
JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 1

AMASP (ASCII Master Slave Protocol): a
Lightweight MODBUS Based Customizable

Communication Protocol for General Applications
Andre L. Delai, Alberto N. Miyadaira, Tania C. Lima

Abstract—In this paper, we describe AMASP, a proposal for an
open standard communication protocol / model whose objective
is providing a novel and lightweight solution to the problem
of communication between small computers acting in particular
on embedded systems, but not limited to them. The protocol
establishes addresses for computers or peripherals, allowing them
to send messages directly to these addresses. It is based on
message interchanging, being the messages composed by ASCII
(American Standard Code for Information Interchange) text or
binary streams, according to the user customization. AMASP
is very customizable using four different packets to send the
messages and manage a master / slave communication model.
The protocol is designed to work where a direct communication
link is established or a bus architecture is available - by serial,
USB connections, etc - and it supports to many error checking
algorithms that can be used in unsafe links. Due to the focus
on simplicity, low overhead and metadata, it is a connectionless
protocol and does not support routing.

Index Terms—AMASP, networking, MODBUS, embedded sys-
tems, master/slave, protocol.

I. INTRODUCTION

THE maker culture [1], [2], [3] creates an interest in
studying and understanding the technology underlying

embedded systems, as well as in using this knowledge to
build custom solutions within the domains of industrial
automation, domestic automation (domotics), hobby, art,
teaching, research, internet of things etc. Some years ago, a
new market emerged to meet the growing necessities of this
movement, allowing it to expand. This new market brought
new computers, such as Arduino [4], [5], [6] and Raspberry Pi
[7], [8], very small machines that can be easily programmed
using simplified IDEs (Integrated Development Environments)
and that provides operating system (e.g. Linux) resources.
These low-cost computer platforms, with good support,
open design and very active development/user communities
are changing the conceptions of the manufacturers towards
understanding the open source and hacking movement as a
natural tendency in some segments of the market.

Sometimes, a good solution to problems in the
aforementioned domains can be an architecture in which
low-power computers can work together attacking small parts

A. L. Delai, T. C. Lima are with the NMI Department , Renato Archer
Information Technology Center, Campinas, SP, 13069-901 Brazil e-mail:
{aldelai, tclima}@cti.gov.br.

A. N. Miyadaira is with the Federal University of Technology Paraná,
Medianeira, PR, 85884-000 Brazil e-mail: miyadaira@utfpr.edu.br

DOI: 10.14209/jcis.2019.1

of the entire problem, as illustrated in Fig. 1. A more powerful
computer can control one or more of these small computers
working in a modular architecture to build the complete
solution. In this case, a master/slave model can be applied,
where a communication protocol in which one computer -
called master - can control one or more computers known as
slaves. The model can also be called as ”primary/secondary”,
”boss/worker” or other names by some manufacturers in the
industry.

MASTER 
COMPUTER 

link3

link2

link1
Slave 1

Slave 2

Slave 3

Part 
A 

Part 
B 

Part 
C 

Problem

sensors 
actuators 

sensors 
actuators 

(a)

Slave 1 Slave 2 Slave 3

BUS BUS

MASTER 
COMPUTER 

sensors 
actuators 

sensors 
actuators 

Problem

Part 
C 

Part 
B 

Part 
A 

(b)

Fig. 1: Examples of a communication architecture. (a) Indi-
vidual connection lines, (b) Bus architecture

For connecting these computers, in addition to physical
connections, it is necessary to have a set of communication
rules, known as communication protocols, which makes the
talk possible.

The idea for a new protocol came from the necessity



2 JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019.

of building a generic machine-to-machine communication
solution for devices developed in the Renato Archer Center
[9]. One example is a pen device with haptic technology [10],
[11] developed in the center, that is connected to an Arduino
board to control an actuator (micro-servo) that returns to the
user the position information of a pointer in a screen through
the tactile sensitivity of the index finger. The Arduino is
connected to a PC, which sets the position of the actuator
through a microcontroller analog pin. We intended to design
a protocol to work not only with the haptic pen but also
with other devices that are build in the center, inserting some
level of standardization to the communication increasing the
compatibility between the systems.

There are many protocols available today that provide
communication rules to send and receive data between
computers, industrial and embedded devices, etc. Many of
these protocols are very powerful and specialized and in
many cases unnecessarily complex for, e.g., basic text or
binary message interchange between two computers directly
connected. One of the most simple and popular free protocols
used in automation today is the MODBUS [12].

Developed by Modicon company (later incorporated by
Schneider Electric), the MODBUS protocol [12], [13], [14]
was designed to work specifically in industrial automation to
control the Modicon PLCs (Programmable Logic Controllers)
and RTUs (Remote Terminal Units). It is an application
layer messaging protocol, positioned at level 7 of the OSI
(Open Systems Interconnection) model [15], which provides
client/server communication between devices connected on
different types of buses or networks [16]. It uses a frame
format (Table I and Table II) based on register access to
collect the signals from sensors and to send commands to
the actuators in a master-slave model where the slaves are
exclusively passive. This means that only the master can
initiate transactions (called ‘queries’). Slaves respond by
supplying the requested data to the master, or by taking
the action requested in the query. Typical master devices
include host processors and programming panels. Typical
slaves include programmable controllers. The master can
address individual slaves, or can initiate a broadcast message
to all slaves. Slaves return a message (called a ‘response’)
to queries that are addressed to them individually. Responses
are not returned to broadcast queries from the master. The
Modbus protocol establishes the format for the master’s query
by placing into it the device (or broadcast) address, a function
code defining the requested action, any data to be sent, and
an error–checking field. The slave’s response message is
also constructed using MODBUS protocol. It contains fields
confirming the action taken, any data to be returned, and an
error–checking field. If an error occurred in receipt of the
message, or if the slave is unable to perform the requested
action, the slave will construct an error message and send it
as its response. [14].

