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Instantaneous Spectral Analysis
Jerrold Prothero, KM Zahidul Islam, Henry Rodrigues, Luciano Mendes, Jon Barrueco, Jon Montalban

Abstract—The standard Fourier Transform (FT) can be seen as
a change of basis in which a “time domain” amplitude sequence
is re-expressed as a sum of sinusoids with constant coefficients
allowing for the spectral analysis of the signal. The FT can be
employed either as a tool for studying the sinusoidal properties
of the amplitude sequence, or more actively as a prescription
for transmitting the amplitude sequence using some range of
frequencies. Introduced here, Instantaneous Spectral Analysis
(ISA) is similar to the FT in usage, except that ISA expresses
an amplitude sequence in terms of sinusoids with continuously-
varying amplitudes. This makes ISA more suitable than the
FT for studying situations in which the amplitude sequence is
generated by a continuously time-varying (non-ergodic) source,
corresponding to a non-stationary spectrum. Viewed prescrip-
tively, ISA allows an amplitude sequence to be compressed into
a much smaller range of frequencies than the FT, essentially
because ISA is not restricted by an assumption in the proof
of the sampling theorem, that the spectrum is stationary over
the evaluation interval. Intuitively, the FT expresses increasing
time-domain detail by using increasingly higher frequencies. ISA,
instead, uses an increasingly dense set of sinusoids with time-
varying amplitude, within a fixed frequency range.

Index Terms—amplitude-varying sinusoid, instantaneous, spec-
tral analysis.

I. INTRODUCTION

FOURIER analysis has been the standard tool for analyzing
signals in the frequency domain. Using implementation-

efficient variants, known as fast Fourier transforms (FFTs)
[1], a handful of basic functions, such as the power spectrum
and the cross power spectrum, are widely employed in signal
analysis for different applications. The FFT algorithm is the
key tool for analyzing a communication system’s frequency
and impulse responses, channel coherence bandwidth and
signal amplitude and phase spectrum.

The Fourier transform (FT) can be abstractly viewed as
representing signals by modulating a set of basis functions,
specifically complex exponentials, resulting in a sum of circles
on the complex plane, where the magnitude and initial phase
of each circle are given by its corresponding coefficient. A
known limitation of the FT is its spectral stationarity, since its
coefficients are constants within the evaluation time-window.
Furthermore, the FT inherently presents the paradigm in which
the sampling period is inversely proportional to the bandwidth
of its frequency domain basis functions.

Non-stationary signal analysis has been widely studied,
with short-time Fourier transform (STFT) as the traditional
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method [2], generating the well-known spectrogram. This
transformation is accomplished using a sliding time-window,
with a trade-off between time and frequency resolution. Joint
time-frequency distributions are an alternative technique for
analyzing time-varying spectra, where Gabor [3], Ville [4],
and Page [5] have established the main foundations in the
area. The common idea is to derive a function, which depends
on both time and frequency, that describes how the signal’s
energy intensity is simultaneously distributed in the time and
frequency domains.

Although STFT and the vast number of joint time-frequency
distributions [6] can handle non-stationarity, all existing fre-
quency analysis techniques are bounded by the paradigm of
requiring a higher basis bandwidth for representing a higher
sampling frequency signal.

This paper proposes a novel non-stationary frequency anal-
ysis tool, called instantaneous spectral analysis (ISA), which
represents waveforms as sinusoids with continuously time-
varying amplitude within the evaluation period. These si-
nusoids can be represented using complex spirals that are
generalizations of the complex circles used by the FT.

ISA conceptually differs from any other existing frequency
analysis tool, including Fourier and time-frequency distri-
butions, because it treats the time domain waveform as a
polynomial or sequence of polynomials. Another difference
between ISA and the conventional frequency analysis tools
lies in the fact that the ISA basis functions are complex spi-
rals, i.e., complex exponentials with continuously increasing
or decreasing amplitude, as opposed to Fourier’s (constant
magnitude) complex circles. ISA is based on a generaliza-
tion of Euler’s formula, which produces continuously-varying
amplitude complex exponentials, instead of the constant am-
plitude complex exponentials that support the FT. Finally, ISA
presents a unique basis bandwidth compression characteristic:
if the evaluation period is T seconds long, the ISA basis
functions are strictly within a 1

T Hz bandwidth, regardless
of the number of samples within the time-window. The ISA
basis spectrum becomes more densely packed as the number
of time domain samples increases.

This paper is structured as follows. Section II summarizes
some well-known signal analysis tools in order to better con-
textualize the ISA algorithm introduced here. Section III intro-
duces the ISA mathematical background and generalizes the
known equivalence between the Taylor series representation of
sinusoids and sums of complex circles. Section IV introduces
the ISA algorithm and describes its characteristics. Section
V describes discrete-time ISA with matrix notation. Section
VI briefly describes ISA arithmetic complexity. Section VII
compares ISA and the FT as spectrum measurement tools
while Section VIII shows convergence between ISA and the
FT for some signals of interest. Section IX concludes the



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 13

paper.

II. SIGNAL ANALYSIS TECHNIQUES

A set of signal analysis tools are reviewed in order to better
contextualize the ISA algorithm introduced here. The best
known frequency analysis tool is the FT, which has variants
depending on the nature of the time and frequency domain
signals, whether they are periodic or aperiodic, discrete-time
or continuous-time.

The discrete-time Fourier transform (DTFT) creates a peri-
odic and continuous frequency domain signal from an aperi-
odic discrete time signal [7]. Its direct form is given by

X(ω) =

N−1∑
ℵ=0

x(ℵ)e−iωℵ, (1)

where x is the N -samples input time domain signal with
ℵ being the sample index, and ω the continuous-frequency
variable. Its inverse form is given by

x(ℵ) =
1

2π

∫ 2π

0

X(ω)eiωℵdω, (2)

where the DTFT frequency domain content is composed by
an infinite number of samples in the [0, 2π] interval.

