and C(2), where J2 = I1I2. In this case, Y
could be expressed as a contraction between a PARAFAC and
a Tucker tensor, similarly as in (18)-(20), however, the matrix
C(2) would be a factor of R, instead of being a factor of G,
and the contraction would be over the mode q2. The matrix
C(2) can then be viewed as a factor that can be shared by the
two tensors and the indices q1 and q2 correspond modes of
C(2) that interact with the tensors R and G by means of the
contraction operation.

A particular case of the NPTD can be obtained by making
Q1 = Q2 and C(2) = IQ1 . In this case, (15) leads to:

yi1,i2,i3,i4 =

Q1∑
q1=1

Q3∑
q3=1

c
(1)
i1,q1

d
(1)
i2,q1

d
(2)
q1,i3,q3

c
(3)
i4,q3

, (21)

which can be expressed as a PARAFAC tensor with factor
matrices C(1), D(1) and P, where P ∈ CI3I4×Q1 is the
unfolding of a Tucker-1 tensor with core tensor D(2) and factor
C(3). Due to this property, the tensor decomposition (21)
will be denoted Nested PARAFAC-Tucker-1 decomposition
(NPT1D). Similarly, (21) can be viewed as a Tucker-2 tensor,
with core tensor D(2) and factors C(3) and B ∈ CI2

1×Q1 , with
B being a PARAFAC tensor with factors C(1), D(1) and IQ1 .

III. SYSTEM MODEL

Let us consider a cooperative uplink communication system
with M users transmitting towards a base station with the help
of relay-aided links and no direct link between the users and
the base station, as illustrated in Fig. 1. Each user is assisted
by a group of R relays. The communication links between a
user and a relay are called source-relay (SR) links and the
links between a relay and the base station are called relay-
destination (RD) links. The base station employs a linear array
of K equally spaced antennas and each of the M users transmits
to its R associated relays, which use the AF protocol and
perform a time-spread operation on the users signals. All the
relays and users are single antenna devices operating in half-
duplex mode. Synchronization at the symbol level is assumed,
a quasi-static frequency-flat fading environment is considered
and all channels are independent to each other.

The transmission occurs in (R + 1) time-multiplexed stages,
in the following way. In the first stage, the users transmits the
symbols to the relays. In the second stage (first cooperative
slot), the first relay of each user performs a time-spread
operation with a code of length P and forwards the received
signal to the destination. The transmission continues so that,
in the (R + 1)th stage (Rth cooperative slot), the Rth relay
of each user performs the time-spread operation and transmit
the signal to the destination. The total transmission rate of the
system is M/(PR+1). Regarding the interference at the relays,
two different assumptions will be considered in this work:
one scenario where multiuser interference is not considered at
the relay nodes and one scenario where multiuser interference
is considered at the relays. We assume that the number of
relays does not change with time. For the readers interested in
tensor-based receivers considering that the number of relays
may change with time, we suggest the works [17], [28].

A. No multiuser interference at the relays

In this subsection, we make the assumption that each user
and its associated relays are located inside a cluster, i.e. they
are closer to each other so the signal received by a relay
located inside a cluster contains no interference from the other
users of the system. The same assumption was made in [16],
[17]. One possible interpretation for this assumption is that a
user and its associated relays are all located inside a cell and
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Fig. 4. Cooperative Uplink with M users and 3 relays for each user.

the other users and their associated relays are located in other
cells, being treated as co-channel interferers. Fig. 4 illustrates
the adopted scenario for M users and 3 relays per user. The
signal received by the r-th relay of the m-th user is given by:

u(SR)
r,m,n = h(SR)

r,m sn,m + v(SR)
r,m,n, (22)

for 1 ≤ r ≤ R, 1 ≤ m ≤ M and 1 ≤ n ≤ N, where N is
the number of data symbols, h(SR)

r,m is the channel coefficient
between the m-th user and its r-th relay, sn,m is the n-th
symbol of the m-th user and v

(SR)
r,m,n is the additive white

Gaussian noise (AWGN) component. All the data symbols
sn,m are independent and identically distributed and uniformly
distributed over a Quadrature Amplitude Modulation (QAM)
or a Phase-Shift Keying (PSK) alphabet.

Each relay performs a time-spreading operation on the
received signals, so that the signal transmitted by the r-th relay
of the m-th user during the n-th symbol period and p-th time-
spread slot is given by:

u(T )
r,m,n,p = u(SR)

r,m,ncp,m, (23)

for 1 ≤ p ≤ P, where cp,m is time-spread code of the relays
of m-th cluster. Note that the same code is used by all the
relays of the same user. The signal received by k-th antenna
of the base station is then given by:

y
(RD)
k,r,n,p =

M∑
m=1

h
(RD)
k,r,mgr,mu

(SR)
r,m,ncp,m + v

(RD)
k,r,n,p, (24)

for 1 ≤ k ≤ K, where h(RD)
k,r,m is the channel coefficient between

the k-th receive antenna and the r-th relay associated with the
m-th user, v(RD)

k,r,n,p is the corresponding noise of the RD link
and gr,m is the amplification factor applied by the r-th relay
of the m-th user. Substituting (22) into (24), we get:

y
(RD)
k,r,n,p =

M∑
m=1

h
(RD)
k,r,mh

(SR)
r,m gr,msn,mcp,m + v

(SRD)
k,r,n,p , (25)

where

v
(SRD)
k,r,n,p =

M∑
m=1

h
(RD)
k,r,mgr,mv

(SR)
r,m,ncp,m + v

(RD)
k,r,n,p. (26)