• The Query: The function code in the query informs the
addressed slave device what kind of action to perform.

The data bytes contain either additional information
that the slave will need to perform the function. For
example, function code 03 will query the slave to read
holding registers and respond with their contents. The
data field must contain the information informing the
slave which register to start at and how many registers
to read. The error check field provides a method for
the slave to validate the integrity of the message contents.

• The Response: If the slave makes a normal response,
the function code in the response is an echo of the
function code in the query. The data bytes contain the
data collected by the slave, such as register values or
status. If an error occurs, the function code is modified
to indicate that the response is an error response, and
the data bytes contain a code that describes the error.
The error check field allows the master to confirm that
the message contents are valid.

MODBUS has been used in automation since the 70s, and
it is still very popular in this segment. The classical version
has two serial transmission modes, the ASCII (American
Standard Code for Information Interchange) and the RTU
(Remote Terminal Unit). Operating in serial communication
links, both modes utilize asynchronous communication with
one character sent at a time with defined framing. The ASCII
mode implements a 7-bit character (based on seven-bit ASCII
table) to send data, and the RTU an entire byte (8 bits). The
most expressive differences between both modes are the way
packages are coded and the error checking method (Table I
and Table II). MODBUS protocol over serial line takes place
at level 2 of the OSI model [17]. The general overview of the
ISO MODBUS classification is described in Table III.

TABLE I: Modbus ASCII frame format

Start of
frame

Device
Address

Function
Code Data LRC End of

Frame
1 char

(:) 2 chars 2 chars n chars 2 chars 2 chars
(CRLF)

TABLE II: Modbus RTU frame format

Start of
frame

Device
Address

Function
Code Data CRC End of

Frame
4 char
times 8 bits 8 bits n x 8 bits 16 bits 4 char

times

TABLE III: MODBUS on OSI model

Layer OSI Model
7 Application MODBUS Application Protocol
6 Presentation Empty
5 Session Empty
4 Transport Empty
3 Network Empty
2 Data Link MODBUS Master/Slave Protocol
1 Physical EIA/TIA-232 or EIA/TIA-485

The MODBUS ASCII packet format starts with the ‘:’
character and all other characters in the other fields must be
either the numbers 0-9 or the letters A-F since the data is



3

going to be represented in hexadecimal format but displayed
as ASCII characters. For example, function code 03 would be
displayed as two ASCII characters ‘0’ and ‘3’. There is no
master identification field in both modes (RTU and ASCII)
because the model presumes only one master in the system.

The error checking in ASCII mode is defined by the LCR
(Longitudinal Redundancy Check) algorithm. The RTU mode
uses a more powerful (and complex) method based on a 16
bits CRC algorithm, which increases the protocol overhead
but provides a better method for error checking.

The focus of our communication model are environments
where a direct, safety and fast communication is necessary.
Where one computer needs to supervise and control other
computers and it’s peripherals. Easily applicable by students,
hobbyists, designers, researchers, etc. A protocol to transport
any customized payload types without using complex
metadata. Our proposal is an ASCII - American Standard
Code for Information Interchange (see appendix A) - based
simplified protocol called AMASP (ASCII MAster Slave
Protocol), which is inspired by the Modbus ASCII and RTU
mode, but with some significant changes. In summary, the
chosen design requisites of this new protocol are:

• Simplified design
• Easy understanding for educational purposes
• Easy debugging on serial terminals
• Relative low overhead and meta-data
• Master/slave based model
• Support to generic payloads
• Some customization level
• Good suitability to embedded systems
• Error checking methods for noisy connections

The proposed protocol was designed to suit low-power
computers using microcontrollers (e.g. Arduino boards),
as well as system-on-a-chip computers (e.g. Raspberry Pi,
Beaglebone [18] etc.) and high-performance computers like
PCs (Personal Computers). It can be used in embedded
systems as a master controlling/monitoring one or more
linked slave computers with many peripherals each, providing
formatted packets to send messages, to warn the master events
occurred in the slave computer as well as communication
errors. AMASP is not intended to be a solution to the internet
of things field but it can be used as a communication resource
for some specific scenarios (e.g. scenarios where protocols
like MODBUS are compatible solutions).

This paper is organized as follows. In section II, we
describe the elements of the protocol, the communication
model, the format of the packets, their fields and the
used symbols. In section III, practical examples of use in
representative simplified scenarios are shown. Section IV
presents an analysis between AMASP and MODBUS protocol
differences. A runtime benchmark between 4 different errors
check algorithms supported by AMASP is presented in
section V. Finally, section VI brings the conclusions about

the proposal.

II. AMASP PROTOCOL FEATURES

Like MODBUS protocol (Table III), AMASP occupies
layer 7 of the OSI (Open Systems Interconnection) model,
with the serial line version in the layer 2, as illustrated in Fig.
2. It establishes a communication path between linked devices
using part of the packet metadata coded in hexadecimal
ASCII chars (0 to 9 and A to F). This means that the device
IDs (device addresses) are coded using these chars, just like
the message length and the error/interrupt codes (see Section
III). The exception is the preamble, the end packet chars
and the payload (message). Identifying the packet types, a
small preamble started by the char ‘!’ (packet beginning)
and followed by the char ‘!’, ‘?’, ‘#’ or ‘˜’ (the type of
the packet itself) is used, and the special chars ‘carriage
return’ and ‘line feed’ (CR and LF) are defined to signal the
end of the packet. The protocol supports message lengths
from 1 up to 4096 bytes in a single request or response packet.