The most limited (and useful) version of the FT is the
discrete Fourier transform (DFT). It is based on the idea of
reassembling the time domain from a sampled version of the
DTFT frequency domain. If X(k) is the uniformly-spaced
sampled version of X(ω), the minimum number of frequency
samples needed to perfectly reconstruct x(ℵ) is N [8], where
ω = k

2π for k = 0, 1, . . . , N −1. In other words, in order not
to lose information from the time to frequency transformation,
the minimum number of frequency components needs to be
exactly the number of time domain samples, leading to the
direct and inverse DFT given by

X(k) =

N−1∑
ℵ=0

x(ℵ)e−
i2πkℵ
N , (3)

and

x(ℵ) =
1

N

N−1∑
k=0

X(k)e
i2πkℵ
N , (4)

respectively.
In order to analyze non-stationary signals, a wide set of

time-frequency signal analysis tools [9], [10] are available. The
most classical method is the STFT, for which the underlying
idea is to divide a longer signal into a set of overlapping
segments, with the FT applied on each segment, i.e., a sliding
windowing process [11] given by

X(ω, τ) =

∞∑
ℵ=−∞

x(ℵ)υ(ℵ − τ)e−iωℵ, (5)

where τ is the time-offset of the sliding window υ. The STFT
is invertible [8] and is given by

x(ℵ) =
1

2πυ(0)

∫ 2π

0

X(τ, ω)dτ. (6)

The spectrogram corresponds to the energy of X(ω, τ), and
presents a trade-off between time and frequency resolution
[11].

Fractional Fourier transform (FRFT) is a generalization of
the FT in the sense that a family of linear transformations can
be sequentially applied, in order to obtain any intermediary
domain between time and frequency [12]. It is defined as

Fα[x](u) =
√

1− i cot(α)eiπ cot(α)u2∫ ∞
−∞

e−i2π(csc(α)ux−
cot(α)

2 x2)x(t)dt,
(7)

where t is the continuous time, u is interpreted as a linear com-
bination between time and frequency, and α is the transform
order (or angle) where α = π/2 and α = 0 corresponds to
the classical FT and the identity operator, respectively. One
of the FRFT applications is time-frequency representations
[13], where the time-frequency domain gets rotated by the
α parameter.

Time-frequency distributions [6] represent the signal energy
across the time-frequency grid. The Wigner-Ville distribution
is used for time-frequency representation, using the analytic
version of the signal and is defined [14] as

ρx(ω, t) =

∫ ∞
−∞

x
(
t+

τ

2

)
x∗
(
t− τ

2

)
e−iωτdτ. (8)

It assumes that the input is a mono-component signal [15],
which can be a significant limitation. Although is has synthesis
applications [16], this representation is not invertible due to
the presence of noise and crossterms [17], [18].

All previously presented signal analysis techniques are FT-
based tools. They are therefore limited to the paradigm of
requiring higher basis function bandwidth in order to represent
a higher time resolution.

III. ISA MATHEMATICAL BACKGROUND

The familiar Euler’s formula

eit = cos(t) + i sin(t) (9)

can be generalized by raising the imaginary constant i on
the left side to fractional powers. The new term, which is
a contribution of this paper, is given by

eti
(22−m)

. (10)

Notice that (10) reduces to the standard Euler’s term in the
special case m = 2.

Table I presents the generalized Euler’s terms given by (10)
assuming positive integer values of m.

TABLE I
GENERALIZED EULER’S TERMS AS A FUNCTION OF POSITIVE INTEGER

VALUES OF m.

m 0 1 2 3 4 5 . . .

eti
(22−m)

et e−t eit et
√
i et

4√i et
8√i . . .

The standard Euler’s formula in (9) can be expanded as a
Taylor series and grouped into real and imaginary terms. The
same procedure can also be used for each term in Table I to
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derive a generalization of Euler’s formula for integer m ≥ 0,
given by

eti
(22−m)

=

d2m−1e−1∑
n=0

in2
2−m

ψm,n(t), (11)

where d·e denotes the ceiling function and

ψm,n(t) =

∞∑
q=0

(−1)qd2
1−me tqd2

m−1e+n

(qd2m−1e+ n)!
(12)

are called the Cairns series functions. The proof of (11)
provided in Appendix A shows the Cairns functions for
m = 0, 1, 2 and 3. Notice that ψ2,0(t) and ψ2,1(t) give us
the Taylor series for the standard cosine and sine functions,
respectively.

Each value of m produces a set of functions ψm,n(t); from
the summation limits in (11), it can be seen that each set, or
m-level, has a total of d2m−1e functions. Fig. 1 depicts the
ψm,n(t) for m = 0, 1, 2, and 3.

−4

−2

0

2

4

−π − 2π
3

−π3 0 π
3

2π
3

π
t

ψ
m
,n

(t
)

ψ0,0(t) = et ψ1,0(t) = e−t

ψ2,0(t) = cos(t) ψ2,1(t) = sin(t)

ψ3,0(t) ψ3,1(t)

ψ3,2(t) ψ3,3(t)

Fig. 1. Cairns functions.

An important property of the ψm,n(t) is the regular pattern
of their coefficients, as shown in Table II for 0 ≤ m ≤ M
with M = 3.

TABLE II
CAIRNS SERIES COEFFICIENTS.

ψm,n(t) 1 t
t2

2!

t3

3!

t4

4!

t5

5!

t6

6!

t7

7!

ψ0,0(t) = et 1 1 1 1 1 1 1 1
ψ1,0(t) = e−t 1 -1 1 -1 1 -1 1 -1
ψ2,0(t) = cos(t) 1 0 -1 0 1 0 -1 0
ψ2,1(t) = sin(t) 0 1 0 -1 0 1 0 -1
ψ3,0(t) 1 0 0 0 -1 0 0 0
ψ3,1(t) 0 1 0 0 0 -1 0 0
ψ3,2(t) 0 0 1 0 0 0 -1 0
ψ3,3(t) 0 0 0 1 0 0 0 -1

From Table II it is possible to conclude that the Cairns
coefficients define a set of orthogonal vectors. Essentially,
this is because within any m-level no two rows have nonzero

entries in the same column, and across m-levels any column
in which two rows have the same sign is matched by a column
in which they have opposite sign.

More precisely, if M is a positive integer, then the vectors
formed from the first 2M coefficients of the functions ψm,n(t)
for 0 ≤ m ≤M constitute a set of orthogonal basis vectors for
a 2M -dimensional space. These can be normalized to produce
the orthonormal 2M Cairns basis vectors.

The existence of the 2M Cairns basis vectors implies that
any Taylor polynomial p(t) of degree K < 2M can be
orthogonally projected onto polynomials formed from the first
2M terms of the Cairns series functions simply by taking the
inner product of p(t)’s coefficients with the 2M Cairns basis
vectors. The resulting coefficients cm,n for each Cairns basis
function are referred to as the projection coefficients.

The first 2M terms of the Cairns series functions ψm,n(t)
are only an approximation to the full infinite series expansion
of the ψm,n(t). However, the error in the approximation is
O(t(2

M )), with a reciprocal factorial coefficient, and therefore
falls off very rapidly as M increases. For high-degree poly-
nomials, therefore, it is reasonable to speak of projecting onto
the ψm,n(t) by this procedure.

