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On the Darmois-Skitovich Theorem and Spatial
Independence in Blind Source Separation

Flávio R. M. Pavan and Maria D. Miranda

Abstract—In many signal processing applications, one may
come across the need to individually recover unobserved signals
which are also combined in an unknown manner. This problem
is widely known as blind source separation (BSS). One of the
most prominent set of BSS techniques, known as independent
component analysis (ICA), owes much of its development and
theoretical understanding to the Darmois-Skitovich theorem.
Although this theorem is implicitly used in BSS to establish
source separability conditions in ICA, little emphasis is given
in the literature to its derivation and to the interpretation of
its consequences. The goal of this paper is to revisit, in a
more intuitive manner, the Darmois-Skitovich theorem and its
derivation in the BSS context.

Index Terms—Source separability conditions, independent
component analysis, Gaussian distribution characterization.

I. INTRODUCTION

THE need to individually recover unobserved signals, also
combined in an unknown manner, arises in several prac-

tical contexts such as biomedical signal processing [1], audio
signal processing [2] and communications [3]. This problem,
widely regarded as blind source separation (BSS), can be
summarized with the simplified scheme shown in Figure 1.
In this scheme, Ns sources indicated by the vector s(n) are
applied to a mixing system H , resulting in Nx mixture signals
indicated by the vector x(n). The main goal in BSS is to obtain
a separating system W such that its outputs, indicated by the
vector y(n), consist in good estimates of Ny ≤ Ns sources [4],
[5].

Mixtures:
x(n)

Estimated
sources:
y(n)

Sources:
s(n)

Mixing
system
H

Separating
system
W

Ns NyNx

Figure 1. Simplified scheme of the main elements involved in the BSS of
Ny sources through the observation of Nx mixtures.

Research on BSS area is relatively recent and virtually
started in the beginning of the 1980s, when linear instan-
taneous mixing systems were primarily considered [6]. In
1985, B. Ans, J. Hérault and C. Jutten showed that it was
possible to solve the BSS problem by resorting to the use
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of nonlinear structures to determine the separating system
coefficients [7]. During that time, little was known about the
theoretical limitations of the existent separating techniques and
the reason why they did in fact work [6].

It was only in the beginning of the 1990s that P. Comon
introduced a set of techniques extensively known as inde-
pendent component analysis (ICA), based on the recovery
of mutual spatial independence of the sources at the output
of the separating system [8], [9]. In this occasion, source
separability conditions were also established, consisting of
theoretical requirements that the mixing system and source
distributions should meet so that the sources can be adequately
separated. In essence, as the separating system imposes mutual
spatial independence at its output, adequate BSS is guaranteed
if at most one source is Gaussian. This rather obscure relation
between source independence and non-Gaussianity was high-
lighted by P. Comon in [9], who drew inspiration from the
Darmois-Skitovich theorem, published in 1953 independently
by G. Darmois [10] and V. Skitovich [11], in the statistics field
known as factor analysis.

The derivation of source separability conditions was fun-
damental in the development of BSS techniques and in the
subsequent comprehension of their operating limits. Among
many things, they provided theoretical reasoning to the prin-
ciple of separation based on spatial independence imposition.
This, in turn, gave logical support to the use of high-order
statistics in order to separate sources—a fruitful idea which
inspired several works such as [4], [5], [12] and [13].

In this way, the Darmois-Skitovich theorem had an unde-
niably important role in the development of ICA techniques.
Despite this, little emphasis is given in the literature to the
derivation of this theorem, which is not evident, and to the
interpretation of its consequences in the BSS problem. The
goal of this paper is to revisit and interpret, in a more intuitive
manner, the Darmois-Skitovich theorem applied to BSS.

A. Paper organization

Next, the notation used along the paper is firstly introduced.
In Section II, the BSS problem is generically formulated and
subsequently considered for linear instantaneous mixtures. In
Section III, a statistical model for the sources that allows for
their adequate blind separation is presented. In Section IV,
some preliminary theorems are presented in order to better
understand the Darmois-Skitovich theorem in Section V. In
Section VI, this theorem is applied to the BSS problem. At
last, the conclusions of this paper are presented in Section VII.
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B. Notation

Throughout the text, vectors are denoted by lowercase bold-
face letters and matrices are denoted by uppercase boldface
letters. For example, x denotes a vector and H denotes a
matrix.

Random quantities are always represented by underlined
letters. For instance, x denotes a random variable (rv) and

x =
[
x1 x2

]T

denotes a random vector composed of rvs x1 and x2, where (·)T
denotes the transposition operation. Realizations or drawings
of a random quantity are not underlined because they are not
random [14]–[16].

Stochastic processes are always denoted enclosed in curly
braces and are represented as random quantities followed by
a time index enclosed in parentheses. Along the paper, only
discrete-time processes with time index n ∈ Z are considered.
For instance, {y(n)} denotes a scalar stochastic process and
{y(n)} denotes a vector stochastic process. When evaluated at
a fixed time instant n = n0, the scalar process {y(n)} becomes
an rv y(n0) and the vector process {y(n)} becomes a random
vector y(n0).

II. BSS PROBLEM FORMULATION

In the following, the simplified BSS scheme shown in
Figure 1 is considered in the particular case of real signals.
The ith source signal is denoted by si(n) for i = 1, 2, . . . , Ns.
The source vector is defined as

s(n) = [
s1(n) s2(n) · · · sNs (n)

]T
. (II.1)

The `th mixture signal is denoted by x`(n) for ` = 1, 2, . . . , Nx.
The mixture signals are collected into the mixture vector given
by

x(n) = [
x1(n) x2(n) · · · xNx (n)

]T
. (II.2)

The mathematical relation between the source vector s(n)
and the mixture vector x(n) can be generically given by
x(n) = H{s(·)}, where H is an unknown mixture mapping
from RNs to RNx . This notation takes into account the causality
and eventual memory of the mixture mapping.

The k th estimated or reconstructed source is denoted by
yk(n) for k = 1, 2, . . . , Ny. The estimated source vector can be
conveniently defined as

y(n) = [
y1(n) y2(n) · · · yNy (n)

]T (II.3)

and must satisfy y(n) = W{x(·)}, where W is a separation
mapping from RNx to RNy . In the general case, the involved
mixing and separating systems are evidently multiple-input
and multiple-output (MIMO).