The term v
(SRD)
k,r,n,p denotes the noise component through the

source-relay-destination (SRD) link.
We assume that all links are subject to multipath propa-

gation and that the scatters are located far away from the
destination, such that the signals transmitted by the relays of
a given cluster arrive at the base station with the same angle
of arrival. Hence, for the signals transmitted from a given
cluster of relays, the angle spread is small compared to the
spatial resolution of the antenna array at the destination. This
assumption is valid when the user and its associated relays
are close to each other and there is no scattering around the
antennas of the base station, which is common in suburban
areas, where the base station is on the top of a tall building
or a tower [29]. The channel coefficient h(RD)

k,r,m may then be
expressed as:

h
(RD)
k,r,m =

L(RD)
r,m∑
l=1

ak(θm)β
(RD)
l,r,m , (27)

where L
(RD)
r,m is the number of multipaths, θm is the mean

angle of arrival of the m-th scattering cluster, ak(θm) is the
response of the k-th antenna of the m-th scattering cluster,
defined as ak(θm) = exp(j(k − 1) sin(θm)), k = 1,...,K, with
θm being an uniform random variable with zero mean and
variance of 2π and β(RD)

l,r,m is the complex fading envelope of
the l-th path between the r-th relay of the m-th user and the
base station. (27) can be rewritten as follows:

h
(RD)
k,r,m = ak(θm)γ(RD)

r,m , (28)

where γ(RD)
r,m =

∑L(RD)
r,m

l=1 β
(RD)
l,r,m . Now, by substituting (28) into

(25), we get:

y
(RD)
k,r,n,p =

M∑
m=1

ak(θm)γ(RD)
r,m h(SR)

r,m gr,msn,mcp,m + v
(SRD)
k,r,n,p

(29)
and, substituting (28) into (26), we get:

v
(SRD)
k,r,n,p =

M∑
m=1

ak(θm)γ(RD)
r,m gr,mv

(SR)
r,m,ncp,m + v

(RD)
k,r,n,p. (30)

B. Multiuser interference at the relays
In this subsection, we assume that the signal sent by a user

to its associated relays will act as interference to the relays of
other users, corresponding a more challenging scenario than
the one of the previous subsection. The signal received by the
r-th relay of the m-th user is then given by:

u(SR)
r,m,n =

M∑
m̃=1

h
(SR)
m,r,m̃sn,m̃ + v(SR)

r,m,n, (31)

where h(SR)
m,r,m̃ is the channel coefficient between the m̃-th user

and the r-th relay of the m-th user. For the RD link, the signal
received at the k-th antenna of the base station, through the
r-th cooperative slot, on the n-th symbol period and p-th time-
spread slot is given by:

y
(RD)
k,r,n,p =

M∑
m=1

h
(RD)
k,r,mgr,mcp,mu

(SR)
r,m,n + v

(RD)
k,r,n,p, (32)
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which, by substituting (31) into (32), gives us:

y
(RD)
k,r,n,p =

M∑
m=1

M∑
m̃=1

h
(RD)
k,r,mgr,mcp,mh

(SR)
m,r,m̃sn,m̃ + v

(SRD)
k,r,n,p .

(33)
The same assumptions about the propagation environment
made in section III.A are considered in this scenario. Hence,
from (28):

y
(RD)
k,r,n,p =

M∑
m=1

M∑
m̃=1

ak(θm)γ(RD)
r,m gr,mcp,mh

(SR)
m,r,m̃sn,m̃

+v
(SRD)
k,r,n,p , (34)

where v(SRD)
k,r,n,p is given by (30).

IV. TENSOR MODELING

In this section, we present tensor modeling for the two
systems described in Section III. From now on, to simplify
presentation, we omit the AWGN terms and assume that the
channels are constant during the whole transmission block.

A. Quadrilinear PARAFAC Model

For the scenario presented in subsection III.A, where no
multiuser interference at the relays is considered, the baseband
signal received on the RD link can be viewed as a four-way
array with its dimensions related to space, cooperative slot,
symbol and time spreading. Let Y ∈ CK×R×N×P be a 4th

order tensor representing the baseband RD data signals at the
base station: [Y]k,r,n,p = y

(RD)
k,r,n,p, for k = 1,...,K, r = 1,...,R, n

= 1,...,N and p = 1,...,P. From (29), an element of Y is given
as follows:

yk,r,n,p =

M∑
m=1

ak(θm)hr,msn,mcp,m, (35)

where hr,m is defined as:

hr,m = γ(RD)
r,m h(SR)

r,m gr,m. (36)

(35) corresponds to a PARAFAC model with factor matrices
given by A ∈ CK×M , H ∈ CR×M , S ∈ CN×M and C ∈
CP×M , where A is the antenna array response matrix with
[A]k,m = ak(θm), H is the channel coefficient matrix with
[H]r,m = hr,m, S is symbol matrix with [S]n,m = sn,m and
C is the time-spreading coding matrix with [C]p,m = cp,m.