It is well-known that the cosine and sine functions produced
by Euler’s formula can be represented not only by Taylor
series, but also by sums of complex exponentials. Explicitly

cos(t) = 1− t2

2!
+
t4

4!
− t6

6!
+ . . . =

1

2

(
eit + e−it

)
(13)

and

sin(t) = t− t3

3!
+
t5

5!
− t7

7!
+ . . . =

1

2i
(eit − e−it). (14)

This characteristic also holds for a generalized exponential
description, which can be defined as

Em,n(t) =
1

d2m−1e

d2m−1e−1∑
p=0

i−n(2p+1)22−meti
(2p+1)22−m

,

(15)
where the Em,n(t) are called the Cairns exponential functions.

By expanding the right side of (15) as a sum of Taylor
polynomials and recursively canceling terms, it is shown in
Appendix B that for all m and n

Em,n(t) = ψm,n(t). (16)

Equation (16) indicates that once a polynomial has been
projected onto the Cairns series functions, it can be imme-
diately converted into a sum of complex exponentials. This is
useful for examining instantaneous spectral usage as shown in
Section IV.

IV. ISA FORMULATION AND ITS CHARACTERISTICS

While frequency information is not readily apparent from
the ψm,n(t) representation, it can be determined precisely, and
on an instant-by-instant basis, from the Em,n(t). Each Em,n(t)
can be expressed as a sum of products, in which each term is
the product of a complex gain-adjusted real-valued exponential
with a complex circle (or sinusoid). The real-valued exponen-
tials may be either rising or falling, and have different growth
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constants in the exponent. The complex circles may rotate in
either direction, and with different frequencies.

The ISA method introduced here could also be termed
“spectral calculus”, since it shares with differential calculus
the property of replacing a discrete average with instantaneous
information.

ISA takes as input any sequence of real or complex am-
plitude values (the “time domain”), each of which has a
monotonically increasing time value associated with it. No
further assumptions are required concerning the nature of this
data, such as linear time-invariance (LTI).

As output, ISA returns a set of sinusoids of differing
frequencies (the “frequency domain”), each of which has
continuously time-varying amplitude. Summing the product
of each sinusoid with its amplitude allows the time domain to
be precisely reconstructed at each point in time.

The key steps of ISA are as follows:

1) Fit a Taylor polynomial to an input sequence of real-
valued or complex-valued amplitudes. (Alternately, if a
polynomial is available from some other means, that may
be used as well.)

2) Project the polynomial onto the Cairns series functions,
generating the projection coefficients cm,n. At this point,
any Taylor polynomial p(t) of order K−1 with K = 2M

can be synthesized as

p(t) =

M∑
m=0

d2m−1e−1∑
n=0

cm,nψm,n(t). (17)

3) Convert from the Cairns series functions ψm,n(t) to the
Cairns exponential functions Em,n(t).

4) Combine frequency information contained within the
Cairns exponential functions to identify a sum of si-
nusoids with continuously time-varying amplitudes.

The ISA representation can be used to correctly re-generate
the input amplitude sequence, by summing the complex gain-
weighted amplitude information associated with each fre-
quency, confirming that the two representations are equivalent.

For each sinusoid identified, its amplitude gives the spectral
usage of the input sequence at the sinusoid’s frequency as a
continuous function of time. In this way, it becomes possible
to define instantaneous spectrum usage.

To describe Step 4 of the ISA algorithm in more detail, using
the identity eiπ/2 = i the generalized Euler’s term eti

(22−m)

can be expressed as

eti
(22−m)

= et cos(π2
1−m)eit sin(π2

1−m), (18)

as proved in Appendix C.
With a slight modification, (18) allows us to represent (15)

equivalently as (19) (below), which can be subdivided into
three distinct factors:

1) eit sin(π(2p+1)21−m) is a unit circle in the complex plane
with frequency given by

fm,p =
sin(π(2p+ 1)21−m)

2π
. (20)

2) et cos(π(2p+1)21−m) is a real-valued exponential with
growing or decaying magnitude depending on the m, p
combination.

3) i−n(2p+1)22−m is a complex constant with unitary mag-
nitude causing a constant phase rotation.

The following further observations from (19) are notewor-
thy:
• For m = 0 and m = 1 the frequency factor is equal to the

constant one, since the sine function evaluates to zero.
• For m ≥ 2, no two distinct m levels will contain the same

frequencies, since sin(π(2p+)21−m) depends on m.
• The same frequencies appears in Em,n(t) across all n at

level m, since sin(π(2p + 1)21−m) does not depend on
n.

Since both sin(π(2p+ 1)21−m) and cos(π(2p+ 1)21−m) can
switch sign depending on the value of p, it follows that for
m ≥ 2 each positive frequency will be matched by an equal
negative frequency, and for m ≥ 3 each positive and negative
frequency will appear twice, i.e., for two different values of
p, with both a rising and falling exponential as its real-valued
amplitude coefficient. These observations may be perceived
from Fig. 2, which shows the frequency value of each complex
sinusoid as a function of m and p.

At this point, any sequence (fitted as a polynomial) can
be described as (21) (below). In this new representation, a
sum of complex sinusoids with constantly varying envelope
(given by the real-valued exponentials) are weighted by Cairns
coefficients (which are input sequence dependent). It is the
real-valued exponential terms that provides the ISA non-
stationary characteristic, since the frequency domain content
is not purely determined by constants, but by continuously-
varying amplitudes.

In order to find the instantaneous amplitude of each fre-
quency, all terms of (19) that have the same frequency need
to be algebraically assembled. For m ≤ 2, Em,n(t) this leads
to well-known special cases

E0,0(t) = et, (22)
E1,0(t) = e−t, (23)

E2,0(t) = cos(t) =
1

2

(
e−it + eit

)
, (24)

E2,1(t) = sin(t) =
i

2

(
e−it − eit

)
. (25)

Substituting (19) into (17), using the equivalence between
the Cairns exponential functions and the Cairns series func-
tions, then associating terms corresponding to complex sinu-
soids with the same frequency, leads to (26). Considering
the evaluation time to be 0 ≤ t ≤ T , the first, second,
third, and fourth terms corresponds to complex sinusoids with
frequencies equal to fDC = 0 (DC component), fmax = 1

T
(maximum), fmin = − 1

T (minimum), and − 1
T < f < 1

T , re-
spectively. This results in a unique ISA characteristic: the fre-
quency domain complex sinusoids basis functions are always
contained within the frequency range − 1

T ≤ f ≤ 1
T . In other

words, the basis bandwidth depends only on the evaluation
time T and is independent of the number of samples within
the evaluation time. As the number of samples increases, the
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Em,n(t) =
1

d2m−1e

d2m−1e−1∑
p=0

i−n(2p+1)22−met cos(π(2p+1)21−m)eit sin(π(2p+1)21−m) (19)

p(t) =

M∑
m=0

d2m−1e−1∑
n=0

constant︷ ︸︸ ︷
cm,n
d2m−1e

d2m−1e−1∑
p=0

constant︷ ︸︸ ︷
i−n(2p+1)22−m

complex spiral︷ ︸︸ ︷
real-valued exponential︷ ︸︸ ︷
et cos(π(2p+1)21−m)

complex sinusoid︷ ︸︸ ︷
eit sin(π(2p+1)21−m) (21)
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Fig. 2. ISA spectral component frequencies.