Since the 1980s, several solutions have been gradually
proposed for the BSS problem. Various types of mixture
models based on hypothetical—or eventually known—aspects
of the mixing system and the unobserved sources have been
considered. The first BSS solutions were proposed for a very
particular type of mixing system model, whose study was
fundamental in the subsequent development of solutions for
more complicated models [5], [7], [8], [17].

One of the most simple mixing system models that can be
considered is the linear instantaneous mixing system [4], [5]—
which is also usually assumed to be time invariant. In this case,
the mixture signals x`(n) can be expressed as a function of the
source signals si(n) according to

x`(n) =
Ns∑
i=1

h`,isi(n), (II.4)

for ` = 1, 2, . . . , Nx, where h`,i are the constant mixing
system coefficients. The equations stemming from (II.4) can
be compactly rewritten as

x(n) = Hs(n), (II.5)

where x(n) is the mixture vector defined in Equation (II.2),
H ∈ RNx×Ns is the mixing system coefficient matrix—or
simply mixing matrix—given by

H =



h1,1 h1,2 · · · h1,Ns

h2,1 h2,2 · · · h2,Ns
...

...
. . .

...
hNx,1 hNx,2 · · · hNx,Ns


, (II.6)

and s(n) is the source vector defined in Equation (II.1). For
simplicity, no additive noise is considered in the mixture
observations—the influence of noise in the separation process
can be further analyzed with the adoption of more complete
models [8], [17].

When seeking solutions for the particular type of mixing
system of Equation (II.5), it is also common to consider a
linear instantaneous separating system. In fact, if the mixture
mapping is linear, instantaneous and bijective, for example,
its inverse mapping must also be linear and instantaneous.
Therefore, the relation between the estimated source vector
y(n) and the mixture vector x(n) is given by

y(n) = Wx(n), (II.7)

where y(n) is defined in Equation (II.3) and W ∈ RNy×Nx is
the separating system coefficient matrix—or simply separating
matrix. Substituting (II.5) into (II.7), the following useful
relation between the estimated source vector y(n) and the
source vector s(n) can be obtained:

y(n) = Ms(n), (II.8)

where M ∈ RNy×Ns is the so called combined response matrix
of the mixing and separating systems, given by

M = WH . (II.9)

The mixture model addressed in this section does not
provide enough information to allow for the resolution of
the BSS problem in a deterministic manner. Since the start
of the 1990s, the path followed by the scientific community
to address this issue has consisted in (i) adopting a set of
hypotheses concerning statistical properties of the sources and
(ii) recovering certain properties at the output of the separating
system in order to adequately separate sources [8], [9], [17].
In the following section, a prevalent statistical model for the
sources that effectively allows for their blind separation is
presented.
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III. STATISTICAL MODEL FOR THE SOURCES

Considering that the source signals are functions of time,
they can be preliminarily modeled as a vector stochastic
process {s(n)} such that

s(n) = [
s1(n) s2(n) · · · sNs

(n)]T
. (III.1)

In this case, the linear instantaneous mixtures and estimated
sources can be represented by stochastic processes {x(n)} and
{y(n)}, respectively, such that

x(n) = Hs(n) (III.2)

and

y(n) = Wx(n) = Ms(n), (III.3)

where

x(n) = [
x1(n) x2(n) · · · xNx

(n)]T
(III.4)

and

y(n) =
[
y

1
(n) y

2
(n) · · · y

Ny
(n)

]T

. (III.5)

The adoption of a particular stochastic model for the sources
additionally involves the consideration of assumptions about
their statistical behavior along time and space. Such behavior
may vary considerably among sources of distinct origins (e.g.,
speech and biomedical signals) and may not be precisely
known in practical situations so as to compose a reasonable
model [18].

In the context of linear instantaneous mixtures, the statistical
time structure of the sources is usually ignored for simplicity
or lack of a priori information. In other words, the distri-
butions of the sources are assumed to be constant in time,
implying that only their marginal distributions along time are
considered [4], [5]. Next, the implications of this source model
assumption in the BSS problem formulation are dealt with in
more detail.

A. Temporally independent and identically distributed sources

Broadly speaking, a stochastic process is called independent
and identically distributed (iid) if it does not have any kind
of statistical time structure—i.e., distribution variations and
temporal interdependencies [14], [16]. In the scalar case, the
consideration of an iid assumption in the stochastic model
conveniently allows for
• the interpretation of the scalar iid stochastic process re-

alization as succeeding independent drawings of a single
rv—in this case, the process can be replaced in the model
by its corresponding rv;

• the estimation of the corresponding rv distribution param-
eters, such as expected value and variance, through time
averages of the scalar iid stochastic process—due to the
iid process being ergodic [16].

In the BSS problem for linear instantaneous mixtures, dis-
regarding the statistical time structure of the sources translates
into an iid condition on the vector stochastic process {s(n)}. In
the vector case, the iid condition is considerably stronger than
in the scalar case, since the independence of different sources

for different times, e.g., s1(0) and s2(1), is also guaranteed.
This is slightly different than to only consider that the scalar
processes {si(n)}, for i = 1, 2, . . . , Ns, are individually iid [14]–
[16].

It is important to point out that the terms “independence”
and “identically distributed” in the acronym iid are implicitly
considered along time and not space. Even if the vector process
{s(n)} is iid, this does not imply the space independence of
the rvs s1(n0), s2(n0), . . . , sNs

(n0), for a fixed time n0 ∈ Z.
Similarly to the scalar case, the adoption of an iid model for
{s(n)} allows for the sources to be equivalently represented by
a simple random vector s such that

s =
[
s1 s2 · · · sNs

]T
. (III.6)

This representation is valid in the sense that a realization of
{s(n)} can be interpreted as successive independent drawings
of s. Furthermore, if {s(n)} is iid and the mixing and sepa-
rating systems are instantaneous and time invariant, it can be
shown that both {x(n)} and {y(n)} are also iid. In this case,
these two processes can be represented by

x =
[
x1 x2 · · · xNx

]T
(III.7)

and

y =
[
y

1
y

2
· · · y

Ny

]T

, (III.8)

respectively. In consequence, the input-output relations of the
mixing and separating systems, given by Equations (III.2)
and (III.3), can be rewritten as

x = Hs (III.9)

and
y = Wx = Ms, (III.10)

respectively. In this particular case, it follows that the mixing
and separation procedures can be conveniently interpreted as
simple linear transformations applied to random vectors [5].

