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Graph Signal Processing in a Nutshell
Guilherme B. Ribeiro, Student Member, IEEE, Juliano B. Lima, Member, IEEE

Abstract—The framework of graph signal processing was
conceived in the last decade with the ambition of generalizing
the tools from classical digital signal processing to the case in
which the signal is defined over an irregular structure modelled
by a graph. Instead of discrete time — what one would call
a regular 1-D domain, in which a signal sample is adjacent
to only two neighbors and for any pair of contiguous samples
the distance is the same — the signals here are defined over
graphs and, therefore, the distance and relations between adjacent
samples vary along the signal. For instance, one may consider
the temperature signal defined from the data of a sensor mesh
network. When creating the tools in such a scenario, many
challenges arise even with basic concepts of the classical theory.
In this paper, the core ideas of graph signal processing are
presented, focusing on the two main frameworks developed along
the years, and a couple of examples and applications are shown.
We conclude drawing attention to a few of the many open
opportunities for further studies in the field.

Index Terms—Graph signal processing, structured data, graph
theory, linear algebra.

I. INTRODUCTION

Multivariate data defined over networks are nowadays ubiq-
uitous, being constantly generated, stored and processed in the
most diverse systems in engineering and technology. Measure-
ments in a set of IoT sensors and mobile devices [1]–[4], num-
ber of citations in a scientific collaboration network or social
media relations (collaboration graph, or social graph) [5] and
interactions between individuals in a ecosystem (ecological
networks) [6] are some examples of situations in which the
acquired data are intimately related to the topology of the
network over which they are defined.

Such multivariate network-like systems are not only present
in various applications, but are also systematically growing in
number, as sensors become cheaper and smaller and concepts
such as cloud storage/computing and Big Data consolidate, as
indicated by the 2011 report from McKinsey Global Institute
[7]. This document also states that the information acquired
from the adequate processing of such massive networked data
is a fundamental requisite for the companies to thrive from
now on.

Still another motivation that feeds the urge to study process-
ing techniques for data defined over network-like domains, for
example, is the growth of research on smart cities, which takes
advantage of the considerable information (that are or are yet
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Figure 1: Example of signal defined over a graph. The height
of the vertical bars indicate the value of the signal samples,
which are indexed by the graph vertices. The graph edges
capture similarity relations between samples. How could one
define spectral analysis and processing techniques in such a
signal domain?

to be) generated in cities to provide (or improve the) solutions
for many urban problems [8].

All these examples share an important characteristic: the
structure over which the data is defined may be modelled by
a graph [9], to which vertices are assigned the variables of
interest, as depicted in Fig. 1. That is the context in which the
field of graph signal processing (GSP) was developed in the
last decade, a theoretical framework aiming to generalize the
classical signal processing methods and concepts to scenarios
in which the signal is no more defined over a regular domain,
but sits on a generally irregular structure, an arbitrary graph.
The research is still very active and numerous contributions
have been made, but two distinct frameworks consistently
grew throughout the years and have been established as
default mindsets when dealing with graph signals. The first
one is based on algebraic signal processing and uses the
graph adjacency matrix as elementary block. This approach
imposes no restrictions regarding the graph being directed or
undirected, and the edge weights are allowed to be negative
or complex numbers [10]. The second framework draws ideas
from spectral graph theory and analyzes signals defined only
over undirected graphs with non-negative real edge weights,
using the graph Laplacian matrix to build a basis for the signal
space [11]. Both approaches have particular characteristics
which make each more appropriate than the other for some
applications. In this paper, we intend to present an overview
of the basic aspects concerning each framework and provide
the reader with a good understanding of their basic concepts
and tools.

A. The challenge of graph-like domains

One of the reasons why GSP has been such a fertile field,
allowing the birth of so many different problems and ideas,
is that the definition of a signal over a graph leads to a
series of obstacles even with fundamental concepts of signal
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processing. Let us use the simple but elucidating example
given by Shuman et al. [11], and consider the unit shift to the
right of a discrete-time signal x[n], which is done in digital
signal processing (DSP) by the simple variable substitution
x[n − 1]. Good enough, but what does it mean to right-shift
the signal in Fig. 1, for example? Obviously the sense of right
and left are meaningless for general graphs. On this problem,
Shuman et al. argue that a naı̈ve choice would be to label the
N graph vertices from v0 to vN−1, so that the sample x[n]
is assigned to vertex vn, for doing so would allow to define
the shifted signal as the result of assigning x[n] to vertex
v(n−1) modN . Such an option, however, is not adequate, for
its repeatability depends always on the way the vertices are
labelled [11]. This example illustrates how a concept in DSP
as simple as signal translation may deserve a cautious study
in GSP.

B. Structure of the paper

This paper is structured as follows. Section II establishes the
introductory concepts of graph signal processing, presenting
the graph theory terminology and the notion of signal defined
over a graph. Sections III and IV present the two main
frameworks of GSP, referred to hereinafter as GSPA and GSPL,
respectively. Section V aims to provide the reader with a
diverse set of practical examples and applications of GSP, so
as to allow for a broader understanding of the field. The paper
closes with highlights of opportunities for future work in the
area, in Section VI.

II. PRINCIPLES AND DEFINITIONS

The field of graph signal processing draws basic concepts
from the classical theories of digital signal processing and
graph theory, aiming to provide a cohesive and useful frame-
work to tackle the aforementioned challenges. In this section,
some of the main definitions found in this field are presented.