ISA spectrum is compressed, becoming more densely packed
within the same limits.

As seen in Fig. 2, for m ≥ 3 there are two values of p that
generates the same complex sinusoid frequency. Working with
the summation in p of (26) in order to group unique complex
sinusoid frequencies fm,p for all combinations of m and p
leads to (27), where 〈·〉N denotes a modulo N operation.

Since the complex sinusoid frequency values do not depend
on n, the summation order of n and p was reversed. Hence,
the modulating or instantaneous amplitude associated with
each complex sinusoid explicitly appears between the square
brackets of (27) and can be defined at every distinct time t
over its evaluation interval.

The polynomial p(t) can be reconstructed from the ISA
representation to arbitrary precision. The precision is limited
by the size of the Cairns projection table, since ISA depends
on the equivalence between the Cairns series and Cairns
exponential functions, which are only exactly identical in the
limit of an infinite number of polynomial terms. As a practical
matter, a polynomial projected onto the Cairns projection table
complete through m = 4 (implying 15th degree polynomials)
will allow ISA to reconstruct the source polynomial with less
than 1% error at every point in a region of ±π around the
origin.

V. DISCRETE-TIME ISA WITH MATRIX NOTATION

This Section describes ISA using a compact matrix notation.
Define a Taylor series basis matrix

B = [b0 b1 · · · bK−1] (28)

with B ∈ RN×K and

bk =

[
tk0
k!

tk1
k!
· · · t

k
N−1
k!

]T
, (29)

where bk ∈ RN×1 corresponds to the kth-order term of the
Taylor series with the discrete-time variable defined as tℵ =
2π
N−1 (ℵ − π) with samples indexes ℵ = 0, 1, . . . , N − 1. A
sequence x = [x0, x1, · · · , xN−1]

T with x ∈ CN×1 can be
represented by a Taylor polynomial using

x = Bh, (30)

where h ∈ CK×1 are the polynomial coefficients. The equality
in (30) holds for K = N , i.e., when it is guaranteed to be
a polynomial of order K − 1 that perfectly fits a set of K
samples. It is only possible to make N > K when x represents
a Taylor polynomial of order K−1 evaluated over N samples,
representing an interpolated polynomial.

Considering that the summation of (12) has an infinite
number of terms and the Taylor series basis of (30) is limited
to K terms, the resulting Cairns series basis is given by

Ψ = BC, (31)

where Ψ ∈ RN×K is an approximation of ψm,n(t), and C ∈
RK×K is the Cairns series coefficients matrix transposed with
respect to the way it was shown in Table II.

Alternatively, x can be represented by the weighted linear
combination of the Cairns series functions, i.e., the columns
of Ψ, by writing

Ψc = x, (32)

where c ∈ RK×1 are the projection coefficients. Notice (32)
is equivalent to (17). The coefficients, c, can be calculated as

BCc = Bh

c = C−1h.
(33)
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p(t) =

f=0 (DC)︷ ︸︸ ︷(
c0,0e

t + c1,0e
−t) · 1 +

f=
1

T
(maximum)︷ ︸︸ ︷(

c2,0
1

2
− c2,1

i

2

)
eit +

f=−
1

T
(minimum)︷ ︸︸ ︷(

c2,0
1

2
+ c2,1

i

2

)
e−it +

−
1

T
<f<

1

T︷ ︸︸ ︷
M∑
m=3

d2m−1e−1∑
n=0

cm,nEm,n(t) (26)

p(t) =
[
c0,0e

t + c1,0e
−t]+

[
c2,0

1

2
− c2,1

i

2

]
eit +

[
c2,0

1

2
+ c2,1

i

2

]
e−it+

M∑
m=3

5·2m−3−1∑
p=3·2m−3

2m−1−1∑
n=0

cm,n
2m−1

(
et cos(π(2(〈p〉(2m−1)+1)21−m)

in(2〈p〉(2m−1)+1)22−m
+
e−t cos(π(2(〈p〉(2m−1)+1)21−m)

in(2(−p+3·2m−2)+1)22−m

)eit sin(π(2(〈p〉(2m−1)+1)21−m)

(27)

VI. ISA ARITHMETIC COMPLEXITY

An arithmetic complexity analysis is presented for each of
the ISA steps, in terms of number of complex multiplications.

1) Fit a Taylor polynomial. If the polynomial of interest is
already available, this step is obviously free in terms of
algorithmic complexity. If the input data is a sequence
of amplitude values, a polynomial must be fit. The
standard way to do a polynomial fit involves matrix
inversion which is O(N3), where N is the number of
input samples.

2) Project the polynomial coefficients onto the Cairns se-
ries functions. This step is represented by (33), where
C−1 can be pre-calculated independently of the input
sequence and contains (M +1)2M real-valued non-zero
elements. Considering that the real-by-complex multipli-
cation complexity is half that of complex-by-complex,
this step has arithmetic complexity of (M + 1)2(M−1).

3) Convert from Cairns series functions to Cairns expo-
nential functions. This is simply a re-labeling, due to
the identity between these two sets of functions, so it
has no computational cost.

4) Group the ISA terms corresponding to the same fre-
quencies. Grouping is an additive operation, so it should
not be interpreted as requiring multiplications. How-
ever, the modulating trajectories, i.e., the time-varying
spectral components are calculated by multiplying the
projection coefficients cm,n with the complex constants
and real-valued exponentials. The constants and real-
valued exponentials of (21) can be pre-calculated. As-
suming the polynomial will be evaluated at N points,
this process takes N

(
1 +

∑M
m=3

∑2m−1−2
n=0 2m−1 − 1

)
complex multiplications, for M ≥ 3.

Therefore, the overall ISA analysis complexity is
N3 + (M + 1)2(M−1) +N

(
1 +

∑M
m=3

∑2m−1−2
n=0 2m−1 − 1

)
for M ≥ 3. Table III shows numeric values for 0 ≤M ≤ 6.