Finally, it should be emphasized that more precise models
that consider the statistical time structure of the sources can
be formulated, but at the expense of a loss of generality and
more demanding mathematical treatment [18]. On the other
hand, although some model simplifications stem from the
sources iid assumption, this hypothesis does not contribute to
the formulation of linearly independent equations that allow
for the adequate blind estimation of the sources—i.e., based
only on observations of the mixtures. In order to make the
separation possible, an alternative consists in adding another
statistical assumption to the sources model, namely the spatial
independence of the sources [9]. Next, this assumption is
further detailed.

B. Spatially independent sources

If the rvs s1, s2, . . . , sNs
are independent in some sense, then

the iid sources are called spatially independent. It is worth
noting that there are several ways in which the statistical
independence among more than two rvs can be defined.
Henceforth, three main rv properties related to independence
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are considered: uncorrelatedness (i.e., second-order “indepen-
dence”), pairwise independence (i.e., independence of any pair
of rvs) and mutual independence (i.e., independence of any
combination of two or more rvs). Rigorous definitions can be
found, for instance, in [14], [16]. These properties are related
as follows:
• For Ns > 2, mutual independence implies pairwise

independence which, in turn, implies uncorrelatedness;
i.e.,

mutual indep. ⇒ pairwise indep. ⇒ uncorrelatedness.

• For Ns = 2, mutual independence is equivalent to pairwise
independence; i.e.,

mutual indep. ⇔ pairwise indep. ⇒ uncorrelatedness.

• A full equivalence of these three properties occurs in the
particular case of Ns ≥ 2 jointly Gaussian rvs; in this
case,

mutual indep. ⇔ pairwise indep. ⇔ uncorrelatedness.

From these listed relations, it is possible to note that the
assumption of mutual independence of the sources is generally
more restrictive (i.e., stronger) than their pairwise indepen-
dence and uncorrelatedness. In fact, while mutual spatial
independence restricts the joint probability distributions of
any combination of two or more sources, pairwise spatial
independence restricts the joint probability distributions of
only pairs of sources. Spatial uncorrelatedness is weaker
than both kinds of independence, because it only consists in
restrictions on second-order cross-moments of the sources—
while probability distribution restrictions imply conditions on
moments of any order.

C. BSS based on spatial independence

Historically, the first solutions proposed in BSS for linear
instantaneous mixtures and iid sources were based on the
assumption of mutual spatial independence of the sources [7],
[8], [17]. In practical situations, this assumption is usually
valid or at least approximately accurate [5]. The blind separa-
tion strategy behind these solutions was to recover the mutual
spatial independence property at the output of the separating
system. Initially, there was no rigorous explanation available
of why this strategy seemed to work.

In fact, adding some kind of spatial independence assump-
tion to the iid sources model may—or may not—allow for the
blind separation of the sources. On the one hand, it can be
shown that both spatial uncorrelatedness and pairwise spatial
independence are not sufficient assumptions for separability—
in the sense that the recovery of such properties at the output
of the separating system does not imply adequate source
separation in the general case [19]. On the other hand, it is
possible to prove that, under certain conditions, the assumption
of mutual spatial independence of the sources is sufficient for
source separability.

A proof on the sufficiency of the mutual independence
assumption for blind separation was initially presented by

P. Comon in [9], who resorted to applying the Darmois-
Skitovich theorem [10] to the BSS problem. This result was
very important in that (i) the validity of the blind separation
strategy based on the sources mutual spatial independence
assumption was confirmed and (ii) the separability conditions
that the source model should satisfy in order for the adequate
blind separation of sources, through the recovery of indepen-
dence, were established.

In order to better comprehend these separability conditions
in the BSS problem for linear instantaneous mixtures with iid
and mutually independent sources in space, it is convenient to
revisit the Darmois-Skitovich theorem. However, preceding its
presentation, some required preliminary theorems are briefly
introduced, along with examples, in the following section.

IV. PRELIMINARY THEOREMS

Theorem 1 (Cramér, 1936). Let u1, u2, . . . , uN denote real and
mutually independent rvs. If, for real constants a1, a2, . . . , aN ,
the sum

v =

N∑
i=1

aiui (IV.1)

is Gaussian, then all rvs ui for which ai , 0 are also Gaussian.

This theorem was conjectured at first by P. Lévy; it was
proved for N = 2 in [20] and extended to N > 2 in [21].
Curiously, it is the converse of a well-known result, namely
that a linear combination of independent Gaussian rvs is also
Gaussian [16]. The proof of Theorem 1, on the other hand, is
much more involved than the proof of its converse.

It is interesting to compare Theorem 1 to the central limit
theorem (CLT), widely used in statistics. In general terms,
the CLT states that if u1, u2, . . . , uN are independent and
identically distributed rvs, then as N tends to infinity, the
distribution of v in Equation (IV.1) tends, in a probabilistic
sense, to a Gaussian distribution [16]. Due to this fact, it
could be argued that Theorem 1 is not correct since in the
CLT the rvs being summed are not required to have Gaussian
distributions. However, this is not the case since the CLT
is a result on the limit of a distribution as the number of
independent rvs being summed tends to infinity, while in
Theorem 1 the exact distribution of the sum of a finite number
of independent rvs is considered.

Theorem 2 (Marcinkiewicz-Dugué, 1951). Let u denote a real
rv with characteristic function Φu : R→ C defined as [16]

Φu(ω) = E
[
e jωu

]
, (IV.2)

where E [·] denotes the expected value and j denotes the
imaginary unit such that j2 = −1. The only rvs that have
a characteristic function of the form

Φu(ω) = ep(ω), (IV.3)

where p : R → C is a polynomial, are the constant rvs and
the Gaussian rvs.

Some particular cases of this theorem were examined in
the thesis of M. G. Kunetz in 1937 and its general proof
was presented by M. Marcinkiewicz in 1940. Additionally,
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D. Dugué also mentioned this theorem in 1939 and presented
a shorter proof of it in 1951 [22].

In order to prove Theorem 2, some rather sophisticated
concepts of complex analysis and meromorphic functions (i.e.,
complex analytic functions except for a set of isolated points
in the domain known as poles) are needed. Basically, the proof
consists in determining conditions on the polynomial p such
that Φu(ω) = ep(ω) results in a valid characteristic function.

In the following example, presented in order to clarify some
aspects of Theorem 2, all possible characteristic functions and
probability density functions are determined for polynomials
with maximum degree equal to two.