Physical Layer 
EIA/TIA-232 
EIA/TIA-485 

OSI Intermediate Layers 
(not used) 

AMASP 
Application Layer 

Data Link Layer 
AMASP 

Master/Slave Protocol 

Fig. 2: AMASP OSI Layers

The answer behind the question of why to use the
ASCII/Hexadecimal coding is basically that the protocol was
designed to be humanly readable, for easy debugging on serial
terminals and monitoring software, as well as the MODBUS
ASCII mode. This feature generates more overhead in the
protocol than the binary version of the MODBUS (RTU)
because of the necessity of hexadecimal conversions. These
hexadecimal conversions are only for metadata fields, since
the payload is inserted in the packet without any kind of
conversion, unlike the MODBUS ASCII version where the
payload must necessarily be converted into ASCII characters
representing hexadecimal values.

AMASP is based on master/slave model but not a
traditional one because the slave can, in a specific case,
initiate a communication with the master (which will be
explained later). We call this ‘a pseudo master/slave model’.

A ‘device’ in AMASP can be recognized as a slave
computer or a slave peripheral. It depends on the physical



4 JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019.

network topology adopted, as described in Fig. 1. In the first
case, where the slaves are connected to individual lines (Fig.
1a), the device IDs are defined as peripheral access addresses.
If the topology is based on a bus (Fig. 1b), the device ID
can represent access addresses to each slave connected to the
bus, so the peripheral access method must be defined inside
the payload by the user.

A slave computer may have many different peripherals,
like displays, sensors, memories, I/O pins etc. Each of these
peripherals have their own particularities in terms of commu-
nication and control commands, which it can be treated by
customized messages inside the packets. When the device IDs
are representing peripheral addresses AMASP can organize
them allowing messages to be sent directly to these devices
through their respective IDs.

AMASP uses 4 different packet types:

• MRP - Master Request Packet
• SRP - Slave Response Packet
• SIP - Slave Interruption Packet
• CEP - Communication Error Packet

The master computer can only send two packet types to
the slave: MRP or CEP. The slave can use SRP, SIP or
CEP to return information to the master. Fig. 3 illustrates the
AMASP communication configuration between a master and
the associated slave connected by a direct serial line.

pa
ck
er
/u
np

ac
ke
r

Peripheral A

Peripheral B

Peripheral C 
Peripheral D

...

devices
SlaveMaster

packer/unpacker

Master 
Application 

MRP/CEP

SRP/SIP/CEP

link

ID 000

ID 001

ID ...

ID 002

ID 003

Fig. 3: AMASP Communication model diagram

The Master Request Packet is used when the master
needs to request or write data to the slave. This happens
following the procedure described below:

1) Master sends an MRP to slave
2) Slave must confirm the MRP reception through a Slave

Response Packet (SRP) or a Communication Error
Packet (CEP). The SRP is used only when the master’s
operation requests data, otherwise, just a simple CEP
00 is used to confirm the reception and the execution
of the instruction inside the MRP message (e.g. a write
operation in a peripheral). If an error occurs, the returned
CEP must contain the appropriate error code (see Table
XIII).

3) End of communication

The Slave Interrupt Packet must be used only when a
slave needs to get the master’s attention to an event occurred
on it (e.g. a pressed button or a switch state change). The

interruption process proceeds as:

1) Slave sends a SIP to the master
2) The master sends a CEP 00 to confirm the reception

of the packet and the recognition of the interruption.
If an error occurs, the returned CEP must contain the
appropriate error code (see Table XIII).

3) The master handles the interruption
4) End of communication

A. The Master’s Request and Slave’s Response Packets

Both the MRP and the SRP have the same format (Table
IV), but the SRP is always a response to an MRP requisition.
Table V and VI shows the component fields of both packets.

TABLE IV: Master request and slave response packet fields

Packet
Type ECA Device ID Msg

length Msg Error
Check

Packet
End

Msg = Message/payload
ECA = Error Check Algorithm

TABLE V: MRP fields description

Bytes Field Description
0..1 Packet Type Packet type
2 ECA Error Check Algorithm
3..5 Device ID Requested device identifier (address)
6..8 Msg Length Message size (in bytes)
9..(ML+8) Msg Message byte stream (payload)
(ML+9..(ML+12) Error Check Error Check (16 bits)
(ML+13)..(ML+14) Packet End Carriage return and line feed chars

*ML = Message Length

TABLE VI: SRP fields description

Bytes Field Description
0..1 Packet Type Packet type
2 ECA Error Check Algorithm
3..5 Device ID Identifier (address) of the responder
6..8 Msg Length Message size (in bytes)
9..(ML+8) Msg Message byte stream (payload)
(ML+9..(ML+12) Error Check Error Check (16 bits)
(ML+13)..(ML+14) Packet End Carriage return and line feed chars

*ML = Message Length

The packet ID has 2 bytes to identify the type of the packet,
which is represented by two ASCII chars. Table VII exhibits
the symbols and description of the four packet IDs.

TABLE VII: Packet type field description

Packet ID Description
!? MRP
!# SRP
!! SIP
!∼ CEP

In the sequence, the ECA field informs the error check
algorithm used to generate the value available inside the error
check field. This is a one-byte field and the code of the
algorithm is an ASCII char which represents hexadecimal
values from 0 to F, which means that AMASP can support
a total of 16 different error check algorithms. The algorithms



5

supported in this AMASP version are shown in Table VIII.
The algorithms selection was made based on the analysis of
the Maxino and Koopman work [19].