VII. COMPARISON BETWEEN ISA AND FT

A. Data Transmission Using Polynomials

Any signal can be described as a polynomial, which pro-
vides a smooth curve through some set of transmitted ampli-
tude values. The signal can be real or complex-valued, where

TABLE III
ISA ARITHMETIC COMPLEXITY IN TERMS OF COMPLEX

MULTIPLICATIONS.

Max. Cairns
function
level M

0 1 2 3 4 5 6

Number of
samples N 1 2 4 8 16 32 64

Step 1
complex
multiplications

0 8 64 512 4, 096 32, 768 262, 144

Step 2
complex
multiplications

0 2 6 16 40 96 224

Step 4
complex
multiplications

0 0 4 80 944 9, 088 79, 680

Total
complex
multiplications

0 10 74 608 5, 080 41, 952 342, 048

the resulting polynomial coefficients are real or complex-
valued, respectively. Using ISA, any signal transmitted in time
T can be constructed using only sinusoids with smoothly time-
varying amplitudes and with frequencies of 1

T or less. Fig.
3 shows an example of an arbitrary sequence of 16 samples
which is fitted by a 15th degree polynomial with a transmission
time of 1 µs to be analyzed in the ISA domain.
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Fig. 3. Input sequence and fitted polynomial in time domain.

Applying the procedure described in Section IV, the ISA
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spectral content was obtained and is shown in Fig. 4. The
spectral component amplitudes vary continuously over the
evaluation time and are composed entirely of frequencies of 1
MHz or less. Fig. 5 displays a snapshot of the instantaneous
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Fig. 4. ISA non-stationary spectral content of arbitrary 15th degree polyno-
mial.

amplitude values for the 9 sinusoids used to construct the
polynomial at time t = 0.3 µs. The ISA construction of the
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Fig. 5. Instantaneous polynomial spectrum at time t = 0.3 µs, i.e., a snapshot
of the non-stationary spectral content of Fig. 4 at t = 0.3 µs.

polynomial agrees with direct evaluation of the polynomial,
generated from its coefficients, to less than 1% error across
the entire evaluation interval.

B. Frequency components bandwidth

The frequency components, or subcarriers, of both the FT
and ISA are composed of complex sinusoids, i.e., complex
circles in the complex plane. An analysis is made of band-
width, considering it to be defined as the difference between
the maximum and minimum complex sinusoid frequencies.

The bandwidth of the FT frequency components depends on
the sampling frequency Fs, where according to the sampling
theorem [19] the bandwidth is Fs

2 and Fs for real-valued
and complex-valued signals, respectively. For a fixed sampling
frequency, the evaluation time in FT influences only the
subcarrier spacing but not the bandwidth.

ISA presents the opposite behavior to the FT. As mentioned
in Section IV, the bandwidth of ISA frequency components
depends only on the evaluation interval, and not on the
sampling frequency, i.e., the number of samples within the
evaluation interval. In the limit, a sequence with an infinite
number of independent samples, within an interval with T sec-
onds, produces ISA frequency components contained within a
bandwidth of 1

2T and 1
T for real-valued and complex-valued

samples, respectively. For a fixed evaluation time, the sampling
frequency in ISA influences only the subcarrier density but not
the bandwidth. Notice that the ISA subcarrier spacing is not
uniform.

In Fig. 3, an arbitrary polynomial of degree 15 specifies 16
independent amplitude values. The FT power plot in Fig. 6,
for the polynomial shown in Fig. 3, shows power usage with
very limited roll-off from 1 MHz to 10 MHz. By contrast, the
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Fig. 6. FT average power spectrum.

ISA representation of the polynomial shown in Fig. 7 has no
sinusoid with power outside of 1 MHz.
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Fig. 7. ISA average power spectrum.

Traditionally, bandwidth has been defined by what is pro-
duced by an FT. Actually, however, an FT only specifies the
range of frequencies and their amplitudes if the underlying
time domain signal is represented using sinusoids with con-
stant amplitude. ISA makes it possible to construct a signal
using a much smaller frequency range by using continuously
varying sinusoid amplitudes.
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C. ISA spectral components

The complex exponential term eit sin(π(2p+1)21−m) of (19)
has constant magnitude and thus describes a circle in the
complex plane. The combination of p and m values generate
unique frequencies called “ISA spectral components” that
present some distinct characteristics when compared with the
FT. Considering a time domain sequence of N samples, the
DFT generates N frequency domain components. With ISA,
the number of unique frequency components for M ≥ 2 is
given by

Nf = 1 + 2

M∑
m=2

d2m−3e (34)

where M = log2N . Fig. 8 shows the number of spectral com-
ponents with respect to the number of time domain samples for
both analysis tools. ISA has a smaller number of components
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Fig. 8. Comparison between FT and ISA in terms of number of spectral
components versus number of time domain samples.

which asymptotically tends to N/2 as N →∞. Notice that the
comparison is based on the number of frequency components,
not on the number of time domain samples. As each frequency
component of ISA is continuously varying its amplitude over
time, the number of samples of each frequency component is
infinite, just as p(t) has an infinite number of samples it the
interval 0 ≤ t ≤ T .

Second, the frequency of DFT components are located
within the [−π, π) rad/sample interval, i.e., it uses frequencies
2πk/N where k = −N2 , · · · ,−1, 0, 1, · · · , N2 − 1. For ISA,
the spectral components are always located within the interval
corresponding to the Fourier components with k = ±1,
independent of N . In other words, the higher the N value, the
more densely packed the ISA spectral components become.
Fig. 9 depicts an example for N = 32 and arbitrarily-valued
spectral components.

Finally, the FT and ISA spectral components differ in that
the ISA components are not linearly distributed within its
interval

[−2π
N , 2πN

)
rad/sample. This occurs because its fre-

quency values are derived from (20), which are sine-function

−15 −10 −5 0 5 10 15
0

0.5

1

Frequency [× 2π
32 rad/sample]

M
ag

ni
tu

de FT
ISA

−15 −10 −5 0 5 10 15
0

0.5

1

Frequency [× 2π
32 rad/sample]

M
ag

ni
tu

de FT
ISA

Fig. 9. Spectral components comparison for 32 samples time domain
sequence.

dependent. Fig. 10 shows this behavior with an example for
N = 32.
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Fig. 10. Spectral components for 32 samples time domain sequence compar-
ison.