Example 1. Let u denote a real rv with probability density
function fu and characteristic function Φu(ω) = ep(ω), with
ω ∈ R and p polynomial such that degree(p) ≤ 2. Initially,
it is useful to remember that the characteristic function of
an rv u with probability density function fu is equal to the
Fourier transform of fu with a sign reversal in the complex
exponential. In fact, by expanding the expected value in
Equation (IV.2), Φu can be written as

Φu(ω) =
∫ +∞

−∞
e jωu fu(u) du. (IV.4)

With that in mind, the following three collectively exhaustive
situations for degree(p) ≤ 2 are considered:
• p constant: The area under fu must be equal to one, which

implies that
Φu(0) = 1. (IV.5)

Since p is constant, the only valid choice is p(ω) = 0 for
all ω ∈ R. Thus, Φu(ω) = 1 for all ω ∈ R and u is an rv
with probability density function

fu(u) = δ(u), (IV.6)

where δ(·) denotes the Dirac delta. Therefore, u is a
constant rv that is equal to zero with probability one.

• degree(p) = 1: Since fu must be real, Fourier transform
properties result in

Φu(−ω) = Φ∗u(ω) (IV.7)

for all ω ∈ R, where (·)∗ denotes the complex conjugate.
Assuming that p(ω) = αω + β, with α, β ∈ C and α , 0,
the conditions given by Equations (IV.5) and (IV.7) imply
that β = 0 and α is purely imaginary. Thus, p must be
of the form p(ω) = jωu0, with u0 ∈ R and u0 , 0, which
yields

fu(u) = δ(u − u0). (IV.8)

In this case, u is a constant rv that is equal to u0 , 0 with
probability one.

• degree(p) = 2: Assuming that p(ω) = αω2 + βω + γ,
with α, β, γ ∈ C and α , 0, the conditions given by
Equations (IV.5) and (IV.7) imply that γ = 0, β is purely
imaginary and α is real. Therefore, p can be conveniently
expressed as p(ω) = jωµ − ω2σ2/2, with µ, σ2 ∈ R and
σ2 , 0. In this case, the inverse Fourier transform of Φu

converges only for σ2 > 0 and yields [16], [23]

fu(u) = 1√
2πσ2

e−(u−µ)
2/(2σ2). (IV.9)

This means that fu is a Gaussian probability density
function with mean µ and variance σ2, and u is a
Gaussian rv.

The uniqueness of the Fourier transform pairs [23] implies
that the characteristic functions considered in this example are
the only functions associated to either constant or Gaussian
rvs. Therefore, according to Theorem 2, there is no rv u such
that Φu(ω) = ep(ω) with degree(p) > 2.

Lemma 1 (Darmois, 1953; Linnik and Rao, 1964). Let
f1, f2, . . . , fN : R → C and g1, g2 : R → C all denote
continuous functions in an open set V around the origin. Let
T : R2 → C satisfy the following decomposition:

T(x, y) =
N∑
`=1

f`(a` x + b` y) = g1(x) + g2(y), for all x, y ∈ V,

(IV.10)
where a1, a2, . . . , aN and b1, b2, . . . , bN are real nonzero con-
stants such that, if N > 1,

aibk − akbi , 0 for all i , k . (IV.11)

Then, all functions fi , for i = 1, 2, . . . , N , are polynomials with
maximum degree equal to N .

A proof of this lemma for N = 2, based on the use of
finite differences, is presented in [10]. An alternative proof
is presented in [21], along with some extensions of the
original result. In general terms, this lemma establishes that
the only functions for which the decomposition in two terms
of Equation (IV.10) holds, under the condition (IV.11), are
polynomials. Furthermore, the degrees of these polynomials
must be, at most, equal to the number N of terms being
originally summed.

An example in which the consistency of Lemma 1 is verified
for different types of functions is presented next.

Example 2. Considering the particular case of N = 2 and
f1, f2 : R→ R, the following pairs of functions are examined:

• f1(x) = ex and f2(x) =
√
|x |: The functions f1 and f2

are not polynomials. According to the contrapositive of
Lemma 1, the function T does not admit a decomposition
according to (IV.10) under the condition (IV.11) with
nonzero constants.

• f1(x) = (x + 1)2 and f2(x) = 2x: Considering these func-
tions, straightforward manipulations on the expression of
T yield

T(x, y) = g1(x) + g2(y) + 2a1b1xy for all x, y ∈ R,
(IV.12)

where g1, g2 : R → R are polynomials. Therefore, a
decomposition of T according to (IV.10) is possible if,
and only if, a1 = 0 or b1 = 0. In both situations, however,
Lemma 1 is inconclusive since nonzero coefficients are
required. In this case, the converse of the lemma is not
true; i.e., f1 and f2 are polynomials with maximum degree
N = 2, but a decomposition under the conditions of
Lemma 1 does not exist.
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• f1(x) = x2 and f2(x) = −2x2: In this case, it follows from
direct manipulations on the expression of T that

T(x, y) = g1(x)+g2(y)+2(a1b1−2a2b2)xy for all x, y ∈ R,
(IV.13)

where g1, g2 : R → R are polynomials. It follows that a
decomposition of T according to (IV.10) is possible if,
and only if, a1b1 −2a2b2 = 0. Such condition is valid for
nonzero coefficients and also while satisfying (IV.11)—
which, in this case, simplifies to a1b2 − a2b1 , 0. For
example, if

a1 = 2, a2 = 2, b1 = 6, and b2 = 3, (IV.14)

then

a1b1 − 2a2b2 = 0 (IV.15)

and

a1b2 − a2b1 , 0. (IV.16)

Therefore, by applying Lemma 1, it follows that f1 and
f2 are polynomials of maximum degree N = 2—which,
in fact, is true.

Based on Theorems 1 and 2 and Lemma 1, in the following
section the Darmois-Skitovich theorem is enunciated and an
outline of its proof, inspired by [10], [21], [24], is also
presented. Afterwards, the application of this theorem in the
context of BSS is addressed.

V. DARMOIS-SKITOVICH THEOREM

Theorem 3 (Darmois, 1953; Skitovich, 1953). Let
u1, u2, . . . , uN denote real and mutually independent rvs
and define the linear forms{

v1 = a1u1 + a2u2 + · · · + aNuN

v2 = b1u1 + b2u2 + · · · + bNuN

(V.1)

where a1, a2, . . . , aN and b1, b2, . . . , bN are real constants. If
v1 and v2 are independent, then for each index i (with i =
1, 2, . . . , N) such that aibi , 0, it follows that ui is either a
constant rv or a Gaussian rv.