A. Graph theory: a brief terminology

A graph is commonly defined as the ordered pair (V, E), in
which the set V contains the so called graph vertices and the
set of edges E is a subset of V2 [12]. We will usually indicate
by |V| = N 1 and |E| = E the number of vertices and edges
of a graph, respectively. For our purposes it is convenient to
represent a graph as the structure G = {V,A}, endowed with
the (weighted) adjacency matrix A which captures the vertex-
to-vertex relations: if Ai,j 6= 0, then there is an edge of weight
Ai,j from the vertex vj to vi. It is denoted by d−i the indegree
of vertex vi, consisting of the sum of weights of all incoming
edges to vertex vi. Likewise, the outdegree d+

i is the sum of
weights of edges departing from vi.

A graph is called undirected if and only if its adjacency
matrix is symmetric, in which case it is defined the degree
of vertex vi as d−i = d+

i = di. In this case, a graph is said
to be d-regular whenever all graph vertices have degree d.
If A is asymmetric, however, the respective graph is directed

1The set operator | · | means the cardinality, or amount of elements, of the
set.
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Figure 2: Examples of (a) directed and (b) undirected graphs,
defined over the same vertex set.

and its pictorial representation depicts the edges as arrows,
to account for the unidirectional relation between adjacent
vertices. Examples of directed and undirected graphs are
shown in Fig. 2.

The adjacency matrix is the building block for one of the
two main frameworks of GSP, what will be covered soon, but
another matrix of great importance, mainly in the branch of
GSP originated from spectral graph theory, is the Laplacian
matrix

L = D−A, (1)

with the degree matrix D being a diagonal matrix with the
degree di as its i-th entry. Depending on the context, D may
be taken as the indegree or outdegree matrix, although when
the Laplacian matrix is used the graphs considered are more
often undirected.

A path is a set of distinct edges (with the same orientation,
if the graph is directed) linking distinct vertices. A cycle is a
path with equal starting and end points, and if a graph has a
cycle it is called cyclic (acyclic, otherwise). If the cycle has
only one edge, it is called a loop. One refers to multiple edges
whenever a single pair of vertices is connected by two or more
edges. An undirected graph is called simple if it has no loops
or multiple edges.

A graph is said to be complete if any two of its vertices are
adjacent. Graph signal processing over such graphs may be
extremely cumbersome, for the computational complexity of
many of its techniques depends heavily on the number of graph
edges. For most applications, it is desirable to have a small
number of edges while keeping the graph connected, i. e. for
any pair of vertices there exists a set of distinct edges (with the
same orientation, if directed) connecting them without making
a cycle.

A graph is said to be unweighted if all its edges have unit
weight. A subgraph of G is a graph G′ = (V ′,A′) with edge
set E ′, in which V ′ ⊂ V and E ′ ⊂ E . A connected component
of G is a connected subgraph G′ = (V ′,A′) in which any
vertex in V ′ is linked exclusively to another vertex also in
V ′. This is illustrated by Fig. 2b, in which the graph has two
connected components.

The neighbourhood of a vertex vi is the setNi of all vertices
adjacent to vi. Sometimes it is useful as well to denote by
N (i,K) the set of vertices connected to vi through a path of
length K or less. This notion is represented in Fig. 3.
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Figure 3: (a) A graph and (b) the set of vertices N (i, 2) shown
in red, with vi being depicted in white. The edges linking vi
to the elements in N (i, 2) are also highlighted in red.

The reader is encouraged to refer to this section whenever
necessary. For a broader glossary with a solid introduction to
graph theory, the authors recommend [13], [14].

B. Defining a graph signal

A signal s defined over G = {V,A}, with |V| = N , is a
discrete-domain function mapping the graph vertex set to a
scalar set, usually the complex or real numbers,

s : V → C | s(vi) = si, (2)

so that s can be seen as a vector in CN indexed by the vertices
of G. Once the vertices V = {v1, . . . , vN} are clearly labelled,
it is not ambiguous to represent the signal as the column vector
s = (s0 s1 . . . sN−1)T , si ∈ C, 0 ≤ i ≤ N − 1.

Fig. 4 provides examples of graph signal representations,
in which the vertex labelling is omitted for the sake of
simplicity, as it will be assumed that the signal sample si
is assigned to vertex vi. The signal values are indicated in
two manners: either by writing down its numerical value next
to the respective vertex, or by using a pseudocolor scale, the
latter of which is the scheme adopted throughout this paper.

It is crucial to stress a certain graph which links GSP to the
classical Discrete Signal Processing (DSP) theory: the directed
ring graph, shown in Fig. 4a, which models the finite-length
discrete-time domain. Its directed edges model the causality
of time domain, whereas the feedback edge accounts for
the boundary condition of periodicity imposed by the DFT
analysis. Other signals that arise in practical applications have
the respective graphs easily identified: the rectangular lattice
in Fig. 4b, for example, models the digital image domain [15],
and Fig. 4c shows an example of signal defined over a mesh
network of sensors, with the edges weighted using the inverse
of the euclidian distance, which arises in many scenarios such
as IoT applications.

The spectral characteristics of a signal depend heavily
on the domain over which it is defined, but one does not
need to acknowledge this in the context of DSP, for in this
case the domains are always regular and uniform2. From the

2One could argue that, in the theory of nonuniform sampling, the signal is
defined over an irregular domain, since the samples may be randomly spaced.
Even in this case, however, the classical techniques still aim to recover the
signal so as to represent it in its usual – and uniform – domain.

classical theory, the common understanding states that a signal
has mostly low frequencies if adjacent samples have similar
values, and high frequencies otherwise. When dealing with
signals defined over graphs, it is clear that the adjacency
relations depend on the graph topology, and therefore one
may foresee that the same signal may present different spectra
when defined over different graphs. This intuition is visually
confirmed (and will soon be mathematically proved) in Fig.
5, which depicts a signal and its spectra when two different
graphs are taken as a domain. The reader may notice that,
in Fig. 5c, the samples with highest values are adjacent to
the ones with small values, what causes bigger frequency
components in this signal than in the one defined over the
undirected ring graph in Fig. 5a.