D. Graphical interpretation

Both the ISA and FT synthesis tools may be interpreted
as multi-carrier modulation schemes. In a generic multi-
carrier modulation scheme, each (unmodulated) subcarrier is
multiplied by a modulating signal, generating the modulated
subcarrier. Finally, all modulated subcarriers are added to
obtain the overall modulated signal. With the DFT, each
of the N complex sinusoids in the basis corresponds to an
unmodulated subcarrier; the frequency domain coefficients are
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modulating signals, which in this case are constants within
the evaluation time; the complex sinusoids multiplied by the
coefficients correspond to the modulated subcarriers; finally,
all modulated subcarriers are combined to correspond to the
modulated (or synthesized) signal. ISA follows the same
pattern, except that the modulating signals are not constants,
but time-varying signals.

An arbitrary time domain signal was used to graphically
demonstrate the difference between ISA and FT in terms of
modulating and modulated signals. The signal was obtained
by applying an inverse DFT to a 16-sample frequency domain
vector, where each sample corresponds to a point in the 16-
QAM constellation. ISA was also applied to this time domain
signal for comparison. Fig. 11 depicts these signals for both
ISA and FT.

In Fig. 11(a) and 11(c), the (complex) modulating sig-
nals are shown over time. With FT, these are straight lines
corresponding to the constants in the 16-QAM constellation.
For ISA, the modulating signals are not constants, and thus
describe trajectories in the complex plane, where the marks
‘∗’ and ‘◦’ corresponds to the start and end of the trajectories,
respectively. Finally, the modulated signals resulting from
multiplication of the modulating signals with its corresponding
complex sinusoids are shown on 11(b) and 11(d).

Notice that the time domain overall modulated signal is
exactly the same for both cases. However, the frequency
domain representation is analyzed in two completely different
ways.

E. Basis orthogonality

The matrix notation for Fourier synthesis is given by

Fx̃ = x, (35)

where x̃ = [x̃0, x̃1, · · · , x̃N−1]
T is the stationary frequency

domain representation of x, and F = 1√
N

[f0, f1, · · · , fN−1]
is the DFT matrix with

fℵ =
[
eiℵt0 , eiℵt1 , · · · , eiℵtN−1

]T
. (36)

The FT has an orthogonal time domain basis since
FHF = I. Going back from the time to frequency domain with
the FT is straightforward since

x = F−1x = FHx (37)

The ISA basis is not an orthogonal linear transformation
since Ψ is not unitary.

F. Symmetry

When either the real or imaginary parts of the underlying
input sequence x are constant, e.g. purely real amplitudes, the
FT exhibits the Hermitian symmetry property for real-valued
time domain sequences. ISA also holds the same property, e.g.,
for a purely real input sequence, the fitted Taylor polynomial
and the projection coefficients are also purely real, resulting
in the symmetry

af (t) = a∗−f (t), (38)
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Fig. 11. Comparison between FT and ISA: (a) FT modulating signals; (b) FT
modulated signals; (c) ISA modulating signals; (d) ISA modulated signals.
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where (·)∗ denotes the conjugate operator. This property arises
in ISA because every positive frequency is paired with a
negative frequency in the same Cairns exponential function,
and because they are in the same Cairns exponential function,
they will have the same projection coefficient, and therefore
the same weight, resulting in cancellation of their paired com-
plex components and addition of their paired real components.
This means that the modulated signal for a given positive
frequency f is the complex conjugate of its negative frequency
counterpart. This can be seen in Fig. 12, which shows the
ISA modulating trajectories for: (a) purely real input sequence
and; (b) complex input sequence. It means that the single side
band spectrum contains all the information for a purely real
sequence.
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Fig. 12. Modulating trajectories with (a) non-symmetrical characteristic for
complex-valued time domain samples and (b) conjugate symmetry for purely
real samples. Legend represents the ISA frequency components with units in
MHz.

In the example of Section VII-A, a purely real input se-
quence evaluated over a 1 µs interval generated ISA frequency
components that occupy only 1 MHz, because the negative
part of the spectrum is redundant due to Hermitian symmetry.
When the input sequence is complex-valued, the negative part
of the spectrum becomes non-redundant, making the ISA basis
functions bandwidth 2 MHz wide. The bandwidth is doubled

because it is now representing double the information, i.e., a
non-constant imaginary part.

VIII. CONVERGENCE OF ISA AND FT

ISA is more general than the FT in that the ISA can ac-
curately represent a non-stationary spectrum characterized by
sinusoids with continuously-varying amplitude. However, for
simple cases characterized by constant-amplitude sinusoids,
the ISA and FT representations converge.

The special case signals cos(tℵ), sin(tℵ), e
(i
tℵ
N ), and

e(−i
tℵ
N ) can be represented by Taylor polynomials with co-

efficients

hcos =
[

1 0 −1 0 1 0 −1 0 · · ·
]T

hsin =
[

0 1 0 −1 0 1 0 −1 · · ·
]T

he+ =
[

1 i −1 i 1 i −1 i · · ·
]T

he− =
[

1 −i −1 −i 1 −i −1 −i · · ·
]T
,

(39)
respectively. After projecting these sequences into the Cairns
space, the resulting coefficients are given by

ccos =
[

0 0 1 0 0 0 0 0 · · ·
]T

csin =
[

0 0 0 1 0 0 0 0 · · ·
]T

ce+ =
[

0 0 1 i 0 0 0 0 · · ·
]T

ce− =
[

0 0 1 −i 0 0 0 0 · · ·
]T
.

(40)

Substituting (40) into (26) results in the synthesized signals

pcos(tℵ) =
1

2
eitℵ +

1

2
e−itℵ (41)

psin(tℵ) = − i
2
eitℵ +

i

2
e−itℵ (42)

pe+(tℵ) = eitℵ (43)
pe−(tℵ) = e−itℵ . (44)

Therefore, in these cases, the ISA spectral content (modulat-
ing signals) corresponds exactly to the DFT spectral content.

An example is given in Fig. 13, where a single sinusoid of
1 MHz is measured by the FT and ISA. Although there are
amplitude differences between the FT and ISA representations,
both show only a frequency component of 1 MHz.

IX. CONCLUSIONS

ISA is a new technique for converting from an amplitude se-
quence through a polynomial into sinusoids with continuously-
varying amplitude. A similar technique has not previously
been available. It distinguishes from the FT, which converts
an amplitude sequence into sinusoids with constant amplitude.
ISA supports a conceptual model in which signals can be
thought of as polynomials. Since a sequence of K amplitude
values is equivalent to a unique polynomial of degree K − 1,
ISA provides a clean way to translate between the discrete-
time viewpoint that a signal is a sequence of amplitude values,
and the analog view that signals have to be transmitted as
continuous waveforms. FT and ISA can reconstruct the same
amplitude sequence, and are equivalent in terms of their time
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Fig. 13. Convergence of FT and ISA analysis for a cosine wave.

domain representations. However, their frequency representa-
tions are quite different. As shown, the number of frequency
components is smaller than the DFT and strictly contained
within a bandwidth which depends only on the symbol time
duration, and not on the number of samples within that time
window, i.e., the ISA spectrum becomes more densely packed
as the number of time domain samples increases within a given
evaluation interval. With ISA, it is possible to construct signals
using only sinusoids in a limited frequency range that can
convey many times more independent amplitude values (and
therefore information) than is possible with standard signal
modulation. Furthermore, the amplitude of ISA frequency
components continuously vary with time, creating the non-
stationary characteristic from which the instantaneous spectral
analysis name arose.