Proof. The joint characteristic function of v1 and v2 is defined
as [16]

Φv1,v2
(ω1, ω2) = E

[
exp

(
j(ω1v1 + ω2v2)

) ]
. (V.2)

Substituting into (V.2) the expressions of v1 and v2 given by
Equation (V.1), it follows that

Φv1,v2
(ω1, ω2) = E

[
exp

(
j

N∑
i=1
(ω1ai + ω2bi)ui

)]
. (V.3)

Due to the mutual independence of ui for i = 1, 2, . . . , N , the
following factorization of Φv1,v2

is possible [16]:

Φv1,v2
(ω1, ω2) =

N∏
i=1
Φui
(ω1ai + ω2bi). (V.4)

In addition, the independence of v1 and v2 yields

Φv1,v2
(ω1, ω2) = Φv1

(ω1)Φv2
(ω2). (V.5)

Equating the right-hand side of Equations (V.4) and (V.5)
results in

Φv1
(ω1)Φv2

(ω2) =
N∏
i=1
Φui
(ω1ai + ω2bi). (V.6)

Applying the natural logarithm to both sides of this equation,
and denoting Ψ(·) = ln(Φ(·)), the following identity between
exponents of characteristic functions holds:

Ψv1
(ω1) + Ψv2

(ω2) =
N∑
i=1
Ψui
(ω1ai + ω2bi). (V.7)

For convenience, the set of all indices i for which aibi , 0 is
now defined as:

I = {i = 1, 2, . . . , N | aibi , 0}. (V.8)

For indices i < I, it is possible to incorporate the correspond-
ing function Ψui

in Equation (V.7) into one of the two terms
on its left-hand side. Repeating this procedure on (V.7) for
all the indices i < I, the following generic expression can be
obtained:

Ψv1
(ω1) + Ψv2

(ω2) =
∑
i∈I
Ψui
(ω1ai + ω2bi), (V.9)

where Ψv1
denotes the function Ψv1

after the incorporation
of all the functions Ψui

for which ai , 0 and bi = 0, and
Ψv2

represents the function Ψv2
after the incorporation of all

the functions Ψui
for which ai = 0 and bi , 0. Eventually,

if ai, bi = 0 for some index i, the corresponding term on the
right-hand side will be identically zero since Ψui

(0) = 0. It
can be noted that there remain n(I) terms being summed on
the right-hand side of Equation (V.9), where n(·) denotes the
cardinality of a set.

In order to finish this proof, Equation (V.9) must be exam-
ined under the four collectively exhaustive cases listed next:

(i) n(I) = 0:
In this case, I = � and aibi = 0 for all i = 1, 2, . . . , N .
Nothing can be said of the rvs ui for i = 1, 2, . . . , N ,
because v1 and v2 are always independent since they
are sums of rvs which belong to disjoint and, therefore,
independent sets.

(ii) n(I) = 1:
Applying Lemma 1 to Equation (V.9), it follows that
the function Ψui

for i ∈ I is a polynomial of maximum
degree equal to one. Now, it follows from Theorem 2
that ui is a constant rv. In fact, it can be shown that the
only rv which is independent of itself is the constant
rv—and this is exactly the case here.

(iii) n(I) > 1; i, k ∈ I | ∀ i , k, aibk − akbi , 0:
Initially, Lemma 1 is applied to Equation (V.9) and
it follows that the functions Ψui

for i ∈ I are all
polynomials of maximum degree equal to n(I) > 1.
Now, it follows from Theorem 2 that the rvs ui for i ∈ I
are either constant or Gaussian.

(iv) n(I) > 1; i, k ∈ I | ∃ i , k, aibk − akbi = 0:
In this case, a combined rv ui,k can always be defined
such that {

αi,kui,k = aiui + akuk

βi,kui,k = biui + bkuk

(V.10)
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with αi,k = 1/bi and βi,k = 1/ai . After combining
exhaustively all possible rvs in Equation (V.1) for indices
belonging to I, steps similar to case (iii) can be carried
out for the resulting rvs. Specifically, Lemma 1 and
Theorem 2 are applied to each resulting rv. For the
individual rvs, it follows that they are either constant or
Gaussian, analogously to case (iii). For the combined
rvs, however, it only follows from the procedure of
case (iii) that the combined rvs are either constant
or Gaussian. If a given combined rv is constant, the
individual rvs being summed are also constant because
they are mutually independent. This is a particular case
of Theorem 1 for Gaussian rvs with zero variance—i.e.,
constant rvs. On the other hand, if a given combined rv
is Gaussian, then Theorem 1 is applied to conclude that
at least one of the individual rvs is Gaussian, and the
other ones are either constant or Gaussian.

�

This theorem was fully demonstrated in 1953 [10], [11].
In spite of this, the relation between non-Gaussianity and
independence of rvs had been long studied by several people;
for instance, J. C. Maxwell, in the 19th century, investigated
this topic when studying molecule velocity distributions in the
three-dimensional space [25].

Eventually, the Darmois-Skitovich theorem was generalized
for various cases, such as linear combinations of random
vectors and random linear forms—i.e., linear forms, such as in
Equation (V.1), with random coefficients instead of constant
coefficients [21].

In several areas of statistics, the Darmois-Skitovich theorem
is considerably relevant—especially in the fields of factor
analysis and rv decompositions. Its relevance comes mainly
from the fact that it consists in a characterization of the
Gaussian distribution through the independence of two linear
forms [21]. This means that, apart from constant rvs1, only
Gaussian rvs are not necessarily isolated when v1 and v2 are
independent. This strong property is very interesting by itself
in the theoretical sense, but it also has important practical
applications—such as in the BSS problem. Such applications
are further discussed in the next section.

VI. APPLICATIONS TO BSS
The goal of this section is to better understand, with

clarifying examples, the separability conditions in BSS derived
from the Darmois-Skitovich theorem.

Throughout this section, the real BSS problem for linear
instantaneous mixtures with iid and mutually independent
sources in space is considered. For simplicity, the BSS prob-
lem is assumed to be even-determined—i.e., with the same
number of sources and mixtures such that N = Nx = Ns = Ny.

Firstly, a condition on the combined response matrix to
ensure uncorrelatedness at the output of the separating system
is introduced. Next, separability conditions are presented,
followed by a discussion on the consequences of a spatial
whitening procedure applied to the mixtures.

1Interestingly, a constant rv can be alternatively regarded as a degenerate
case of the Gaussian rv—i.e., when its variance is zero.