TABLE VIII: ECA field description

ECA Description
0 None
1 XOR 8 bits
2 Checksum 16 bits
3 LRC 16 bits
4 Fletcher 16 bits
5 CRC 16 bits

6..F Reserved

The device ID field contains the address of the message
receiver device (for MRP packets) or the address of the
device that is responding to a request (for SRP packets).
The addresses range is from 0 up to 4095. The packet ID
00 is reserved for broadcasting where all slaves will receive
the same packet. An MRP in broadcasting mode means that
the slaves will receive the message and they don’t answer
the master using any packets. Message length represents
the size of the message in bytes. Message field is the byte
stream of the message. The error check field uses 4 hex
chars to represent a 16-bit redundancy information. This field
results from the calculation of the chosen error checking
algorithm (defined in the ECA field). Error check algorithms
are specifically designed to protect against common types of
errors on communication channels. When a receiver receives
any AMASP packet, it needs to recalculate the error check data
and compare the result to the value code in the error check
field. The information inside the packet is valid only if the
values match. The error check is calculated over all packet
fields, except the end packet chars (carriage return and line
feed). When an error check fails the packet is just ignored by
the receiver. In safe links (e.g. USB connections), this error
check calculation can be disabled to reduce the overhead. The
last two bytes are the carriage return and the line feed chars
to mark the end of the packet.

B. The Slave Interruption Packet

When a slave computer is working in a process it needs to
catch the attention of the master, to communicates an event
that occurred in one of its devices, it sends a slave interrupt
packet (SIP). This SIP packet (Table IX) contains the device
ID and the interrupt code that informs the master about the
interrupt subject. If the interrupt code is valid in the system
the master must respond to the slave using the CEP packet
with the error code 00 (no error) and handle the interruption.
If the interruption is not recognized a CEP with error code 02
must be sent back. The SIP uses 2 hexadecimal ASCII chars,
which results in 256 different codes per device that can be
used by the system. Table X has the description of the SIP
fields.

TABLE IX: Slave interruption packet fields

Packet
Type ECA Device ID Int. Code Error

Check
Packet

End

TABLE X: SIP fields description

Bytes Field Description
0..1 Packet Type Packet type
2 ECA Error Check Algorithm
3..5 Device ID Requested device identifier (address)
6..7 Interrupt Code Interrupt type information
8..11 Error check Error check information (16 bits)
12..13 Packet End Carriage return and line feed chars

C. The Error Communication Packet

Indicating communication’s error or success in the MRP,
SRP, or SIP packets, received by one of the computers involved
in the communication process, the receiver computer can
return a communication error packet (CEP) to the sender
computer informing if were a problem in the reception or if
it’s all fine. The Table XI shows the fields of the CEP packet
and the Table XII has the description of all of these fields.

TABLE XI: CEP packet fields

Packet
Type ECA Device ID Error Code Error

Check
Packet

End

TABLE XII: CEP fields description

Byte Field Description
0..1 Packet Type Packet type
2 ECA Error Check Algorithm
3..5 Device ID Requested device identifier (address)
6..7 Error Code Error type information
8..11 Error check Error check information (16 bits)
12..13 Packet End Carriage return and line feed chars

The field error code allows 256 different error codes (2 hex
chars). In AMASP, the first 4 errors are predefined. The last
252 codes are available to be customized by the user. Table
XIII exhibits these codes and their descriptions.

TABLE XIII: Error codes description

Error code Description
00 No errors (reception OK)
01 Invalid device ID
02 Invalid interrupt code
03 Unrecognized message
04..FF Reserved to the user

When a packet reception is OK, a 00 code can be sent as
a response. In the case that the specified device ID does not
exist, a 01 error code is generated. If a sent SIP has an invalid
interrupt code (not recognized by the master computer) the
02 error code must be sent back. And finally, when the target
device in a slave or a master computer cannot recognize a
received message, the 03 code is used to inform the error to
the sender. The 04 up to FF error code interval is reserved to
the system programmer.

For a better understanding of the particularities of the
protocol flowcharts demonstrating the process of receiving
packets by the master and slave are shown in Fig. 4 and Fig.
5, respectively.



6 JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019.

Start

NO

YESPacket 
Received? 

Check for 
packets 

Error check 
verification YES

NO
Error 
check 
fail ? 

Verify the 
packet type 

NO

Y

YES

Is it a 
SRP? 

NO

YES

Msg 
reconized 

?

YES

NO

Is it a 
CEP? 

Check the 
message

Treat the  
error 

Send a 
CEP 03 

NOIs it a 
SIP? 

Check the 
Interruption 

code 

YES

NO

Int.  
ok? 

Handle 
the 

Interruption 

Send a 
CEP 02 

Send a 
CEP 00 

Send a  
CEP 00 
and treat 
the msg 

Fig. 4: Master’s receiver flow chart

Start

NO

YESPacket 
Received? 

Check for 
a packet 

Error check 
verification YES

NO
Error 
check 
fail ? 

Verify the 
packet type 

NO

Y

YES

Is it a 
MRP? 

NO

YES

ID ok?

Yes

NO

Is it a 
CEP? 

Check 
the device

ID 

Send a 
CEP 01 

Treat the  
error 

check the 
message 

NO

YES
Msg 

reconized 
? 

NO

YES

Msg 
requests 

data? 

Send a
SRP with 
the data 

send a  
CEP 00 
and treat 
the msg 

Send a 
CEP 03 

Fig. 5: Slave’s receiver flow chart

III. PRACTICAL EXAMPLES

A. Sending a String Message
Assuming a case where the master computer wants to send

a text message “Hello Slave!” to the slave computer, and the

receiver device in slave has the 00F ID defined by the system
programmer as the message interpreter. The MRP assembled
package will be as shown in Fig. 6. The error check method
selected to the examples was the CRC16.