This paper covered only the theoretical aspects of ISA.
It’s applications are under study, such as building an ISA-
based modulation scheme [20]. Potentially, the ISA frequency
domain basis bandwidth compression property could be an
advantage for this new modulation scheme, by providing
higher spectral efficiency when compared with conventional
digital modulation schemes. Time-frequency representation is
another possible application, not aiming at the substitution
of existing techniques, but offering a new one from a new
perspective.
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APPENDIX A
PROOF OF GENERALIZED EULER’S FORMULA TAYLOR

SERIES INTERPRETATION

We show that for integer m ≥ 0

eti
(22−m)

=

d2m−1e−1∑
n=0

in2
2−m

ψm,n(t), (A.1)

where

ψm,n(t) =

∞∑
q=0

(−1)q·d2
1−me · tq·d2

m−1e+n

(q · d2m−1e+ n)!
. (A.2)

Three special cases of this identity are well-known, as
shown below. For m = 0, (A.1) becomes

et = ψ0,0(t) (A.3)

For m = 1, (A.1) becomes

e−t = ψ1,0(t) (A.4)

For m = 2, (A.1) becomes

eit =

1∑
n=0

inψ2,n(t) = ψ2,0(t) + iψ2,1(t) (A.5)

The general case of (A.1) can be proved by expanding
eti

(22−m)

as a Taylor polynomial and grouping terms. This
proceeds as follows.

eti
(22−m) ≡

∞∑
q=0

(ti(2
2−m))q

q!
(A.6)

Notice that when q = 2m−1, we have

iq(2
2−m) = i2 = −1. (A.7)

This tells us that every q = 2m−1 steps the pattern of iq(2
2−m)

will repeat, with alternating sign. Since we are interested in
grouping terms with like powers of i, we want to separate
the series into subseries with terms separated by the step size.
This gives us (roughly)

eti
(22−m)

=

2m−1−1∑
n=0

in2
2−m

∞∑
q=0

(−1)q
tq·2

m−1+n

(q · 2m−1 + n)!
. (A.8)

This is correct except for the case m = 0, which corresponds
to et. We have two problems for m = 0: these are that
2m−1 = 1/2 (we would like it to equal 1); and that the sign
should not alternate for et. These problems can be fixed by
adjusting (A.8) as

eti
(22−m)

=

d2m−1e−1∑
n=0

in2
2−m

∞∑
q=0

(−1)q·d2
1−me

· tq·d2
m−1e+n

(q · d2m−1e+ n)!

(A.9)



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 23

If we label the second summation ψm,n(t) then we have (A.1)
and (A.2).

We have seen that (A.9) or, equivalently, (A.1) and (A.2)
reduces to familiar cases for m = 0, m = 1, and m = 2. As
an example of an unfamiliar case, consider m = 3. We then
have

eti
(22−3)

=

d23−1e−1∑
n=0

in2
2−3

∞∑
q=0

(−1)q·d2
1−3e

· tq·d2
3−1e+n

(q · d23−1e+ n)!
,

(A.10)

which simplifies to

eti
1
2 =

3∑
n=0

i
n
2

∞∑
q=0

(−1)q·1 · tq·4+n

(q · 4 + n)!

= (1− t4

4!
+
t8

8!
− . . .) + i

1
2 (t− t5

5!
+
t9

9!
− . . .)+

(A.11)

APPENDIX B
EQUIVALENCE PROOF FOR CAIRNS EXPONENTIAL AND

SERIES FUNCTIONS

We show here that the Cairns series functions

ψm,n(t) =

∞∑
q=0

(−1)q·d2
1−me · tq·d2

m−1e+n

(q · d2m−1e+ n)!
(B.1)

are equivalent to the Cairns exponential functions

Em,n(t) =
1

d2m−1e

d2m−1e−1∑
p=0

i−n(2p+1)22−meti
(2p+1)22−m

.

(B.2)
That is,

Em,n(t) = ψm,n(t). (B.3)

Four special cases of this identity are well-known, as shown
below. For m = 0 and n = 0, (B.3) becomes

E0,0(t) = et = ψ0,0(t) = 1 + t+
t2

2!
+
t3

3!
+ . . . . (B.4)

For m = 1 and n = 0, (B.3) becomes

E1,0(t) = e−t = ψ1,0(t) = 1− t+
t2

2!
− t3

3!
+ . . . . (B.5)

For m = 2 and n = 0, (B.3) becomes

E2,0(t) =
1

2
(eit+e−it) = cos(t) = ψ2,0(t) = 1− t

2

2!
+
t4

4!
−. . . .
(B.6)

For m = 2 and n = 1, (B.3) becomes

E2,1(t) =
1

2
(i−1eit + i−3e−it) = sin(t) = ψ2,1(t)

= t− t3

3!
+
t5

5!
− . . . .

(B.7)

It may be seen by inspection of (B.2) that Em,n+1(t) is the
integral of Em,n(t), with constant of integration zero. This is
similarly true for ψm,n(t), as can be seen either directly from
(B.1) or by examining the polynomial sequences expanded in
Appendix A.

Therefore, to prove (B.3) it is sufficient to prove the case
for n = 0

Em,0(t) = ψm,0(t), (B.8)

as equality for all other values of n will follow from parallel
integration.

The proof of (B.8) follows from expanding Em,0(t) as a
sum of Taylor series and recursively canceling terms. This
proceeds as follows

Em,0(t) =
1

d2m−1e

d2m−1e−1∑
p=0

eti
(2p+1)22−m

Em,0(t) =
1

d2m−1e

d2m−1e−1∑
p=0

∞∑
q=0

(ti(2p+1)22−m)q

q!
.

(B.9)

Using an idea similar to Appendix A, we break the sum-
mation into subseries in which the terms are separated by a
step size of 2m−1. With the new index variable being n, this
gives us

Em,0(t) =
1

d2m−1e
d2m−1e−1∑

n=0

d2m−1e−1∑
p=0

∞∑
q=0

(ti(2p+1)22−m)d2
m−1eq+n

(d2m−1eq + n)!
.