C. Graph inference

Some contexts in which GSP is to be applied, to perform
whatever signal processing technique is necessary, do not
provide clear information on how the underlying graph is
structured. For example, let us suppose the temperature data
(or any other data in fact) of some Brazilian Northeastern
cities will be treated using GSP. How is one supposed to
weight the graph edges, and before this, how does one decide
which vertices to connect? Is the graph shown in Fig. 4c the
only option? Clearly it is not. Although generally the problem
of graph inference is complex, this type of geography-based
graph has an adequate method topology estimation.

The general ideia is that, if there is a clear metric to evaluate
the expected similarity between samples as a function of the
available information regarding the respective vertices, then
this metric may be used as the edge weight and a threshold is
set so that any weight below this value causes the respective
edge to be eliminated. In the case of vertices which have
geodesic positions, the euclidian distance may be used as the
metric because vertices that are closer together are expected
to have similar signal samples, and therefore the adjacency
matrix of the underlying graph may have entries given by

Aij =





exp

(
−dist2(vi, vj)

2θ2

)
if dist(vi, vj) < T

0 otherwise,
(3)

as used in [11]. The choice of the parameters T 3 and θ
(standard deviation of the distribution), and of how to use
the metric (in this case, inside a Gaussian distribution), are
dictated by the application and by the analyst experience.

However, if there is an isolated vertex, far from the others,
the use of (3) may lead to a compromise between keeping
the graph connected and obtaining a sparse adjacency matrix,
since imposing connectivity to the graph in this case implies
increasing T , and therefore having many edges. To deal with
this problem and still have a good representation of the
underlying graph, one alternative is to connect a vertex to
its K closest neighbours (setting K to an appropriate value,

3T indicates a distance threshold above which we set the edge weight to
zero, effectively leaving the vertices unlinked. This means that the distance
between them is assumed to be too high for any significant interdependence
to exist.
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Figure 4: Examples of depictions of graph signals over (a) a directed ring graph, (b) an undirected regular grid graph and (c)
a graph of cities from the Brazilian Northeastern region, over which was defined a signal of temperature measurements from
February 1st of 2012, retrieved from the Banco de Dados Meteorológicos para Ensino e Pesquisa (BDMEP, freely translated as
Meteorological Database for Teaching and Research), available at: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep.
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Figure 5: The same signal was defined over similar graphs, one of them being (a) the undirected ring graph. In (b) and (d)
are depicted the Fourier spectra according to GSPL (as defined in Subsection IV-A) of the signals in (a) and (c), respectively.

according to the context) and weight the edges using the
Gaussian distribution in (3).

As previously discussed, these methods require an adequate
metric to evaluate the expected similarity between samples in
the graph vertex, but given the diverse areas in which graph
signals may arise, estimating the topology of the underlying
graph constitutes a challenge of its own [9], [16].

III. GSPA : GRAPHS AND ALGEBRAIC SIGNAL PROCESSING

In 2008, Püschel and Moura published their algebraic signal
processing (ASP) theory [17], [18], which expands DSP by
moving to an algebraic point of view: each signal processing
theory is studied as a triple (A ,M ,Φ) consisting of an alge-
bra A (a vector space endowed with multiplication between
vectors), an A -module M (a vector space over the same
base field as A which admits left-multiplication by elements
of A ) and a linear transformation Φ. A is called the filter
space, M is the signal space and Φ is the Fourier transform
(homomorphism over M ) associated to the structure.

When these authors drew inspiration from ASP to develop
their GSP theory, the starting point was necessarily to find
(better, to define) the unit shift operator of graph signals, the
reason being that such an operator in ASP is the building
block of the algebra A (as, for example, the unit delay z−1 is

the building block for filters of discrete-time and finite-length
signals A = {∑N−1

`=0 h`z
−`|h` ∈ C}). To do so, the shift of

discrete-time signals, defined over directed ring graphs, was
investigated.

By inspection of the adjacency matrix of the directed ring
graph,

C =




1
1

. . .
1


 , (4)

it was noticed that the unit (circular) shift of discrete-time
signals is precisely the left-multiplication by C, for given a
discrete-time signal x = (x0 x1 . . . xN−1)T ,

Cx =




1
1

. . .
1







x0

x1

...
xN−1


 =




xN−1

x0

...
xN−2




∆
= x〈1〉, (5)

and the generalization followed: the graph unit shift was
defined as the left-multiplication by the graph adjacency
matrix. This is the reason why in this paper the branch of GSP
developed by Sandryhaila, Moura and their peers is referred
to as GSPA, to indicate the fundamental role of the matrix A.

http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep
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In other words, for a signal x defined over the graph G =
{V,A}, the adjacency matrix A acts as a filter which “delays”
(i. e. translates) x by one unit, producing the delayed version
represented hereinafter by x〈1〉 = Ax.