! ? 0 0 F 0 0 C H e l l o S l a v e ! A A 4 6 CR LF

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

PKT
TYPE DEVICE ID MSG LENGTH MESSAGE ERROR CHECK PKT END

5
2

ECA

26

Fig. 6: MRP text message example

The slave responds using a SRP packet (Fig. 7)

! # 0 0 F 0 0 D H e l l o M a s t e r ! A 5 B A CR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
D LF

26

PKT
TYPE DEVICE ID MSG LENGTH MESSAGE ERROR CHECK PKT END

5

ECA

27

Fig. 7: SRP text message example

However, if an error occurs, e.g. the message cannot be
recognized by the device in the slave, the response must be a
CEP packet as in Fig. 8.

! ~ 0 0 F 0 3 A A 2 C CR

0 1 2 3 4 5 6 7 8 9 10 11 12
3 LF

PKT
TYPE DEVICE ID ERROR

CODE ERROR CHECK PKT END

5

ECA

13

Fig. 8: CEP of a unrecognized message

B. Generating an Interruption

In an interruption scenario in which, for example, a pressed
button event is generated, assuming that the button device is
using the 00A ID and that the interrupt code for a pressed
button event equals 01, the slave will send a SIP packet to the
master (Fig 9).

! ! 0 0 A 0 1 A 3 1 0 CR

0 1 2 3 4 5 6 7 8 9 10 11 12
F LF

PKT
TYPE DEVICE ID INT

CODE ERROR CHECK PKT END

5

ECA

13

Fig. 9: Interrupt 01 code example

The master receives the SIP, it recognizes the interruption
and replies a CEP as shown is illustrated in Fig. 10.

! ~ 0 0 A 0 0 A A F 4 CR

0 1 2 3 4 5 6 7 8 9 10 11 12
3 LF

PKT
TYPE DEVICE ID ERROR

CODE ERROR CHECK PKT END

5

ECA

13

Fig. 10: Error code 00 example

C. Reading a Sensor and Setting an Actuator

As a good ”Hello World” test in electronics, we can use
AMASP to turn on a LED in the slave computer by pressing
a push button. The circuit (Fig. 12) uses the slave input/output
pins to receive information from the sensor (button) and
provide an action by the actuator (LED). When a button is
pressed, as in the latter case, a packet like in Fig. 9 is sent
from the slave. The master recognizes the interruption in its
programming, but now the answer will be an MRP packet with
a message H (the H char). The programming in slave defines
the H message (HIGH) in the device ID 00B as a command



7

to turn on, then the LED will light up. Fig. 11 represents the
packet which sends the command to the LED.

! ? 0 0 B 0 0 1 9 5 E C CR LF

0 1 2 3 4 5 6 7 10 11 12 13 14 15

PKT
TYPE DEVICE ID MSG LENGTH MESSAGE ERROR CHECK PKT END

9
H5

ECA

8

Fig. 11: MRP packet to turn on the led

This message in this MRP has no need of data return, so the
slave will respond with a CEP 00 if is OK or using another
error code if something is wrong.

It is evident that the slave could handle the pressed button
event and turn on the led by itself, but in this simple example
the intention is showing a process where the decision came
from the master.

LED (ID 00B)

SWITCH ( ID 00A)SLAVE

I/O
 p

in
s

GROUND

MASTER

(1)  
SIP[00A] 

[01]

(2)
MRP[00B]

['H']

Vdd

Fig. 12: Turning on a led by a pressed button

IV. AMASP VERSUS MODBUS ANALISYS

The MODBUS protocol was first designed to
communication between industrial devices. Basically
its structure was defined to allow the master read and
write on slave’s registers. The slaves are originally PLDs
(Programmable Logic Devices) with digital and analog
devices inside which are accessed by commands or functions
codes [16]. The communication is exclusively initiated by
the master, the slave has a passive behavior. Monitoring the
slaves it is necessary a polling method constantly asking the
slaves about its status, which can increase the overhead on the
master computer. The type of the frame is basically defined
by the function field. In addition to accessing data, function
codes also allow diagnostic information frames, such as read
exception status, diagnostic, read device identification, etc.
The communication between devices using MODBUS must
respect these rules being oriented to register access.

AMASP was designed to be a communication protocol with
no specific payload formats, which can be fully customized
by the users according to each one’s own necessities. The
packets types are defined by the packet type field and it can
be used to transfer data, inform errors and interrupt the master
to inform slave’s events. It is a communication model that
organizes how masters and slaves relate without regulating
the way data is trafficked between them. This allows the user
to focus only on the payload format and it can be applied up
to new protocols giving more flexibility to the project. In this
pseudo master/slave model, the master is still in control, but
the slave has a resource to communicate to the master some
events occurred on it (through interrupt packets), without the
necessity of the master’s attention all the time. This can be

useful when the master has other tasks to do and it still needs
to monitor the slaves.

Although AMASP is based on MODBUS, these protocols
have significant differences between them, since AMASP has
a more generic and user-friendly proposal. Table XIV shows
the comparison between the main characteristics of these
protocols.

TABLE XIV: MODBUS x AMASP features

MODBUS
ASCII

MODBUS
RTU AMASP

Communication
hierarchy Master/Slave Master/Slave Pseudo

Master/Slave
Slave status
checking method Poolling Poolling Poolling or

Interruption
Payloads/messages
format

Registers
(ASCII chars)

Registers
(binary data) Generic

Max. number of
Slaves/Devices 247 247 4096

Masters available 1 1 1
Broadcast Address 0x00 0x00 0x000
Error checking LRC CRC-16 See Table VIII
Frames/packet
types 1 1 4

Frame/Packet
metadata * up to 17 bytes *up to 8 bytes **11 or 14

bytes
Payload capacity 2 x 252 chars 252 bytes 4096 bytes
Hex. conversion
overhead

Metadata
+ payload None Metadata

only
Communication
type

Register
access

Register
access Generic

*Considering register address and range data inside the payload.
**Error/Interrupt packet and Request/Response packet respectively.