(B.10)

Now, separate out the imaginary factor

Em,0(t) =
1

d2m−1e

d2m−1e−1∑
n=0

d2m−1e−1∑
p=0

∞∑
q=0[

(i(2p+1)22−m)d2
m−1eq+n

] td2
m−1eq+n

(d2m−1eq + n)!
.

(B.11)

If we look at the case n = 0 by itself, the right side of
(B.11) becomes

1

d2m−1e

d2m−1e−1∑
p=0

∞∑
q=0

[(i(2p+1)22−m)d2
m−1eq]

td2
m−1eq

(d2m−1eq)!

=
1

d2m−1e

d2m−1e−1∑
p=0

∞∑
q=0

[i2q(2p+1)]
td2

m−1eq

(d2m−1eq)!

=
1

d2m−1e

d2m−1e−1∑
p=0

∞∑
q=0

[i4qpi2q]
td2

m−1eq

(d2m−1eq)!

=
1

d2m−1e

d2m−1e−1∑
p=0

∞∑
q=0

(−1)q
td2

m−1eq

(d2m−1eq)!

=
1

d2m−1ed2
m−1e

∞∑
q=0

(−1)q
td2

m−1eq

(d2m−1eq)!

=

∞∑
q=0

(−1)q
td2

m−1eq

(d2m−1eq)!
= ψm,0(t).

(B.12)
This shows that the n = 0 subseries of (B.11) satisfies

Em,0(t) = ψm,0(t). The proof of (B.3) therefore depends on
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the n > 0 subseries of (B.8) summing to precisely zero. We
show that next.

Removing the n = 0 subseries from (B.8), we have

1

d2m−1e

d2m−1e−1∑
n=1

d2m−1e−1∑
p=0

∞∑
q=0[

(i(2p+1)22−m)d2
m−1eq+n

] td2
m−1eq+n

(d2m−1eq + n)!
.

(B.13)

Next, we simplify the complex factor

=
1

d2m−1e

d2m−1e−1∑
n=1

d2m−1e−1∑
p=0

∞∑
q=0[

i2q(2p+1)in(2p+1)22−m
] td2

m−1eq+n

(d2m−1eq + n)!

=
1

d2m−1e

d2m−1e−1∑
n=1

d2m−1e−1∑
p=0

∞∑
q=0[

i4qpi2qin(2p+1)22−m
] td2

m−1eq+n

(d2m−1eq + n)!

=
1

d2m−1e

d2m−1e−1∑
n=1

d2m−1e−1∑
p=0

∞∑
q=0[

(−1)qin(2p+1)22−m
] td2

m−1eq+n

(d2m−1eq + n)!
.

(B.14)

Now, split (B.14) into two parts by dividing the p summation
in half

=
1

d2m−1e

d2m−1e−1∑
n=1

d2m−2e−1∑
p=0

∞∑
q=0

(−1)qin(2p+1)22−m td2
m−1eq+n

(d2m−1eq + n)!
+

1

d2m−1e

d2m−1e−1∑
n=1

d2m−1e−1∑
p=d2m−2e

∞∑
q=0

(−1)qin(2p+1)22−m td2
m−1eq+n

(d2m−1eq + n)!
.

(B.15)

We will now change the p parameterization of the second
summation, so it can be compared to the first.

d2m−1e−1∑
p=d2m−2e

(−1)qin(2p+1)22−m

=

d2m−2e−1∑
p=0

(−1)qin(2(p+d2
m−2e)+1)22−m

=

d2m−2e−1∑
p=0

(−1)qin(2p+1)22−mi2n

=

d2m−2e−1∑
p=0

(−1)qin(2p+1)22−m(−1)n

(B.16)

Update (B.15) with the re-parameterized second summation,
using (B.16). This gives

1

d2m−1e

d2m−1e−1∑
n=1

d2m−2e−1∑
p=0

∞∑
q=0

(−1)qin(2p+1)22−m td2
m−1eq+n

(d2m−1eq + n)!
+

1

d2m−1e

d2m−1e−1∑
n=1

d2m−2e−1∑
p=0

∞∑
q=0

(−1)qin(2p+1)22−m(−1)n
td2

m−1eq+n

(d2m−1eq + n)!
.

(B.17)

The two summations differ only by a factor of (−1)n. This
means that the summations will cancel to zero for any odd n.
So only even values of n > 0 could potentially contribute a
nonzero sum to (B.11). We next show that values of n > 0
that are divisible by two sum to zero.

For even n, the summations in (B.17) will be equal, so we
can add them to produce

1

d2m−2e

d2m−1e−1∑
n=1

d2m−2e−1∑
p=0

∞∑
q=0

(−1)qin(2p+1)22−m td2
m−1eq+n

(d2m−1eq + n)!
.

(B.18)

We now repeat the procedure of splitting the p summation
in two, then re-parameterizing p for the second summation.
This gives us

1

d2m−2e

d2m−1e−1∑
n=1

d2m−3e−1∑
p=0

∞∑
q=0

(−1)qin(2p+1)22−m td2
m−1eq+n

(d2m−1eq + n)!
+

1

d2m−2e

d2m−2e−1∑
n=1

d2m−3e−1∑
p=0

∞∑
q=0

(−1)qin(2p+1)22−min
td2

m−1eq+n

(d2m−1eq + n)!
.

(B.19)

Equation (B.17) showed that odd values of n sum to zero;
(B.19) shows in addition that if n contains an odd number of
factors of 2 the summation will be zero.

This process can be repeated a total of m−1 times to show
that all values of n > 0 sum to zero. This is sufficient to prove
(B.3).

APPENDIX C
PROOF OF GENERALIZED EULER’S FORMULA GEOMETRIC

INTERPRETATION

It will be proved that

eti
(22−m)

= et cos(π2
1−m)eit sin(π2

1−m). (C.1)

Using the well-known identity eiπ/2 = i that arises from the
standard Euler’s formula, the term

i(2
2−m) = (eiπ/2)(2

2−m) (C.2)
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can replaced in the generalized Euler’s formula leading to

eti
(22−m)

= et(e
iπ/2)(2

2−m)

(C.3)

Invoking the standard Euler’s formula to break apart the upper
exponent results in

eiπ(2
1−m) = cos(π21−m) + i sin(π21−m). (C.4)

Substituting (C.4) into (C.3) leads to

eti
(22−m)

= et(cos(π2
1−m)+i sin(π21−m)), (C.5)

which finally is converted to

eti
(22−m)

= etcos(π2
1−m)eit sin(π2

1−m). (C.6)
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