A. Condition on the combined response matrix

Lemma 2. Let s be the source vector with nonconstant and
mutually independent rvs, and let y be the estimated source
vector, both with N elements, such that y = Ms where M ∈
RN×N is an invertible combined response matrix. If the rvs in
y uncorrelated, then

M = Λ1/2
y M1Λ

−1/2
s , (VI.1)

where Λy ∈ RN×N e Λs ∈ RN×N are positive-definite diagonal
matrices and M1 ∈ RN×N is an orthogonal matrix—i.e.,
MT

1M1 = IN , where IN denotes an N × N identity matrix.

Proof. The covariance matrix of y is defined as [14], [16]

Cy = E [( y − my )( y − my
)

T
] ∈ RN×N, (VI.2)

where
my = E[y] ∈ RN (VI.3)

is the mean vector of y. Substituting y = Ms into (VI.3) yields

my = E[Ms] = M E[s] = Mms . (VI.4)

Now, substituting y = Ms and (VI.4) into (VI.2) yields

Cy = E [(Ms − Mms )(Ms − Mms
)

T
]

(VI.5)

= M E [( s − ms )( s − ms
)

T
]
MT (VI.6)

= MCsM
T. (VI.7)

Since the rvs in s are nonconstant and mutually independent,
they are also uncorrelated. This implies that

Cs = Λs (VI.8)

where Λs ∈ RN×N is a positive-definite diagonal matrix. In
addition, the rvs in y are also nonconstant because M is
invertible. Thus, if the rvs in y are independent, it follows
that

Cy = Λy, (VI.9)

where Λy ∈ RN×N is a positive-definite diagonal matrix.
Finally, substituting (VI.8) and (VI.9) into (VI.7) yields

Λy = MΛsM
T (VI.10)

⇒ I =
(
Λ
−1/2
y MΛ1/2

s

) (
Λ
−1/2
y MΛ1/2

s

)T

. (VI.11)

By definition, it follows that M1 = Λ
−1/2
y MΛ1/2

s is orthogonal
and M is of the form (VI.1). �

In short, this lemma establishes that the condition of uncor-
related estimated sources imposes a “special format”, given by
Equation (VI.1), on the combined response matrix.

In the following example, it is shown how Theorem 3 and
Lemma 2 can be jointly applied in order to preliminarily infer
separability conditions in a simple BSS problem.

Example 3 (The Darmois-Skitovich theorem and the combined
response matrix). The BSS problem for N = 2, as shown in
Figure 2, is considered in this example. Let the independent
source rvs s1 and s2 be nonconstant. Additionally, let matrices
H,W ∈ R2×2 be invertible. The goal of this example is
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to verify under which conditions the imposition of spatial
independence at the output of the separating system is able
to adequately separate the given sources.

Mixing
system
H

Separating
system
W

Independent
sources:

s1

s2

Mixtures:

x1

x2

Estimated
sources:

y
1

y
2

Figure 2. Simplified scheme of the main elements involved in the real and
even-determined BSS problem with N = 2, for linear instantaneous mixing
and separating systems with iid and mutually independent sources in space.

Initially, the relation between the source vector and the esti-
mated source vector—namely, y = M s—can be conveniently
expanded as [

y
1
y

2

]
=

[
a1 a2
b1 b2

] [
s1
s2

]
. (VI.12)

By varying the elements of the separating matrix W , the
elements of the combined response matrix M = WH are also
altered because H is invertible. Ensuring that M is chosen
such that y

1
is independent of y

2
, Theorem 3 can be applied

to Equation (VI.12), which yields

aibi , 0⇒ si is Gaussian

for i = 1, 2. In other words, if both elements of the ith column
of M are nonzero, then the rv si is Gaussian. Since M is a
2 × 2 matrix and satisfies a factorization of the form (VI.1)
according to Lemma 2, it follows that

a1b1 , 0⇔ a2b2 , 0.

As a result, the following cases can be considered:
• All the elements of M are nonzero: From Theorem 3, it

follows that the rvs s1 and s2 are Gaussian. In this case,
neither of the sources have been adequately separated,
since both have nonzero contributions to both y

1
and y

2
.

• M is either diagonal or antidiagonal: nothing can be
said about s1 and s2. However, in this case both sources
are separated, except for eventual permutations and scale
ambiguities.

Although the structure of M has been related to the sources
Gaussianity in the previous analysis, this relation can be
better comprehended if the contrapositive of Theorem 3 is
considered, namely

si is not Gaussian⇒ aibi = 0

for i = 1, 2. In other words, if the rv si is not Gaussian, then
at least one of the elements of the ith column of M is equal
to zero. Once again, it follows from Lemma 2 that

a1b1 = 0⇔ a2b2 = 0.

Now, the following cases are considered:
• s1 and s2 non-Gaussian: The contrapositive implies that

a1b1 = a2b2 = 0. Since y
1

and y
2

are nonconstant, M

is either diagonal or antidiagonal. Therefore, the sources
are adequately separated by imposition of spatial inde-
pendence, except for permutation or scale ambiguities.

• s1 non-Gaussian and s2 Gaussian: It is possible to con-
clude from the contrapositive only that a1b1 = 0. On the
other hand, the condition on M implies that a2b2 = 0.
Therefore, once again M must be either diagonal or
antidiagonal and the sources are adequately separated. By
symmetry, the case in which s1 is Gaussian and s2 is non-
Gaussian is analogous.

• s1 and s2 Gaussian: Nothing can be said about the
elements of M from the application of the contrapositive.

To conclude this example, it should be noted that the appli-
cation of the Darmois-Skitovich theorem to this BSS problem
allowed for the verification of situations in which source
separability is possible by imposition of spatial independence
at the output of the separating system. Namely, separation is
guaranteed up to ambiguities if at most one source is Gaussian.
Additionally, nothing can be said if both sources are Gaussian,
since in this case there is no additional restriction on the
structure of the combined response matrix. In particular, if
M is either diagonal or antidiagonal, then the sources are
adequately separated. On the other hand, if all the elements
of M are nonzero, then separation is not attained.

The results for N = 2 obtained in the considered example
can be extended to the case of N ≥ 2 in what is known as
the source separability theorem proved by P. Comon in [8],
[9]. These theoretical conditions that the mixture model must
satisfy in order for the adequate separation of sources by
spacial independence imposition are presented next.

B. Source separability theorem

Starting from the application of Theorem 3 to the particular
BSS mixture model considered herein, in [9] the following
intermediate lemma is obtained.