A. Practical Scenario Analysis

Adopting the system described in Fig. 12 and assuming that
the system supports both, MODBUS and AMASP protocols
at a time, we have a practical scenario for comparison.

The first example we use the protocols to read the actuator
status (LED on/off). The slave/device address was defined as
0x0B in both protocols. To MODBUS, the register’s address
0x00 is associated with the LED. The zero value in this register
means that the LED is off, the one value means that the led
is on. Table XV exhibits the frame to get the LED status by
MODBUS protocol. The Table XVI represents the packet to
get the same information by AMASP.

TABLE XV: MODBUS master frame to get the LED status

Query

Field Name Ex.
(Hex)

ASCII
Characters RTU

Header ”:” None
Slave Address 0B 0 B 0000 1011
Function 03 0 3 0000 0011
Starting Address Hi 00 0 0 0000 0000
Starting Address Lo 00 0 0 0000 0000
No. of Registers Hi 00 0 0 0000 0000
No. of Registers Lo 01 0 1 0000 0001
Error Check LRC (2 chars.) CRC (16 bits)
Trailer CR LF None

Total Bytes 17 8

In the AMASP packet we adopt the message “R” (Read)
to be recognized by the slave as a request to inform the LED



8 JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019.

status. The number of bytes used by the AMASP packet is
between the MODBUS ASCII and RTU versions.

TABLE XVI: AMASP master packet to get the LED status

Request

Field Name Ex.
(Hex) AMASP

Header “!?”
Device Address 0B “00B”
Msg Length 01 “001”
Message (payload) 52 “R”
Error check - Error check (4 chars)
End of packet 03 CR LF

Total Bytes 15

The MODBUS slave response frame to the master’s query
frame in Table XV is in TableXVII . It uses the same frame
header for query and response but with some differences
after the function field. In a scenario with multiple slaves
connected by a bus (e.g. Fig. 1b) the frame decoding has
some particularities. A slave, which is listening to the bus,
recognizes a frame addressed to it by the slave address field.
It starts the decoding by the frame header recognition and
after that decodes the slave address. If the address does not
match, the slave ignores the frame, if does, the frame decoding
proceeds. Every frame in the bus needs to have its slave
address decoded and analyzed by the connected devices.

TABLE XVII: MODBUS response frame from the slave

Response

Field Name Ex.
(Hex)

ASCII
Characters RTU

Header ”:” None
Slave Address 0B 0 B 0000 1011
Function 03 0 3 0000 0011
Byte Count 00 0 2 0000 0000
Data Hi 00 0 0 0000 0000
Data Lo 01 0 1 0000 0001
Error Check LRC (2 chars.) CRC (16 bits)
Trailer CR LF None

Total Bytes 15 7

The slave response to the AMASP MRP (Table XVI) is
shown in Table XVIII. In this case, the header contains the
packet type information. In the header analysis, SRPs and SIPs
can be ignored by the slaves in the bus, excluding the necessity
of slave address decoding and analysis. This feature can be an
advantage compared to the ASCII MODBUS because of the
hexadecimal conversion overhead to decode the addresses.

TABLE XVIII: AMASP response packet from the slave

Response

Field Name Ex.
(Hex) AMASP

Header ”!#”
Device Address 0B ”00B”
Msg Length 01 ”001”
Message (payload) 48 ”H”
Error check CRC (4 chars)
End of packet CR LF

Total Bytes 15

Monitoring the slaves, the master can ask the devices
periodically, which is known as polling. AMASP has the
possibility of using interrupt packets (SIPs) where the slaves
can send small packets to the master to inform events
occurred on them. This resource eliminates the number of
packets necessary to constantly verify the slaves status.

The Fig.13 exhibits an example with a master monitoring
two slaves using the MODBUS protocol and the polling
method. No events in slave occurs until t6 when the event
A occurs in slave 1. This event will be detected only at t8
when the response frame informs the master about it. At t9
the master sends an action to handle the event A, and the slave
confirms the received action as a response at t10. After that,
at t11, another event occurs (event B), but this time in slave 2.
As before, it will be informed to the master, which happens at
t13. In sequence, an action to handle the event is performed
by the master (t14) and confirmed by the slave (t15). After
the last occurrence, the polling restarts at t17.

Master Slave 1 Slave 2

Query

Response

Query

Response

t1

Response

Query

Response

Query

EVENT A

EVENT B

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t0

Query (action)

Response (action)

Response (action)

Query (action)

t13

t14

Query

Response

Query

Response

t16

t17

t18

t19

t20

t21

t15

Event B
detected 

and 
handled 

Event A
detected 

and 
handled 

Ti
m

e 
(t)

Fig. 13: MODBUS polling method

In Fig.14 we have the same scenario, but now using
AMASP and the interrupt method for monitoring the slaves.
The master doesn’t take any action before the slave 1 informs
an event by an interrupt packet (SIP) at t7 using a customized
code (01) to inform the nature of the event A. The master
confirms the interruption by a CEP 00 (no errors) and it sends
an MRP to handle the event A at t14. The slave 1 confirms
the reception of the MRP at t15. A new event occurs in slave
2 at t11 and it’s informed at t12 repeating the same steps of
the slave 1.

In this particular case, the polling overhead over the master
computer is not present and this free processing capacity can
be used to execute other tasks.