The tensor Y can be expressed using the mode-n product
as follows:

Y = I4,M ×1 A×2 H×3 S×4 C. (37)

The tensor Y can be reorganized in unfolded matrices. In this
work, we use the following unfolded matrices [27]:

Y(1) = (H � S � C)AT ∈ CRNP×K , (38)

Y(2) = (S � C � A)HT ∈ CNPK×R, (39)

Y(3) = (C � A �H)ST ∈ CPKR×N , (40)

Y(4) = (A �H � S)CT ∈ CKRN×P . (41)

An important feature of the tensor model of (35) is that it is
essentially unique if the following conditions is verified [30],
[31]:

kA + kH + kS + kC ≥ 2M + 3, (42)

where kA is the Kruskal rank of the matrix A, (similarly to
H, S and C). The concept of Kruskal rank can be found fairly
explained in [32]. If condition (42) is satisfied, any set of
matrices (A’, H’, C’ and S’) that satisfies (35) are related
with the original factor matrices (A, H, C and S) by A’ =
AΠ∆A, H’ = HΠ∆H, C’ = CΠ∆C and S’ = SΠ∆S, with Π
∈ CM×M being a permutation matrix and ∆A, ∆H, ∆C and
∆S are diagonal matrices that meet ∆A∆H∆C∆S = IM .

Assuming that A, H, C and S are all full k-rank, then,
condition (42) turns into:

min(K,M) +min(R,M) +min(N,M) +min(P,M) ≥ 2M +3.
(43)

Given that a matrix whose elements are drawn independently
from an continuous distribution has full k-rank with probability
one [9], then H has full k-rank with probability one. Such
assumption is valid when the user signals undergo independent
fading channels. The matrix A is assumed to be full k-rank
because we modeled it as a Vandermonde matrix with distinct
generators. The symbols matrix S is full k-rank with a high
probability if N is sufficiently large (in comparison to the
modulation cardinality and the number of users). For last, the
matrix C can be designed to be full k-rank.

Thus, based on condition (43), we have great flexibility for
choosing K, R, N and P, which is the one of the reasons for
considering the tensor approach: it provides different trade-offs
for the system model parameters. For instance, we have:
• If min(R,M) + min(N,M) + min(P,M) ≥ 2M + 3, then,

we may set K = 1, which means that 1 antenna at the
base station is sufficient for M users. Thus, the system
supports more users than relays and sensors.

• If min(K,M)+min(R,M)+min(P,M) ≥ 2M + 3, then N
= 1 satisfies (43), which means that a short block length
is sufficient for detection.

• If min(K,M) + min(N,M) + min(R,M) ≥ 2M + 3,
then, we may choose P = 1, which corresponds to a
scenario with no time-spreading coding, leading to the
tensor models presented in [16] and [17].

• If min(K,M) + min(N,M) + min(P,M) ≥ 2M + 3, then,
R = 1 satisfies (43), which means one relay per user is
used, leading to the tensor model presented in [18].

The tensor modelings of [16], [17],[18] can then be viewed
as particular cases of the present work. It is also worth
mentioning that, if K, N ≥M, then (43) turns into min(R,M)+
min(P,M) ≥ 3. This means that we may set R = 2 and P
= 1 (or R = 1 and P = 2), leading to a maximum system
transmission rate of M/3.

B. Nested PARAFAC-Tucker-1 Model

Let us now consider the system model of Section III.B, i.e.
with multiuser interference considered at the relays. In this
case, we construct the tensor of received signals in a way
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slightly different from that used in Subsection IV-A, with a
change on the order of the dimensions being carried out. Let
Y ∈ CK×P×R×N be the 4th order tensor that contains the
received signals in (34): [Y]k,p,r,n = y

(RD)
k,r,n,p, for k = 1,...,K,

p = 1,...,P, r = 1,...,R and n = 1,...,N. By omitting the AWGN
term, a typical element of Y can be expressed by:

yk,p,r,n =

M∑
m=1

M∑
m̃=1

ak(θm)cp,mh̃m,r,m̃sn,m̃, (44)

for k = 1,...,K, p = 1,...,P, r = 1,...,R and n = 1,...,N, where

h̃m,r,m̃ = h
(SR)
m,r,m̃γ

(RD)
r,m gr,m. (45)

Note that (44) follows the NPT1D (21) with the following
correspondences:

(i1, i2, i3, i4, q1, q2)⇐⇒ (k, p, r, n,m, m̃) (46)

and
(C(1),D(1),D(2),C(3))⇐⇒ (A,C, H̃,S), (47)

where H̃ ∈ CM×R×M is a 3rd order tensor with [H̃]m,r,m̃ =
h̃m,r,m̃.

From (18)-(21), the tensor Y can also be represented in
following way:

Y = T (1) ∗
m
T (2) (48)

where

T (1) = I3,M ×1 A×2 C ∈ CK×P×M (49)

is a PARAFAC tensor and

T (2) = H̃ ×3 S ∈ CM×R×N (50)

is a Tucker-1 tensor. Moreover, the tensor Y can be expressed
as a PARAFAC tensor, with factor matrices A, C and Z(1), in
the following way:

yk,p,l =

M∑
m=1

ak(θm)cp,mz
(1)
l,m, (51)

where z
(1)
l,m = [Z(1)]l,m, with Z(1) ∈ CNR×M being the

mode-1 unfolded matrix of the 3rd order Tucker-1 tensor
Z ∈ CM×R×N , with core tensor H̃ and factor matrix S, as
follows:

Z = H̃ ×3 S. (52)

In (51) and (52), we have merged the indices r and n into the
index, l, where l = (n-1)R + r and l = 1,...,L, with L = NR.
The mode-1 and mode-3 unfoldings of Z are given by:

Z(1) = (S⊗ IR)H̃(1) ∈ CNR×M (53)

and
Z(3) = H̃(3)ST ∈ CRM×N , (54)

where IR ∈ CR×R is the identity matrix and H̃(1) ∈ CMR×M

and H̃(3) ∈ CRM×M are the mode-1 and mode-3 unfoldings
of H̃.