A. Graph filters

Seeing the adjacency matrix as a filter suggested the general
definition of graph filter as any matrix H ∈ CN×N [19], which
preserves the necessary property that the output of a filter (i. e.
the matrix-vector product) is a signal (i. e. a vector). Such a
definition implies that linearity is always valid for graph filters,
since the distributivity of matrix multiplication with respect to
matrix addition guarantees that

H(α1x1 + α2x2) = α1Hx1 + α2Hx2. (6)

The next desirable property would be shift invariance, anal-
ogous to the classical time invariance of DSP, and this means
that filtering and shifting should commute. In other words, for
a graph filter H to be linear and shift invariant (LSI) it is
required that AHx = HAx ∀x, and therefore AH = HA.
Sandryhaila and Moura have shown [10], [20] that LSI filters
can be represented as polynomials h(·) evaluated over A,

h(A) =

L−1∑

`=0

h`A
`, (7)

with L smaller than or equal to the degree of the minimal
polynomial of A, i. e. filters LSI are finite power series on
the shift operator, exactly as happens in DSP, in which LTI
filters have polynomial representations on z−1.

B. Graph Fourier transform

The topic of spectral analysis is key in signal processing,
and the authors of GSPA would certainly want to spend time
reflecting upon how this would fit into their theory. The
starting point was to look to the classical Fourier transform
as the signal decomposition into a basis of eigenfunctions of
the LTI filtering [21], as is indeed the basis of complex time
exponentials. Then, the graph Fourier transform (GFT) could
be defined as the decomposition into a basis of eigenvectors
of LSI filtering.

Let us take the graph G = {V,A}, |V| = N . If A is
diagonalizable4, then one may write

A = VΛV−1, (8)

in which V contains the N eigenvectors of A in its columns,

V = (v0 v1 . . . vN−1). (9)

Since LSI filters are polynomials in A, and since a matrix
and its powers share the same set of eigenvectors, the columns
of V form a basis of vectors invariant to LSI filtering. Besides,
given that the subspaces generated by the linearly independent
eigenvectors of a same eigenvalue of A are irreducible, have
null intersection and the dimensions of all subspaces add to

4If not, the reasoning may be replicated using the Jordan decomposition of
A.

N [22], V provides a basis which is invariant to LSI filtering
for the space of signals defined over G.

Therefore, a signal x may be decomposed into its compo-
nents with respect to V as

x = x̂0v0 + · · ·+ x̂N−1vN−1

= V(x̂0 x̂1 . . . x̂N−1)T

= Vx̂, (10)

and this is the synthesis equation of the GFT according to
GSPA. The analysis equation follows,

x̂ = V−1x. (11)

It has been emphasized that the directed ring graph is the
link between GSP and DSP, because it models the discrete-
time domain. This provides a way of checking how consistent
with the classical theory are the proposed GSP tools. When
investigating how the GFT would act upon discrete-time
signals, one should first diagonalize the adjacency matrix C of
the directed ring graph, given by (4). Since it is circulant, it is
known to be diagonalized by the DFT matrix F, with entries
Fn,k = exp

(
−j 2π

N nk
)
, which contains in its rows the DFT

eigenvectors. The calculation of the characteristic polynomial
of C,

pC(λ) = det(λI−C) =

∣∣∣∣∣∣∣∣∣

λ −1
−1 λ

. . . . . .
−1 λ

∣∣∣∣∣∣∣∣∣
= λN − 1,

(12)
shows that its eigenvalues are the N complex roots of unity.
Setting these eigenvalues as the entries of a diagonal matrix
ΛC, the eigendecomposition of C may be written as

C = F−1ΛCF, (13)

and one can see that, in the case of directed ring graphs, the
GFT and the DFT matrices coincide, since V−1 = F. This
equivalence indicates a desirable consistency with the classical
theory.

C. The frequency domain

The GFT in the sense of GSPA naturally suggests the
interpretation of the adjacency matrix eigenvectors vi as
“frequency components” associated to the “graph frequencies”
given by the eigenvalues λi, exactly as the Fourier component
e−jΩt, in the continuous time domain t, is associated to the
frequency Ω. This subsection aims to provide the mathematical
justification used by Sandryhaila and Moura [23] to support
this understanding, along with some of our own comments.

The reader may have noticed a curious consequence from
what was previously stated: unless the minimal and charac-
teristic polynomials of A are equal, the same frequency may
be associated to two or more linearly independent frequency
components, as indeed was the case in the example of Fig. 6.
Furthermore, this figure shows that although the signal seems
to be smooth, its frequency components are mostly associated
with eigenvalues of high magnitude, what is counter-intuitive
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Figure 6: (a) Signal defined over an undirected ring graph and
(b) its spectrum in the GSPA sense, in which the frequency is
considered to be the eigenvalues of the adjacency matrix.

and provides a motivation to define a clear criterion to distin-
guish high and low graph frequencies.

The following mathematical reasoning consists of taking a
metric which quantifies the expected signal smoothness, and
use it to propose or confirm a notion of graph frequency. The
metric used by Sandryhaila and Moura was the total variation,
taken from classical real analysis and defined for differentiable
functions as [24], [25]

‖f‖V =

∫ ∞

−∞
|f ′(t)|dt. (14)

For discrete domain functions fN [n], the Riemman integral
is replaced by first order differences,

‖fN‖V =
∑

p

|fN [np + 1]− fN [np]|, (15)

which clearly quantifies the dissimilarity between contiguous
values of the function fN . With this in mind, it was natural for
Sandryhaila and Moura to use this metric in their mathematical
formulation of frequency in GSPA, wherein they represented
the total variation of a finite-length discrete-time signal x by

TV (x) =
∑

n

|xn − xn−1 mod N |. (16)

From (5), one can see that (16) may be written in terms of
the `1-norm5 as TV (x) = ‖x−Cx‖1, by using the directed
ring graph adjacency matrix to perform the cyclic shift. From
that point, the generalization consisted of using this expression
and defining the total variation on graphs of a signal s defined
over the graph G = {V,A} as

TVG(s)
∆
= ‖s−Anorms‖1, (17)

with Anorm = |λmax|−1A and λmax being the eigenvalue of
A having the highest absolute value. The normalization of the
adjacency matrix avoids the excessive magnification of the
shifted signal [23].