9

Event A
detected 

and 
handled 

Master Slave 1 Slave 2

t1

SIP 01

CEP 00

MRP (Action)

EVENT A

EVENT B

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t0

CEP 00

CEP 00

t13

t14

t16

t17

t18

t19

t20

t21

t15

MRP (Action)

CEP 00

SIP 01
Event B
detected 

and 
handled 

Ti
m

e 
(t)

Fig. 14: AMASP interrupt method

Adopting the frame/packet sizes described in Tables XV,
XVI, XVII and Table XVIII, we can calculate the number of
bytes used to each protocol to monitoring the slaves for the
examples on Fig. 13 and Fig. 14. The results can be seen in
Table XIX

TABLE XIX: Bytes used by polling and interrupt monitoring
methods (based on Fig. 13 and Fig. 14 examples)

Polling Interrupt
Protocol Bytes used Bytes used
MODBUS ASCII 256 -
MODBUS RTU 120 -
AMASP 256 116

Observing the Table XIX we can present a traffic percentage
analysis to this particular case. Using the AMASP and inter-
rupt packets, AMASP reduced the byte traffic necessary to
monitoring both slaves in 45,81% compared to the MODBUS
ASCII, 45.31% to the AMASP by polling and 9.66% to the
MODBUS RTU.

V. ERROR CHECK BENCHMARKS

According to Maxino and Koopman [19], a common way
to improve network message data integrity is appending a
checksum. Although it is well known that cyclic redundancy
codes (CRC) are effective at error detection, many embedded
networks employ less effective checksum approaches to reduce
computational costs in highly constrained systems. Some-
times such cost/performance trade-offs are justified. However,
sometimes designers relinquish error detection effectiveness
without gaining commensurate benefits in computational speed
increase or memory footprint reduction.

AMASP currently supports 5 different 16-bit error checking
algorithms. In the order of low to high computation complex-
ity, they are: the checksum, the XOR, the LRC, the Fletcher

and the CRC. In this case, the more complex the algorithm
is the less chance of failure to detect errors. The choice of
which algorithm will be used depends on the characteristics
of the communication line/bus and the computers connected
to it. A more efficient error detection algorithm will imply a
smaller number of packets sent per unit of time, due to greater
computational complexity.

The benchmark was coded in C language, using an Arduino
Mega 2560 board [20] and the avr-gcc Atmega cross compiler
for Linux. The main features of the Atmega 2560 microcon-
troller are:

• Microcontroller: ATmega2560
• Flash Memory: 256 KB of which 8 KB used by boot-

loader
• SRAM: 8 KB
• EEPROM: 4 KB
• Clock Speed: 16 MHz

No operating system in the Arduino Board was used during
tests and the specifications of the benchmark are described
below:

• The entry of the algorithms are byte streams composed
by an AMASP MRP containing 9 metadata bytes + a
payload with 8, 64, 128, 256 or 512 bytes.

• In the presented tests we used the micros Arduino API
function to time measurement, which returns the number
of microseconds since the Arduino board began running
a program. This function has a resolution of 4 microsec-
onds. The execution time of the micros function was
estimated in 3 microseconds and c it’s onsidered in the
benchmark of the algorithms.

• Reducing the quantization error, the result for each al-
gorithm is the time average of 100 executions in the
same conditions. The execution time of the algorithms
was measured by using the average between 100 different
payloads filled by random bits (uniform distribution).
This is done because the CRC algorithm is sensible to
the payload content.

• The time measurement of each algorithm contemplates
the execution of the algorithm itself, the algorithm func-
tion call and a command to assign the return value to a
16 bits integer variable.

Algorithm .1 Error Check Benchmark Pseudo-code

accTime ← 0
for 1 to 100 do

payload ← randomBits();
time ← 0
for 1 to 100 do

time ← time + algorithmTime(payload);
end for
accTime ← accTime + time/100

end for
return accTime/100



10 JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019.

Fig. 15: Error check benchmark in Arduino Mega 2560

The algorithms benchmarks based on runtime show us the
XOR as the lightest solution and consequently it allows a
greater amount of packets sent per unit of time. However,
when analyzing the error detection efficiency [19], the XOR
algorithm is one of the worst performance solutions compared
to other algorithms. CRC16 is the most efficient in error
detection but it is also the most computationally costly (no
free lunch).

The choice of the algorithms will depend on the requisites
of the system. Powerful processors and networks can provide
a satisfactory flow of packets even using the complex CRC16
algorithm. On the other hand, more modest processors can
perform satisfactorily if the communication environment does
not demand powerful error-control solutions. This is a design
decision that the user can make during the configuration of
the AMASP protocol.

VI. CONCLUSION

AMASP is a proposal to a new open standard protocol and
a communication model to general applications between low
or high- performance computers in embedded systems or other
environments. It is relatively simple, very customizable and a
low overhead solution to connect computers in a master/slave
model. AMASP mixes and modifies some features from the
ASCII and MTU MODBUS versions adding new ones. The
possibility to work with interruptions can bring a more efficient
solution to monitoring the computers and peripherals in the
system than MODBUS in polling mode as demonstrated here.

The support for many different error check algorithms has
the advantage to makes the protocol more adaptable to many
communication links and computers. Based on the presented
checksum tests, users can choose the error check algorithm
to their project through a cost-benefit analysis. The ASCII
hexadecimal codification of the metadata makes it easier to
communication debugging.

Our next steps in this proposal are to optimize the im-
plementation aiming the comparison study between AMASP,
MODBUS and other similar protocols in more complex sce-
narios with many computers and network typologies.

APPENDIX A
REDUCED ASCII TABLE

TABLE XX: Partial ASCII table

Char Hex Dec Char Hex Dec
LF 0A 10 F 46 70
CR 0D 11 G 47 71

! 21 33 H 48 72
# 23 35 I 49 73
? 3F 63 J 4A 74
∼ 7E 126 K 4B 75
0 30 48 L 4C 76
1 31 49 M 4D 77
2 32 50 N 4E 78
3 33 51 O 4F 79
4 34 52 P 50 80
5 35 53 Q 51 81
6 36 54 R 52 82
7 37 55 S 53 83
8 38 56 T 54 84
9 39 57 U 55 85
A 41 65 V 56 86
B 42 66 W 57 87
C 43 67 X 58 88
D 44 68 Y 59 89
E 45 69 Z 5A 90

ACKNOWLEDGMENT

The author would like to thank CNPq (National Council
for Scientific and Technological Development - Brazil) for
the financial support. Special thanks to engineer Adilson
Chinatto (Espectro Engineering LTDA - Brazil), professors
Romis Attux and Rafael Ferrari (FEEC Unicamp - Brazil) and
engineer Tabata Tomaz (Honda Motor Co. - Brazil).