The 3rd order tensor Y ∈ CK×P×L, defined as [Y]k,p,l =
yk,p,l, admits the following unfoldings:

Y(1) = (C � Z(1))AT ∈ CPL×K , (55)

Y(2) = (Z(1) � A)CT ∈ CLK×P , (56)

Y(3) = (A � C)(Z(1))T ∈ CKP×L. (57)

In this case, the trilinear PARAFAC decomposition (51) is
essentially unique if the condition below is satisfied [32]:

kA + kC + kZ(1) ≥ 2M + 2, (58)

If condition (58) is satisfied, thus, any other set of matrices
(A’, C’ and Z’(1)) that satisfies (51) is related to the original
matrix set (A, C and Z(1)) by A’ = AΠ∆A, C’ = CΠ∆C and
Z’(1) = Z(1)Π∆Z(1) , where ∆A∆C∆Z(1) = IM . If we assume
that A, C and Z(1) are all full k-rank, we have:

min(K,M) + min(P,M) + min(L,M) ≥ 2M + 2. (59)

As mentioned in Section III.A, A and C can be assumed to
be full k-rank. From (53), assuming that S is full rank, as
explained in Section III.A, and that H̃

(1)
is full column rank

(h̃m,r,m̃ is drawn from a continuous distribution), then Z(1) is
full k-rank.

From (59), we can then determine some parameters of the
adopted system, as the number of users the proposed receiver
can handle. For instance, we have:
• If K ≥ M and P ≥ M, then (59) becomes min(L,M)
≥ 2. It means that RN ≥ 2, which could give us, for
example, R = 1 and N = 2, thus a short block length
and a single relay simultaneously would be sufficient to
handle M users.

• If L ≥ M and K ≥ M, then we may choose P = 2.
• If L ≥ M and P ≥ M, then K = 2 is enough to verify

(59).
It is important to notice that H̃ and S are not unique, as the

Tucker-1 model (52) is not unique. To overcome this problem,
in the next section, we propose a supervised receiver where
pilot symbols are used to estimate H̃ during a training period.
After that, in a non-supervised period, the unknown symbols
are estimated using the estimation of H̃ obtained during the
training period.

V. RECEIVER ALGORITHMS

In this section, four estimation algorithms are proposed for
the scenarios presented in Section III. Two of the presented
receivers are iterative algorithms based on the ALS method
and the other two receivers are non-iterative techniques. For
the first scenario, two semi-blind receivers are proposed,
while two supervised estimation techniques are derived for
the second scenario.

A. Semi-Blind ALS receiver for the first scenario

Let us assume that there is no channel information at the
receiver neither at the transmitter. The iterative algorithm
presented below is based on the ALS method, which will fit
the quadrilinear model to the received data tensor [33]. The
unfoldings (38)-(40) are used to estimate A, H and S, where
we assume knowledge of the matrix C.
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Algorithm 1 Semi-Blind ALS Receiver

1) Set i = 0; Initialize Â(i=0) and Ĥ(i=0) randomly;
2) i = i+ 1;

3) Ŝ(i) =
[
(C � Â(i−1) � Ĥ(i−1))

†Y(3)
]T

;

4) Ĥ(i) =
[
(Ŝ(i) � C � Â(i−1))

†Y(2)
]T

;

5) Â(i) =
[
(Ĥ(i) � Ŝ(i) � C)†Y(1)

]T
;

6) Repeat steps 2-5 until convergence;
7) Remove scaling ambiguities;

The quadrilinear ALS algorithm is shown in Algorithm 1,
where Ĥ(i), Ŝ(i) and Â(i) are the estimations of H, S and A
at the i-th iteration, respectively. The tensor error at the end
of the i-th iteration is given by:

e(i) =
‖Y(4) − (Â(i) � Ĥ(i) � Ŝ(i))CT ‖2F

‖Y(1)‖2F
. (60)

The convergence of the algorithm is obtained when
|e(i)− e(i− 1)| < 10−6.

As we assume perfect knowledge of C at the receiver,
the PARAFAC decomposition has no permutation ambigu-
ity [9], i.e. Π = IM . After obtaining the estimations of
A, H and S with Algorithm 1, it is necessary to remove
scaling ambiguity. The scaling ambiguity of Â is removed
by considering that the first row of A is known (the first
row of A is composed of 1’s). To remove scaling ambiguity
from Ŝ, the first row of S is assumed as known (one pilot
symbol per user). After obtaining the scaling matrices of Â
and Ŝ, we estimate and cancel the scaling matrix ∆H of
Ĥ using the following relationship: ∆H = ∆−1A ∆−1S . The
computational complexity of the Semi-Blind ALS Receiver is
O(I[N2P 2K2MR+P 2K2R2MN +R2N2P 2MK]), where
I is the number of iterations.