Lemma 3 (Comon, 1992). Let s be the source vector with
mutually independent rvs, and let y be the estimated source
vector, both with N elements, such that y = Ms where M ∈
RN×N is the combined response matrix. In addition, the rvs in
y are assumed to be pairwise independent. If the ith column
of M has at least two nonzero elements, then si is either a
constant rv or a Gaussian rv.

Proof. Let M = [mk,i] with k, i = 1, 2, . . . , N . Without loss
of generality, it is assumed that the ith column of M has two
nonzero elements in rows k1 and k2 such that k1 , k2—i.e.,
mk1,imk2,i , 0. Theorem 3 can be applied only considering
rows k1 and k2, since y

k1
and y

k2
are independent by hypoth-

esis. It follows that si is either a constant rv or a Gaussian
rv. �

Now, Lemmas 2 and 3 can be used to determine separability
conditions for the general case of N ≥ 2 and M invertible.
These conditions are given by the following theorem, whose
proof based on [9] is also presented.

Theorem 4 (Source separability theorem; Comon, 1992). Let
s be the source vector with mutually independent rvs of which
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at most one is Gaussian and none are constant, and let y be
the estimated source vector, both with N elements, such that
y = Ms where M ∈ RN×N is an invertible combined response
matrix. The following propositions are equivalent:

(i) The estimated sources in y are pairwise independent.
(ii) The estimated sources in y are mutually independent.

(iii) M = ΛP, where Λ ∈ RN×N is an invertible diagonal
matrix and P ∈ RN×N is a permutation matrix.

Proof. (iii)⇒ (ii): If M = ΛP, then each element of y is equal
to only one element of s multiplied by a real nonzero constant.
In addition, any pair of distinct elements of y are not equal
to the same element of s up to a multiplication by a constant.
Since the rvs in s are mutually independent, it follows that
the estimated sources in y are also mutually independent.

(ii) ⇒ (i): Since the estimated sources in y are mutually
independent, then they are also pairwise independent [14].

(i) ⇒ (iii): Let the rvs in y be pairwise independent and
let M , ΛP for N ≥ 2. According to Lemma 2, M has a
factorization of the form (VI.1). It follows that at least two
different columns of M have at least two nonzero elements
each. Applying Lemma 3 to the sources corresponding to each
of the two aforementioned columns of M , it follows that s has
at least two Gaussian sources. This is in contradiction with the
original hypothesis that at most one of the elements of s is
Gaussian. �

This theorem ensures that, under certain conditions, the sep-
aration principle based on imposition of spatial independence
at the output of the separating system is able to adequately
separate the sources. In particular, this strategy is always valid
if M is invertible and at most one of the sources is Gaussian
and none of them are constant. This is in consonance with the
conclusions obtained in Example 3 for N = 2.

Also, Theorem 4 establishes that the sources may be
separated up to eventual permutation and scale ambiguities,
represented by matrices P and Λ, respectively. These are
inherent indeterminacies of any solution to the BSS problem
for instantaneous linear mixtures with iid and mutually inde-
pendent sources in space, except when additional hypotheses
are considered in the sources statistical model [4], [5], [8]

Finally, according to Theorem 4, although mutual inde-
pendence of the sources is required in the statistical model,
imposing either mutual independence or pairwise indepen-
dence at the output of the separating system implies adequate
source separation under the separability conditions. This is an
interesting result, especially for envisioning solutions to the
BSS problem.

As a way to further interpret and understand the separability
conditions given by Theorem 4, the effect of spatial whitening
of the mixtures in the BSS problem is discussed next.

C. Spatial whitening and separability

The procedure known as whitening consists in making a
set of rvs uncorrelated and also normalized, such that all of
them have the same variance [4], [8]. For convenience, the
following definition is adopted.

Definition 1. The zero-mean rvs u1, u2, . . . , uN , for N ≥ 2,
are whitened rvs if, and only if,

(i) they are uncorrelated, i.e.,

E[uiu`] = 0 (VI.13)

for all i, ` = 1, 2, . . . , N with i , `,
(ii) they have unit variance, i.e.,

var[ui] = E[u2
i ] = 1. (VI.14)

In BSS, an usual approach for separation consists in ap-
plying a spatial prewhitening procedure to the mixture vector,
resulting in a whitened mixture vector on which the separation
is subsequently performed. This spatial prewhitening step is
usually done by means of a linear transformation.

A simplified scheme of the BSS problem with a prewhiten-
ing procedure is illustrated in Figure 3. The zero-mean mixture
vector x is obtained according to (III.9), where H ∈ RN×N is
an invertible mixing matrix and s is a zero-mean source vector.
A prewhitening linear transformation A ∈ RN×N is applied to
the mixture vector, resulting in a whitened mixture vector

x̃ = Ax. (VI.15)

The whitening matrix A is chosen such that Cx̃ = IN ,
where Cx̃ = E[x̃ x̃T] is the covariance matrix of x̃. Finally,
an invertible separating transform W ∈ RN×N is applied to
the whitened mixture vector, resulting in an estimated source
vector

y = W x̃. (VI.16)

In order to better understand the consequences that a
prewhitening procedure has in the global separating problem,
it is convenient to consider the following proposition.

Proposition 1. If the source rvs in s are mutually independent
and nonconstant, then an adequate orthogonal transformation
W applied to the prewhitened mixture vector is enough to
adequately separate the sources.

Proof. Substituting (III.9) into (VI.15) yields

x̃ = AHs. (VI.17)

Since the source rvs in s are mutually independent and
nonconstant, and x̃ is a random vector of uncorrelated rvs
with unit variance, it follows from Lemma 2 that

AH = Λ1/2
x̃ M1Λ

−1/2
s , (VI.18)

where Λx̃ = IN , M1 ∈ RN×N is an orthogonal matrix and Λs is
a positive-definite diagonal matrix. Now, substituting (VI.17)
into (VI.16) yields

y = WAHs, (VI.19)

and substituting (VI.18) into this last equation results in

y = WM1Λ
−1/2
s s. (VI.20)

Since M1 is orthogonal, then choosing W = M−1
1 = MT

1 , which
is also an orthogonal matrix, Equation (VI.20) becomes

y = Λ−1/2
s s. (VI.21)
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Figure 3. Simplified scheme of the main elements involved in BSS for linear instantaneous mixtures with iid and mutually independent sources in space
when a prewhitening procedure is applied to the mixtures.