Let A be diagonalizable as in (8) with (possibly complex)
eigenvalues ordered like so

|λ0| ≤ |λ1| ≤ · · · ≤ |λN−1| ∆
= |λmax|, (18)

5Throughout this paper, the concepts of `1- and `2-norm will be frequently
used. They are particular cases of the `n-norm of a vector x ∈ CN , defined

as ‖x‖n
∆
=
(∑N−1

k=0 |xk|n
)1/n

.
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Figure 7: Frequency ordering of graph signals, from low to
high frequencies, in the complex plane [23].

associated to the eigenvectors (vi)i=0,...,N−1, scaled so that
‖vi‖1 = 1 ∀i. Taking the total variation (on graphs) of the
eigenvector vk, one has

TVG(vk) = ‖vk −Avk‖1 = ‖vk −
1

|λmax|
λkvk‖1

=

∣∣∣∣1−
λk
|λmax|

∣∣∣∣ ‖vk‖1 =
∣∣∣λk − |λmax|

∣∣∣ ‖vk‖1|λmax|
so that, since ‖vk‖1 = 1,
∣∣∣λi−|λmax|

∣∣∣≤
∣∣∣λj−|λmax|

∣∣∣⇐⇒ TVG(vi) ≤ TVG(vj), (19)

i. e. frequency components associated to eigenvalues closer
to the real point |λmax| in the complex plane are smoother
(because they have lower total variation), and therefore are
said to be of low frequency. Fig. 7 illustrates this ordering for
graph frequencies, what clarifies the spectrum of the signal in
Fig. 6a (notice that since the graph is undirected, its adjacency
matrix is symmetric and the eigenvalues are real-valued).

Let us take the directed graph in Fig. 8a to try to verify the
consistency of the notion of frequency just derived. For this,
along with the total variation on graphs, also the number of
zero crossings (i. e. the number of edges connecting vertices
with signal samples of different sign) will be used to quantify
frequency. This quantity is also related to frequency in classi-
cal theory: the more a discrete signal has contiguous samples
with different sign, the higher are its frequency components.
These two functions, the total variation on graphs and the
number of zero crossings, were calculated for each of the
adjacency matrix eigenvectors, and the result is shown in Fig.
8, in which the eigenvectors vk are ordered in such a way
that the respective eigenvalues λk appear from the closest to
the farthest from the real point |λmax| in the complex plane.
Both metrics have similar behaviour, but since the number of
zero crossings is indifferent to graph signal variations which
do not change sign, it was already expected to be less accurate
as a figure of merit for frequency. It matters to highlight,
however, how the adopted eigenvector ordering indeed implies
an ascending frequency order, since both functions in Fig.
8b and 8c agree on the tendency of growth. More than that,
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Figure 8: (a) Directed sensor graph, with N = 100 vertices and no loops or multiple edges. (b) Number of zero crossings
and (b) total variation of the eigenvectors (vi)i=0,...,N−1 of the adjacency matrix A of the graph in (a), ordered so that the
respective eigenvalues appear from the closest to the farthest from the real point |λmax| in the complex plane. That is, according
to (19) and Fig. 7, the eigenvectors are disposed in ascending order of frequency.

TVG(vk) grows monotonically, as it should do according to
(19).

It is convenient to conclude this discussion on the graph
frequency domain by referring to the frequency response
of graph filters. The definition given in Subsection III-A
considers the action of a matrix on a signal x in the vertex
domain of the graph G = {V,A}. In order to understand how
the filter acts in the GFT domain, hereinafter called frequency
domain, one may use (8) and the polynomial representation
of LSI filters. Let us take the filter H =

∑L
`=0 h`A

` and its
output to the input x given by

Hx =

L∑

`=0

h`A
`x =

L∑

`=0

h`
(
VΛV−1

)`
x

= V

(
L∑

`=0

h`Λ
`

)
V−1x. (20)

Taking the GFT of both sides of the last equation yields

V−1Hx = h(Λ)x̂, (21)

which indicates that left-multiplication by H (action of
the filter in the vertex domain) is equivalent to the left-
multiplication, in the frequency domain, by the matrix h(Λ).
In other words, h(Λ) represents the frequency response of H.

D. Fractionalization of operators

It is worth mentioning some of the few recent efforts
to provide form and meaning to fractional graph operators.
For example, one could think of a non-integer graph shift
Aa, with 0 < a < 1, or a fractional GFT, inspired by
the classical notion of fractional Fourier transform over the
complex square-integrable functions. These studies are lead
by motivations mirroring those from discrete-time fractional
filters and transforms, such as more suitable signal represen-
tations [26] and applications in optics, quantum mechanics and
communication systems [27]–[31].

Regarding the derivation of a fractional graph Fourier
transform (FrGFT), Wang et al. started from the Jordan
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(respectively ideal and graph-based fractional time shift filters)
as a function of the filter length N and the delay a. We denote
the ideal fractional delay (or interpolation) filter as h

LPF
=

sin(π(n−a))
π(n−a) .

decomposition of the GFT operator to arrive at an expression
for the FrGFT which satisfies the desired properties of index
additivity, reduction to the fractional discrete-time Fourier
transform in the case of ring graphs, reduction to the DFT at
integer rotation parameters and the convolution theorem [32].