The Semi-Blind ALS Receiver must assure the existence
of the pseudo-inverses in Steps 2, 3 and 4 of Algorithm 1,
which requires the following necessary identifiability condi-
tions PKR ≥M,PKN ≥M and NRP ≥M , respectively.

B. LS-KRF receiver for the first scenario

A non-iterative solution for semi-blind joint detection and
channel estimation denoted LS-KRF is presented in the se-
quel. Assuming knowledge of matrix C and using (41), the
following LS estimation K = (A �H �S) ∈ CKRN×M can be
obtained as follows:

K̂ = Y(4)(CT )† = (A �H � S) ∈ CKRN×M . (61)

The second step of the algorithm consists in obtaining a 3rd

order tensor K̂m ∈ CK×R×N from the m-th column of the
matrix K̂, in the following way:

[K̂m]k,r,n = [K̂](k−1)RN+(r−1)N+n,m , (62)

for m = 1, ...,M , r = 1, ..., R, n = 1, ..., N and k = 1, ...,K.
As K̂ is a double-Khatri-Rao product, we have:

K̂m = Â(:,m) ◦ Ĥ(:,m) ◦ Ŝ(:,m), (63)

Algorithm 2 Semi-Blind LS-KRF Receiver

1) K̂ = Y(4)(CT )†;
Do steps 2 to 5 for m = 1,...,M:
2) [K̂m]k,r,n = [K̂](k−1)RN+(r−1)N+n,m;
3) Estimate A(:,m) as the dominant left-singular vector of
K̂

(1)

m ;
4) Estimate H(:,m) as the dominant left-singular vector of
K̂

(2)

m ;
5) Estimate S(:,m) as the dominant left-singular vector of
K̂

(3)

m ;
6) Remove scaling ambiguities;

which corresponds to a rank-1 tensor. A(:,m), H(:,m) and
S(:,m) can then be estimated from a low rank estimation
method. Let us consider the following unfoldings of K̂m:

K̂
(1)

m = Â(:,m)[Ĥ(:,m) � Ŝ(:,m)]T ∈ CK×NR, (64)

K̂
(2)

m = Ĥ(:,m)[Ŝ(:,m) � Â(:,m)]T ∈ CR×KN , (65)

K̂
(3)

m = Ŝ(:,m)[Â(:,m) � Ĥ(:,m)]T ∈ CN×RK , (66)

for m = 1,...,M. A(:,m), H(:,m) and S(:,m) are optimally
estimated as the dominant left-singular vectors of K̂

(1)

m , K̂
(2)

m

and K̂
(3)

m , respectively.
After obtaining the estimations of A, H and S, the scaling

ambiguities can be removed in the same way as for the ALS
receiver of Subsection V.A, with no permutation ambiguity.
The Semi-Blind LS-KRF Receiver is detailed in Algorithm 2
and its computational complexity is given by O(M [N2RK+
KN2R2 +RK2N2]).

The only identifiability condition of Semi-Blind LS-KRF
Receiver is the existence of the pseudo-inverse of CT in (61),
which leads to r (C) = M , where r (C) denotes the rank of C,
implying P ≥M . By comparing this identifiability condition
with the ones of the Algorithm 2 shown in Subsection V.A,
we conclude that the Semi-Blind ALS works with weaker
conditions than Semi-Blind LS-KRF.

C. ALS supervised receiver for the second scenario

In this subsection, a supervised ALS-based receiver is
presented for the system model of Subsection III.B. The
supervised receiver estimates the parameters of the system
in two phases. The first phase is a supervised stage where a
short training sequence is transmitted by the users to help the
estimations of H̃

(3)
and A. On the second phase, the users’

data symbols are transmitted (non-supervised stage) and the
receiver estimates the symbols using the estimations of H̃

(3)

and A obtained during the first phase. It is assumed previous
knowledge of the coding matrix C.

The unfolded matrices of the received signals during the
training period (first phase) are given by:

Y(1)
t = (C � Z(1)

t )AT ∈ CPLt×K , (67)

Y(2)
t = (Z(1)

t � A)CT ∈ CLtK×P , (68)
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Algorithm 3 Supervised ALS Receiver
First Phase (supervised stage)
1) Set i = 0; Initialize Â(i=0) randomly;
2) i = i+ 1;

3) Ẑ
(1)

t(i) =
[
(Â(i−1) � C)†Y(3)

t

]T
;

4) Â
T

(i) = (Ẑ
(1)

t(i) � C)†Y(1)
t ;

5) Repeat steps 2-4 until convergence;
6) Remove scaling ambiguities of Â and Ẑ

(1)

t ;
7) Reorganize Ẑ

(1)

t into Ẑ
(3)

t using (71);
8) ˆ̃H(3) = Ẑ

(3)

t (ST
t )†;

Second Phase (non-supervised stage)

9) Ẑ
(1)

=
[
(Â � C)†Y(3)

]T
;

10) Reorganize Ẑ
(1)

into Ẑ
(3)

using (74);

11) Ŝ =

[(
ˆ̃H(3)

)†
Ẑ
(3)
]T

;

and
Y(3)

t = (A � C)(Z(1)
t )T ∈ CKP×Lt , (69)

with
Z(1)
t = (St ⊗ IR)H̃

(1) ∈ CNtR×M , (70)

where Lt = NtR, St ∈ CNt×M is a matrix that contains the
pilot symbols and Nt is the number of pilot symbols per user.