REFERENCES

[1] J. G. Tanenbaum, A. M. Williams, A. Desjardins, and K. Tanenbaum,
“Democratizing technology,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems - CHI 13, ACM Press, 2013.
doi:10.1145/2470654.2481360.

[2] E. R. Halverson and K. Sheridan, “The maker movement in educa-
tion,” Harvard Educational Review, vol. 84, pp. 495–504, dec 2014.
doi:10.17763/haer.84.4.34j1g68140382063.

[3] FabLab: Of Machines, Makers, and Inventors (Cultural and Media
Studies). Transcript-Verlag, 2014. isbn:978-3-8376-2382-6.

[4] M. Authors, “Arduino website.” urlhttps://www.arduino.cc/, Mar. 2018.
accessed in 03/05/2018.

[5] M. Banzi and M. Shiloh, Getting Started with Arduino: The Open Source
Electronics Prototyping Platform (Make). Springer, 2015. isbn:978-981-
10-4417-5.

[6] Y. A. Badamasi, “The working principle of an arduino,” in 2014 11th
International Conference on Electronics, Computer and Computation
(ICECCO), IEEE, sep 2014. doi:10.1109/ICECCO.2014.6997578.

[7] M. Authors, “Raspberry pi website.” urlhttps://www.raspberrypi.org/,
Mar. 2018. accessed in 03/05/2018.

[8] S. McManus and M. Cook, Raspberry Pi For Dummies. For Dummies,
2017. isbn:1119412005.

[9] M. Authors, “Renato archer information technology center website,”
Mar. 2018. accessed in 03/07/2018 (in portuguese).

[10] M. R. McGee, P. Gray, and S. Brewster, “Haptic perception of virtual
roughness,” in CHI 01 extended abstracts on Human factors in comput-
ing systems - CHI 01, ACM Press, 2001. doi:10.1145/634067.634162.

[11] Haptic Human-Computer Interaction. Springer, 2001. isbn:978-3-540-
42356-0.

[12] M. Authors, “The modbus organization.” http://www.modbus.org, Mar.
2018. accessed in 03/05/2018.

[13] “ModBus,” in The Internet of Things, John Wiley & Sons, Ltd, dec
2011. doi:10.1002/9781119958352.ch5.

[14] I. Modicon, “Modicon modbus protocol reference guide,” North An-
dover, Massachusetts, pp. 112–115, 1996.



11

[15] H. Zimmermann, “Osi reference model–the iso model of architecture for
open systems interconnection,” IEEE Transactions on communications,
vol. 28, no. 4, pp. 425–432, 1980. doi:10.1109/TCOM.1980.1094702.

[16] I. Modbus, “Modbus application protocol specification v1. 1a,” North
Grafton, Massachusetts (www.modbus.org/specs.php), 2004.

[17] S. Automation, “Modbus over serial line–specification and implementa-
tion guide,” V2002, 2002.

[18] M. Authors, “Beaglebone website,” Apr. 2018. accessed in 04/05/2018.
[19] T. C. Maxino and P. J. Koopman, “The effectiveness of check-

sums for embedded control networks,” IEEE Transactions on de-
pendable and secure computing, vol. 6, no. 1, pp. 59–72, 2009.
doi:10.1109/TDSC.2007.70216.

[20] A. Atmel, “Atmel atmega640/v-1280/v-1281/v-2560/v-2561/v
datasheet,” 2014, 2014.

Andre Luiz Delai was born in Londrina,
Paraná, Brazil, in 1978. He is a computer
engineer (University of Northern Paraná -
2004) holding a master’s degree in elec-
trical engineering from the University of
Campinas (2008 - São Paulo - Brazil). He
Acted as a college professor in algorithms
and data structures, programming, com-

puter architecture and operating systems. Being an embedded
system engineer and system analyst in banking automation.
Areas of activity are embedded systems, evolutionary com-
puting, artificial intelligence, assistive technologies, evolvable
hardware and programming. Currently works as an assistive
technology scholarship researcher at the Renato Archer Infor-
mation Technology Center (Campinas - Brazil).

Alberto Noboru Miyadaira is an au-
tomation and control engineer from the
Faculty Assis Gurgacz (2007 – FAG
- Brazil), received a master degree in
electrical engineering from University of
Campinas (2011 – UNICAMP - Brazil)
and a doctor degree in electrical engineer-
ing from UNICAMP (2017) and Univer-

sity of Alcalá (UAH - 2017 - Spain). His specialties are control
systems, automation, robotics, electronics and embedded sys-
tems. He is currently full professor of electrical engineering
at the Federal University of Technology - Paraná (UTFPR –
Medianeira – Brazil).

Tania Cristina Lima received her B.S.
in social sciences (1975), M.Sc in social
anthropology (1983) and Ph.D. in social
sciences (2012) from the University of
Campinas (UNICAMP). Has experience
acting in social sciences with urban an-
thropology emphasis, information tech-
nology, social computing, social enactive

systems, assistive technologies, ethnography and environmen-
tal protection. Currently works as an associated researcher at
the Renato Archer Information Technology Center (Campinas
- Brazil) where is the institutional coordinator of scientific
initiation scholarships.