The fractionalization of the shift operator was also in-
vestigated and studies on its meaning and applications were
conducted by Ribeiro and Lima [33]. The results indicated
a different behaviour of the defined operator when applied
on directed and undirected graphs, and the consistency with
the classical theory was verified by numerical convergence
between the ideal and the graph-based fractional time shift
filters, as shown in Fig. 9.

IV. GSPL : GRAPH SPECTRAL THEORY AND GSP

Graph spectral theory is a branch of graph theory con-
cerned with the eigendecomposition of graph characteristic
matrices, such as the adjancency and Laplacian matrices, and
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the properties derived from such a decomposition. Developed
from matrix theory and linear algebra, it finds applications
in quantum mechanics, communication theory, chemistry and
quite other fields [14], and it has been used by Ortega, Shuman
and many others as foundation for the proposal and growth of a
theoretical framework for GSP based on the spectral properties
of the Laplacian matrix, therefore being referred in this paper
by GSPL. In this branch of GSP, it is worth mentioning, the
authors use to restrict the graph space in which their tools
are applied to undirected graphs with non-negative real edge
weights, as Sandryhaila and Moura point out [10].

The Laplacian matrix was mentioned earlier in this paper,
having the expression

L = D−A, (22)

but sometimes it is used the normalized version, given by

L = D−1/2LD−1/2. (23)

The version in (23) is largely used in graph spectral theory
[14], but the framework about to be presented is known to use
the non-normalized Laplacian matrix, given by (22).

An important property of the Laplacian matrix L for undi-
rected weighted graphs may be derived from its decomposition
in terms of the oriented incidence matrix, denoted by B.
Although its definitions vary depending on whether the graph
is directed or not, weighted or not, hereinafter the matrix B is
considered as follows (see [34, Chapter 2] for other definitions
of the incidence matrix).

Definition 1 (Orientation of a graph). Let us consider the
undirected graph G = {V,A}. A possible orientation of G is
a graph G′ = {V,A′} so that A′+A′T = A. That is, G′ is a
directed version of G, obtained from G by imposing a certain
direction to each of its edges.

Definition 2 (Oriented incidence matrix). Let us consider the
same undirected graph G = {V,A}, with |V| = N vertices
and |E| = E edges weighted according to the function ω :
E → R+. Let G′ = {V,A′} be a particular orientation of G.
An oriented incidence matrix B ∈ RN×E of G is given by

Bi,j
∆
=





√
ω(e′j), if e′j arrives at vi

−
√
ω(e′j), if e′j departs from vi

0, otherwise.

(24)

One should notice that, in the context of GSPL, in which
the considered graphs have real non-negative edge weights,
the oriented incidence matrix B is always real-valued.

Theorem 1. For a given undirected graph with oriented
incidence matrix B, its Laplacian matrix may be written as

L = BBT . (25)

Theorem 1 [34, Proposition 2.3] is a way of proving
that the Laplacian matrix of an undirected graph is positive
semidefinite (i. e. (xTLx ≥ 0,∀x), for any real-valued signal
x = (x0 x1 . . . xN−1)T satisfies

xTLx = xTBBTx = (BTx)T (BTx) = ‖BTx‖2 ≥ 0,

and, therefore, as occurs for all positive semidefinite matrices,
the eigenvalues of L are all real and non-negative. Moreover,
it has been shown that zero is an eigenvalue with multiplicity
equal to the number of connected components of the graph (cf.
[11] and references therein), and therefore connected graphs
have only one null eigenvalue of L. Gathering all these facts,
the eigenvalues of the Laplacian matrix, denoted by the letter
γ, may be ordered as γ0 = 0 < γ1 ≤ · · · ≤ γN−1, γi ∈ R,∀ i.

A. GFT and the Laplacian operator

Working on (22) it is possible to see L as a difference
operator acting upon a signal x, updating each sample with the
difference between the value on a vertex and its neighbours.
That is,

Lx = Dx−Ax, (26)

⇒ (Lx)i = dixi −
∑

k | vk∈Ni

Aikxk =
∑

k

Aikxi −
∑

k | vk∈Ni

Aikxk

=
∑

k | vk∈Ni

Aik[xi − xk]. (27)

When conceiving their definition for the GFT, Shuman et al.
started from the fact that the continuous-time Fourier transform
consists of a decomposition into a basis of eigenfunctions of
the Laplacian operator (second derivative) [11], [35]:

∆ejωt =
∂2

∂t2
ejωt = −ω2ejωt. (28)

The generalization followed: the GFT of a signal x was
defined to be its expansion in terms of the eigenvectors of
the Laplacian matrix (of the graph over which the signal
is defined). Since L is always (in GSPL) real-valued and
symmetric, therefore diagonalizable, it may be written as
L = UΓU−1, and the GFT pair of equations are given by

x̃
∆
= U−1x (analysis)

x = Ux̃, (synthesis)
(29)

with U containing the eigenvectors in its columns and Γ
consisting of a diagonal matrix filled with the Laplacian matrix
eigenvalues.