The supervised ALS Receiver is detailed in Algorithm 3.
During the first phase, the ALS algorithm is used to estimate
the factor matrices A and Z(1)

t using (69) and (67), as shown
in Steps 1 to 5 of Algorithm 3, where Ẑ

(1)

t(i) and Â(i) are
estimations of Z(1)

t and A at the i-th iteration, respectively,
while Â and Ẑ

(1)

t are the estimations of A and Z(1)
t after

convergence, respectively. The stop criterion is similar to
the one of Algorithm 1. As in Subsection V.A, there is no
permutation ambiguity as the matrix C is assumed known
at the receiver. The scaling ambiguity of the matrix Â is
removed using the fact that its first row of is known. To remove
the scaling ambiguity of Ẑ

(1)

t we use the following identity:
∆Z(1)

t
= ∆−1A .

For estimating the global channel tensor H̃, we reorganize
Ẑ
(1)

t into the unfolding matrix Ẑ
(3)

t ∈ CRM×Nt , as follows:

[Ẑ
(1)

t ](nt−1)R+r,m = [Ẑ
(3)

t ](r−1)M+m,nt
, (71)

for m = 1,...,M, nt = 1,...,Nt and r = 1,...,R. From (54), we
have: Z(3)

t = H̃
(3)

ST
t . Hence, H̃

(3)
can be estimated in the the

following way:
ˆ̃H(3) = Ẑ

(3)

t (ST
t )†, (72)

as shown in Steps 7 and 8 of Algorithm 3.
After the estimation of H̃

(3)
, the supervised stage is over and

the second phase starts. During the second phase, the matrix
Z(1), which corresponds to the matrix Z(1)

t during the non-
supervised stage, is expressed by:

Ẑ
(1)

= [(Â � C)†Y(3)]T , (73)

where the matrix Â is the estimation of A obtained during the
first phase of the algorithm and Y(3) is the unfolding matrix
of the received signal during the non-supervised stage. After
obtaining Ẑ

(1)
, we reorganize it into Ẑ

(3)
, as follows:

[Ẑ
(1)

](n−1)R+r,m = [Ẑ
(3)

](r−1)M+m,n. (74)

for m = 1, ...,M , r = 1, ..., R and n = 1, ..., N . The matrix
S is then estimated from Ẑ

(3)
and ˆ̃H(3) (obtained during the

supervised stage), in the following way:

Ŝ =

[(
ˆ̃H(3)

)†
Ẑ
(3)
]T

. (75)

The computational complexity of Algorithm 3 is
O(I[K2P 2MLt + L2

tP
2MK]).

The Supervised ALS Receiver must assure the existence of
the pseudo-inverses in Steps 3, 4, 8, 9 and 11 of Algorithm
3, which requires the following necessary identifiability con-
ditions PK ≥M,PNtR ≥M and Nt ≥M .

D. LS-KRF supervised receiver for the second scenario

In this subsection, a closed-form LS-KRF algorithm for the
system model of Subsection III.B is presented. Similarly as
the ALS algorithm of Subsection V.C, the estimation here is
done in two phases: a supervised stage where pilot symbols
are transmitted by the users in order to the receiver estimate
H̃

(3)
and A, and a non-supervised phase, where the users’ data

symbols are transmitted and the receiver estimates the symbols
using the estimations of H̃

(3)
and A previously obtained.

The supervised LS-KRF Receiver is shown in Algorithm
4. During the supervised stage, the matrix G = (Z(1)

t � A)
∈ CLtK×M can be estimated from (68) as:

Ĝ = Y(2)
(

CT
)†

= (Z(1)
t � Â). (76)

In the second step of the algorithm, a matrix Ĝm ∈ CLt×K

is constructed from the m-th column of Ĝ, as follows:

[Ĝm]l,k = [Ĝ](l−1)K+k,m, (77)

for m = 1, ...,M , l = 1, ..., Lt and k = 1, ...,K, leading to:

Ĝm = Z(1)
t (:,m) ◦ Â(:,m), (78)

which corresponds to a rank-1 matrix. A(:,m) and Z(1)
t (:,m)

are then estimated, respectively, as the dominant left and right
singular vectors of Ĝm. The remaining steps of the proposed
supervised LS-KRF Receiver are identical to steps 6-11 of
Algorithm 3. The computational complexity of the Supervised
LS-KRF Receiver is given by O(R2M3Nt).

The Supervised LS-KRF Receiver must assure the existence
of the pseudo-inverses in Steps 1 and 5 of Algorithm 4, which
requires the following necessary identifiability condition P ≥
M . By comparing this identifiability condition with the ones
of the Algorithm 3 shown in Subsection V.C, we conclude
that the Supervised ALS works under weaker conditions than
Supervised LS-KRF.
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Algorithm 4 Supervised LS-KRF Receiver
First Phase (supervised stage)
1) Ĝ = Y(2)(CT )†;
Do steps 2 to 3 for m = 1,...,M;
2) [Ĝm]l,k = [Ĝ](l−1)K+k,m;
3) Estimate A(:,m) and Z(1)

t (:,m) as the dominant left and
right singular vectors of Ĝm, respectively;
4) Follow steps 6-8 of Algorithm 3;
Second Phase (non-supervised stage)
5) Follow steps 9-11 of Algorithm 3;