It follows from Equation (VI.21) that choosing an adequate
orthogonal matrix W it is possible to adequately separate the
sources. �

From this proposition, it follows that a prewhitening step
can be understood as solving a part of the BSS problem. This
means that the search for an adequate separating matrix W
can be restricted to orthogonal matrices when prewhitening is
carried out [4], [5]. In fact, independence implies uncorrelat-
edness and prewhitening is in general preliminary in order to
attain independence.

It should be noted, however, that the condition given by
Equation (VI.21) is equivalent to the imposition of spatial
independence at the output of the separating system only if
the separability conditions of Theorem 4 are satisfied. Specif-
ically, at most one source must be a Gaussian rv. Therefore,
although there also remains an orthogonal transformation in
order to separate two or more independent Gaussian sources
according to Proposition 1, such separation cannot be carried
out blindly—i.e., by imposing spatial independence of the
estimated sources. In fact, it is possible to show that for two
or more Gaussian sources, and after prewhitening, any choice
of an orthogonal matrix W is able to ensure independence for
the estimated sources—but this does not imply that the sources
are always separated.

In practice, spatial prewhitening can be done using similar
procedures to what is carried out by principal component
analysis (PCA) algorithms [5], [9]. Next, a numerical example
of prewhitening applied to observations of the mixture vector
is presented. The goal is to verify what happens after the
prewhitening step in terms of separability conditions and to
illustrate the implications of Theorem 4 and Proposition 1.

Example 4 (Source distributions and spatial prewhitening
of the mixtures). From now on, the scenario described in
Example 3 with N = 2 is considered along with the scheme
of Figure 3 and the following additional remarks:
• The zero-mean source vector, given by s = [ s1 s2 ]T, is

such that s1 is independent of s2.
• The mixture vector, given by x = [ x1 x2 ]T, is obtained

according to x = Hs, where the following mixing matrix
is considered

H =
[
h1 h2

]
=

[
0.1302 0.9683
−0.5191 −0.3545

]
. (VI.22)

• A prewhitening transformation A, obtained according
to [5], is applied to the mixture vector resulting in

a whitened mixture vector x̃ = [ x̃1 x̃2 ]T such that
x̃ = Ax.

Hereafter, the effect of the mixture and prewhitening proce-
dures in the distributions of the involved signals is considered
for three distinct joint distributions of the source rvs. Scatter
plots for the independent sources, mixtures and whitened
mixtures are shown in Figure 4 for 103 independent drawings
of each random vector. The following source distributions are
considered: (a) uniform rvs, (b) rvs with distinct distributions,
one of them being bimodal, and (c) Gaussian rvs.

x(i)1

x(
i) 2

x(i)1

x(
i) 2

s(i)1

s(
i) 2

(a)

s(i)1

s(
i) 2

(b)

s(i)1

s(
i) 2

(c)

x(i)1

x(
i) 2

x̃(i)1

x̃(
i) 2

x̃(i)1

x̃(
i) 2

x̃(i)1

x̃(
i) 2

independent
sources

mixtures

whitened
mixtures

Figure 4. Scatter plots of independent sources, mixtures and whitened
mixtures for N = 2 and (a) uniform sources, (b) sources with distinct
distributions and (c) Gaussian sources. Independent drawings of each source—
and the associated mixture and whitened mixture—are indicated in the axes
labels by a superscript index i enclosed in parentheses, with i = 1, 2, . . . , 103.

In particular, regarding Figure 4, it should be noted that:
• The orthogonal axes shown in red and blue in the source

scatter plots (first row of Fig. 4) are also represented
after the mixing and prewhitening transforms (second and
third rows of Fig. 4, respectively). The axes directions
change due to the linear transformations being applied.
Specifically, after mixing the axes point in the directions
of h1 (red) and h2 (blue), which are not orthogonal. After
the prewhitening transform, however, the orthogonality of
the axes is recovered.

• By comparing the scatter plots of the unobserved sources
with those of the whitened mixtures, it can be seen that
the whitening procedure is capable of recovering the
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“general structure” of the source distribution support up
to an orthogonal transformation (e.g., rotation) – which
is consistent with Proposition 1.

Therefore, the following step in source separation with
prewhitening consists in determining an orthogonal separation
matrix W to be applied to the whitened mixtures such that the
sources are adequately separated. If, for example, a rotation is
applied to the scatter plots in the third row of Figure 4, it can
be noted that:
• There is more than one rotation possible for the adequate

separation of sources—all imply in correct separation, but
with eventual change in the order of the sources. This
is a reflex of the permutation ambiguity considered in
Theorem 4.

• For the source distribution considered in case (b), the
scatter plot of the whitened mixtures is elongated in the
direction of h2 when compared to the independent source
scatter plot. In this case, when the correct rotation is
applied to the scatter plot of the whitened mixtures, the
sources are recovered with a scale ambiguity—as also
considered in Theorem 4. Such behavior, however, is not
observed in cases (a) and (c), where both source rvs have
the same variances.

Finally, according to Theorem 4, spatial independence
imposition at the output of the separating system implies
adequate blind source separation for cases (a) and (b). Source
separation is not ensured, however, for case (c), where both
sources are Gaussian. This can also be understood in a
alternative and complementary way: any rotation applied to
the scatter plot of the whitened sources results in indepen-
dent estimated sources because (i) uncorrelatedness implies
independence in the Gaussian case and (ii) the covariance
matrix of the whitened mixtures is an identity. Therefore,
spatial independence imposition is not enough for blind source
separation in this case.

VII. CONCLUSIONS

P. Comon in [9] resorted to the important relation between
independence and non-Gaussianity of rvs evidenced by the
Darmois-Skitovich theorem to establish sufficient conditions
of source separability for iid and mutually independent sources
in space when applied to a linear instantaneous mixing system.
Namely, that the sources can be recovered via independence
imposition at the output of the separator system if at most one
source is Gaussian, none are constant and the mixing system
is invertible.

It should be finally noted that the Darmois-Skitovich the-
orem has been extended in many different ways, for exam-
ple, in the derivation of separability conditions for complex
sources [26], [27] and nonlinear mixtures [28]. In addition,
it is still a subject of research to the present days, especially
in the field of mathematical statistics (see, for example, [29],
[30]). Motivated by the fact that the relation between inde-
pendence and non-Gaussianity of rvs is not evident, the goal
of this paper was to aid in the understanding of fundamental
theoretical concepts of BSS by presenting and interpreting the
Darmois-Skitovich theorem in this context. In future works,

the understanding of current techniques of BSS with high
levels of sophistication is envisaged.
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