Such a definition brings a notion of frequency which is
consistent with the classical interpretation. In (28), the fre-
quency information is hidden in the eigenvalues −ω2 associ-
ated to each eigenfunction ejωt, and the closer to zero is the
eigenvalue, the smoother is its respective harmonic component.
The same occurs with the eigenvalues and eigenvectors of the
Laplacian matrix, and a way of verifying this is using the
norm ‖Lx‖2: since L is a difference operator, ‖Lx‖2 acts as
a metric similar to the total variation on graphs of GSPA (cf.
(16)). If ui is the eigenvector of L associated to the eigenvalue
γi,

‖Lui‖ = ‖γiui‖ = γi‖ui‖ (since γi ≥ 0), (30)

so that, if ‖ui‖2 = 1 (normalized magnitude), then

γi ≤ γj ⇒ ‖Lui‖2 ≤ ‖Luj‖2, (31)

in which case ui is smoother than uj .
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Besides, looking at the unique null eigenvalue of L (for
connected undirected graphs), one has

Lu0 = γ0u0 = 0, (32)

which consists of a system of homogeneous linear equations
on the entries of vector u0. The solutions for such a system
form the so called null space of L, and since its dimension
equals the geometric multiplicity of γ0 = 0, it follows that
this null space is one-dimensional. Therefore, it suffices to
find a single non-trivial solution of (32) to obtain a basis for
the possible eigenvectors u0. From (27), one may see that

(Lu0)i = 0⇒
∑

k | vk∈Ni

Aik[u0i − u0k] = 0, (33)

what shows that any constant vector is a solution for (32).
This leads to a quite satisfactory conclusion: the eigenvector
associated to the null eigenvalue (frequency) is constant, as it
is known to occur in the classical signal processing theory. If
the eigenvectors are normalized, then each entry of u0 equals
1/
√
N .

Fig. 10 confirms visually the notion of frequency based on
the eigenvalues of the Laplacian matrix, using as an example
a sensor graph with 1000 vertices, with edges weighted
according to (3). The component with zero frequency is
the eigenvector u0, and the smoothness of the eigenvectors
decrease as the frequency (eigenvalue) rises. Fig. 10f shows
the number of zero crossings of each eigenvector, meaning the
number of graph edges connecting samples of the eigenvector
with different sign.

B. Filtering
Filtering in GSPL is firstly defined in the frequency domain:

the frequency response of a filter H is the vector h̃ ∈ CN such
that, for a signal x with spectrum x̃ = U−1x defined over a
certain graph, the filter output is

ỹ
∆
= h̃� x̃ = diag (h̃)x̃, (34)

in which � represents the Hadamard (element-wise) product
and diag (·) is a diagonal matrix with diagonal entries given
by the argument. Taking the inverse GFT of both sides yields

Uỹ = y = U
[

diag (h̃)x̃
]

= U diag (h̃)U−1x, (35)

that is, filtering in the vertex domain is given by

y = Hx, (36)

with
H

∆
= U diag (h̃)U−1. (37)

It is possible to write the entries of h̃ as polynomials of
degree less than or equal to K on the eigenvalues of L [11],
so that

h̃` =

K∑

k=0

akγ
k
` , (38)

and so that the filter output to the input x, obtained by taking
the inverse GFT of (34), has entries given by

yi =

N−1∑

`=0

u`,ih̃`x̃`, (39)

in which u`,i is the i-th component of the eigenvector u`.
Substituting (38) into (39),

yi =

N−1∑

`=0

u`,i

(
K∑

k=0

akγ
k
`

)

N−1∑

j=0

u∗`,jxj




=
∑

`

∑

k

∑

j

xjakγ
k
` u`,iu

∗
`,j

=
∑

j

xj

[∑

k

ak

(∑

`

γk` u`,iu
∗
`,j

)]
, (40)

with u∗`,j representing the complex conjugate of the j-th
component of the eigenvector u`.

But since Li,j =
(
UΓU−1

)
i,j

=

N−1∑

`=0

γ`u`,iu
∗
`,j , then

N−1∑

`=0

γk` u`,iu
∗
`,j =

(
Lk
)
i,j

(41)

and therefore

yi =

N−1∑

j=0

xj

K∑

k=0

ak
(
Lk
)
i,j
. (42)

Finally, one may use the fact that if the length of the smallest
path from vi to vj is greater than k, then

(
Lk
)
i,j

= 0 ( [36,
lemma 5.2], as referenced in [11]). Thus,

yi =
∑

j|vj∈N (i,K)

Hi,jxj , (43)

in which Hi,j =
∑K
k=0 ak

(
Lk
)
i,j

. As suggested by (43),
filtering in the vertex domain is a localized linear operation,
linearly combining samples in the neighbourhood of a vertex
up to a radius of K edges.

V. APPLICATIONS

This section aims to provide examples of data handling
using the concepts from GSP, scenarios in which the graph
model offers valuable tools for processing the signal at hand.
We present two practical applications involving processing of
sensor networks with GSPL, and close the section offering a
review of other fields of science and technology which have
benefited from GSP techniques. It is appropriate, however,
to firstly comment on the work by Deri and Moura [37], in
which GSPA is applied to the analysis of New York City taxi
data. This highly recommended paper deals with the prob-
lems of signal definition and extraction from the New York
taxi database, large-scale eigenvalue computation for non-
diagonalizable matrices and graph frequency interpretation.

The underlying graph vertices, in that case, consist of
6048 geo-locations in Manhattan connected by road segments
(graph edges), and the graph signals (Fig. 11a) contain the
number of taxi rides over a certain time interval that crosses
each graph node. In order to create those signals, for each
pair of taxi trip start- and end-point a shortest path through the
graph had to be found, using Dijkstra’s algorithm. The analysis
have shown that the frequency components (Fig. 11b) provided
information which was not clear from the graph signal alone.
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Figure 10: Some eigenvectors of the Laplacian matrix of a sensor directed graph with 1000 vertices: (a) u0, (b) u1 and (d)
u999. Since u999 presented a high-intensity isolated peak, hard to discriminate visually, in (e) it is shown a binarized version
ū999, with positive samples being set to 1 and negative samples set to −1. In (c) and (f) two measures of signal smoothness are
depicted: the norm ‖Lui‖2 and the number of zero crossings of the eigenvectors. The entries of u0 equal 1/

√
1000 ≈ 0,03.