VI. SIMULATION RESULTS

This section presents simulations results in order to evaluate
the performance of the proposed receivers. The following
scenario was adopted. The wireless channels have quasi-static
frequency-flat Rayleigh fading, the complex envelope coef-
ficients β(RD)

l,r,m being independent and identically distributed
(i.i.d.), and drawn from a complex Gaussion distribution with
zero-mean and variance following an exponent law with path
loss exponent equal to 4. The time-spread coding matrix
C ∈ CP×M is a truncated Hadamard matrix, i.e. if P ≥ M ,
C is the transpose of the matrix that contains the first M rows
of the Hadamard matrix of dimension P and, if P < M , C
is formed from the first P rows of the Hadamard matrix of
dimension M . Moreover, 16-QAM modulation is used and the
number of multipaths L(RD)

r,m is equal to 20.
The results were averaged over 20.000 independent Monte

Carlo samples, the relays use a variable AF gain and Ps = Pr

= 1, where Ps and Pr are the source and relay transmission
powers, respectively. When not state otherwise, we used K =
3, R = 3, P = 8, N = 16, M = 4 and Nt = 8. The symbol error
rate (SER), channel normalized mean square error (NMSE)
and average processing time are shown in function of the mean
signal-to-noise ratio (SNR) of the RD link. The NMSE of A
is defined as:

NMSEA =
1

MC

MC∑
l=1

1

‖A(l)‖2F
‖A(l) − Â

(l)
‖2F , (79)

where MC is the number of Monte Carlo runs, A(l) is
the matrix A during the l-th Monte Carlo run and Â

(l)
is

the estimation of A(l). A similar expression is used for the
NMSE of H. The simulation results corresponding to the
scenarios with and without multiuser interference at the relay
are presented in Subsections VI-A and VI-B, respectively

A. No multiuser interference at the relays

Fig. 5 shows the SER of the proposed semi-blind receivers
(Algorithms 1 and 2), as well as the SER provided by the
Zero Forcing (ZF) receiver and by two tensor-based receivers
of previous works in the literature ([17] and [18]). For the
proposed receivers, we used M = 4, R = P = 2, and for the
receivers of [17] and [18], we used, respectively M = R = 2
and M = P = 2. These parameters were set to provide
similar transmission rate for all the receivers. The ZF receiver
corresponds to the Step 3 of Algorithm 1, but assuming perfect
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Fig. 5. SER versus SNR - comparison between different receivers.

knowledge of the factor matrices A, C and H. As we can see
from Fig. 5, the ZF receiver performed better in comparison
to all the other techniques, as expected. However, by the
slope of the SER curves, it can be viewed that the proposed
techniques achieve the same order of diversity than the ZF
method. Moreover, the proposed semi-blind receivers showed
better SER performances in comparison to the ones of [17]
and [18]. This is due to the fact that the proposed semi-
blind receivers exploit both the time-spreading and cooperative
diversity, contrarily to the other receivers. Indeed, [17] does
not use time-spreading and [18] does not exploit cooperative
diversity. The proposed Semi-Blind ALS Receiver unifies and
generalizes the approaches of [17] and [18], taking advantage
of their characteristics. One can also note from Fig. 5 that the
proposed receivers provided very similar SERs.

Fig. 6 shows the SER of the proposed semi-blind receivers
(Algorithms 1 and 2) for several values of the number R of
relays per user and the time-spread coding length P . It can
be viewed from this figure that, when the number of relays
is increased, the SER is significantly decreased. Moreover, by
the slope of the SER curves, we see that increasing R leads to
a higher order of diversity. This result shows that the proposed
receivers exploit efficiently the cooperative diversity provided
by the relays. Note also that the two proposed semi-blind
receivers have similar SER performances for all the tested
cases. Besides, when the value of P is decreased, the SER
suffers a small decrease, with the same slope. This is expected,
since the system does not exploit time diversity. However, it
is important to note that, although the parameter P does not
have a great impact on the SER, it plays an important role on
the uniqueness conditions, as pointed out in Section IV.

Figs. 7 and 8 shows the NMSEs of the matrices A and H
provided by the proposed semi-blind receivers (Algorithms 1
and 2), for several values of the number R of relays per user.
These figures show that an increment in the number of relays
enhances the channel estimation quality, due to the higher
number of received signals obtained when R is increased.
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Fig. 6. SER versus SNR - semi-blind receivers for several values of R and
P.
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Fig. 7. NMSE of A versus SNR - semi-blind receivers for several values of
R

Moreover, the NMSE performance of the two proposed semi-
blind receivers are very close, similarly to the SER behavior
in Figs. 5 and 6. In Figure 7, the NMSE provided by the
tensor-based receivers of [17] and [18] is also showed (with
the same parameters of Fig. 5). It is also possible to see that
the proposed techniques with R = 2 (similar transmission rate)
perform better than the ones of [17] and [18].

B. Multiuser interference at the relays

Fig. 9 shows the SER of the proposed supervised receivers
(Algorithms 3 and 4), as well as the SER provided by the
ZF receiver, for several values of the training sequence length
Nt (Nt = 4, 6 and 8). The ZF receiver corresponds to the
Step 11 of Algorithm 3, but assuming perfect knowledge
of all factor matrices. It is possible to see from this figure
that the SER is decreased when the length of the training
sequence is augmented. As expected, by increasing the length
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Fig. 8. NMSE of H versus SNR - semi-blind receivers for several values of
R.
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Fig. 9. SER versus SNR - supervised receivers for several values of Nt.

of the training sequence, the symbol estimations become more
accurate. In particular, when Nt = 8, the SER of proposed
techniques is very close to that of the ZF receiver. One can
also note from Fig. 9 that the proposed supervised receivers
provided very similar SERs.

Fig. 10 shows the SER versus SNR for the proposed
supervised receivers (Algorithms 3 and 4), with several values
of R and P . From Fig. 10, we can observe that the two
supervised receivers provided very similar SERs. Moreover,
a better SER performance is obtained when the number of
relays is increased, due to the higher degree of cooperative
diversity provided by the relays. As well as for the semi-blind
techniques, the proposed supervised techniques are able to
increase the order of diversity when R is augmented, even with
multiuser interference at the relays. As well as for the semi-
blind techniques, we can observe that decreasing the value of
P leads to a small SER loss.
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Fig. 11 shows the NMSE of A and H̃
(3)

versus the SNR
for the proposed supervised receivers (Algorithms 3 and 4),
with several values of R. We can conclude from this figure
that the NMSE of the two proposed supervised receivers are
very close. Moreover, we can observe that an increase in the
value of R improves the estimation accuracy of A, but it does
not improve the estimation of H̃

(3)
. This is due to the fact that

the dimensions of the matrix A does not depend on R, while
the number of rows of H̃

(3)
are proportional to R. Thus, when

R is augmented, the number of received signal is increased,
however, the number of parameters to be estimated of H̃

(3)
is

proportionally increased.
.

C. Comparison Between Scenarios

Fig. 12 compares the SER provided by the Semi-Blind and
Supervised ALS receivers (Algorithms 1 and 3, respectively),
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Fig. 12. SER versus SNR - comparison between scenarios with the ALS
receivers.

with Nt = 4 and 8 in the supervised technique. We can see
from this figure that the performance of the supervised ALS
highly depends of Nt. Indeed, for Nt = 4, the supervised
ALS provides a SER higher than the semi-blind technique.
However, the supervised ALS outperforms the semi-blind
scenario when Nt = 8.

Aiming to provide a fairer comparison between Algorithms
1 and 3 in terms of transmission rate, we simulated a su-
pervised version of Algorithm 1. This technique, denoted by
Supervised Alg. 1, can be summarized as follows. In the first
part (supervised stage), the ALS algorithm is carried out with
the knowledge of the matrix S (Step 3 of Algorithm 1 is
not performed). In the second part (non-supervised stage),
the matrix is estimated by means of a ZF receiver using the
estimations of A and H obtained in the first stage. Fig. 12
shows the SER provided by the Supervised Alg. 1 technique
with Nt = 8. It can be viewed that this technique significantly
outperforms the Supervised ALS method, due to the use of
pilot symbols. However, the Supervised Alg. 1 provides a SER
performance much worst than the Supervised ALS (Algorithm
3). This is due to the fact that the Supervised ALS does not
consider multiuser interference at the relays.

The last two results evaluate the computational complexity
of the proposed algorithms. Figure 13 shows the number of
iterations for convergence of the ALS algorithms versus the
SNR, whereas Figure 14 shows the FLOPS (floating operations
per second) count versus the number of users M, for a fixed
SNR of 15 dB. As expected, in Figure 13, the number of
iterations decreases when the SNR is augmented. Moreover,
by increasing M, more iterations are needed for convergence,
due to the higher number of data to be estimated. We can
also see from Fig. 13 that the Supervised ALS needs less
iterations to converge than the Semi-blind ALS, due to the
fact the Supervised ALS assumes the knowledge of the symbol
matrix.

In Figure 14, it can be viewed that the number of floating
operations per second required for the Semi-Blind ALS is
higher than the ones of the other algorithms, due to its higher
number of iterations, as shown in Fig. 13. On the other
hand, due to the smaller number of iterations, also showed in
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Fig. 13, the Supervised ALS requires an intermediary amount
of operations. The Supervised LS-KRF showed the second
higher number of floating operations per second because
it has to compute the SVD of a large dimension matrix
(Ĝ ∈ CNtKR×M ), whereas the Semi-Blind LS-KRF performs
SVDs of lower dimension matrices, being the algorithm that
requires less operations.

VII. CONCLUSION

In this paper, four tensor-based receivers that jointly es-
timate the transmitted symbols, channel gains and spatial
signatures are proposed for a cooperative multirelay commu-
nication system. The presented system model takes advantage
of both cooperative and spatial diversities, as well as of a time-
spread coding used by the relays. Two propagation scenarios
were considered. In the first scenario, multiuser interference
is not considered at the relays, whereas in the second scenario
multiuser interference at the relays is assumed. The proposed
algorithms are based on the iterative ALS algorithm and on

the non-iterative LS-KRF method. A quadrilinear PARAFAC
model was adopted for the first scenario whereas a new tensor
model called NPTD was used in the second scenario.

The LS-KRF receivers performed equally to their ALS
counterparts, with less complexity. On the other hand, the
proposed ALS receivers have weaker identifiability conditions
than their LS-KRF counterparts. The results showed that,
increasing the number of relays or the training sequence
length, we can compensate the negative effects that a high
number of users add to the system performance. Perspectives
of this work include the proposition of new algorithms, the
use of other coding schemes and other propagation scenarios.
The development of another receiver, based on the approach
of [34], is also a perspective of this work.
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