For example, the generalized eigenvector with highest Fourier
coefficient presented high energy density around areas such
as Hell’s Kitchen and Broadway, famous for concentrating
many options of restaurants and theaters. Besides, the authors
have shown that reconstructing the graph signal with 70% of
frequency components (Fig. 11d) lead to a resulting signal
preserving most of the original information, with peak signal-
to-noise ratio of around 30dB. Such a work illustrates the
valuable benefits, along with the non-trivial challenges, of
using GSPA to address problems with data over directed
graphs.

A. Signal denoising

As a first hands-on example involving GSPL and sensor
networks, let us consider the smooth signal defined over the
Minnesota road graph, as in Fig. 12a, with components given
by

si = cos
(
coordx(vi)

)
+ sin (coordy(vi)) , (44)

in which coordx and coordy indicate the geodesic coordinates
of the vertices (street corners and crossroads) on the Minnesota
state.

A Gaussian noise n with zero mean and standard deviation
of 20% the amplitude of s was added to the signal, yielding
the noisy version shown in Fig. 12b. The spectral analysis
of both the original signal and the Gaussian noise suggested
that, although the noise is approximately white, the signal –
due to its smoothness – has its energy concentrated in the low-
frequency range, in the eigenvalues 0 ≤ γi ≤ 0,5, as seen in

Fig. 12c. For this reason, it was used an ideal low-pass filter
of unit gain and cut-off frequency γcut = 0,5, so as to reduce
the influence of the noise in the original signal.

The result after the filtering is shown in Fig. 12d. The
fraction of the energy due to noise dropped from

‖s− (s + n)‖ = ‖n‖ ≈ 44.6% (45)

to
‖s−U

(
h̃LPF � (s̃ + ñ)

)
‖ ≈ 18.9%, (46)

i. e. the energy of the error with respect to the original signal
halved. It matters to say that although simple as this example
may be, it highlights the importance of taking into account
the underlying structure of signals defined over such irregular
domains: the high frequency-localization of the signal energy
was only possible due to its decomposition into the basis
of eigenvectors of the Laplacian matrix of the graph over
which the signal was defined. With such considerations, simple
techniques lead to useful results, as illustrated.

B. Data inference via signal regularization

Let us consider the problem of, given a subset of graph
vertices with known samples, estimate the graph signal on
the other vertices so that the resulting signal is smooth. It can
be viewed as a signal reconstruction scenario, and Sandryhaila
and Moura used this idea to estimate a discrete-valued signal6,

6The graph signal is already discrete with respect to its domain, by
definition, but a discrete-valued graph signal is also discrete with respect
to the sample space, i. e. the sample values must belong to a finite set.
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Fig. 1: (a,d) Taxi signals on Manhattan, NYC, based on total number of trips from June through August on Fridays 9pm-10pm, averaged over
four years (a) and 2011 (d). Colors denote 699 log10 bins of signal values (white-yellow 0-10, red 80-320, blue 320-670, purple 670-1560,
black 1560-2800). Maps were generated with ggmap [20] and OpenStreetMap [21]. (b,e) Graph Fourier coefficient magnitudes normalized
by maximum 2011 coefficient magnitude for the signals shown in (a) and (d), respectively. The coefficients are ordered by the total variation
of the frequency components as described in [22]. (c,f) Quantity u (see (8)) normalized by the maximum value in 2011 and ordered by total
variation as for (b,e).

IV. TAXI SIGNAL ANALYSIS

This section first presents the graph Fourier transform of a
taxi signal and interprets its frequency components. We then
reconstruct the graph signal from a compressed version of its
spectral decomposition.

A. Graph Fourier transform of taxi signals

We study a graph signal s ∈ R6408 over Manhattan, NYC,
that is defined by (2) and based on the total number of June-
August taxi trips for Fridays 9pm–10pm (interval t = 141 as
defined in Section II). We consider the signal averaged over the
set P1,t of trips that occur June through August in 2010–2013
(four years), as well as the signal averaged over the set P2,t

of trips that occur from June 2011 through August 2011.
These signals are depicted in Figures 1a and 1d, respectively.
The 2011 signal is slightly higher than the four-year signal
at some locations (median 39.3 versus 36.7, respectively),
with maximum signal at Union Square and E 14th St. This
difference is reflected in the magnitudes of the graph Fourier
coefficients in Figures 1b and 1e, in which the coefficients
of highest magnitude for the 2011 average are slightly higher
than those for the four-year average.

It is interesting to consider the frequency component cor-
responding to the maximum Fourier coefficient magnitude.

This vector shows high expression around areas with a high
density of restaurants such as Hell’s Kitchen, as well as the
theater district around Broadway; the components of highest
magnitude are shown in Figure 2a. This is expected taxi
behavior for Friday evenings at 9pm, although it is not obvious
from the raw signals of Figures 1a and 1d.

We note that the frequency component corresponding to the
maximum Fourier coefficient magnitude may not necessarily
correspond to the frequency component that captures the most
energy of the signal since the eigenvectors of A are not
orthogonal due to the presence of generalized eigenvectors.
In this case, the signal energy can be represented in terms of
biorthogonal bases, namely, the eigenvectors v1, . . . , vN and
corresponding dual basis w1, . . . , wN , which are the column
vectors of matrices V and W = V −H , respectively. Express
graph signal s in terms of these bases:

s =
N∑

i=1

s̃V,ivi =
N∑

i=1

s̃W,iwi, (6)

where s̃V = V −1s and s̃W = W−1s. Then, by Parseval’s
identity for biorthogonal bases [23], the signal energy is
characterized by

∥s∥2 = ⟨s̃V , s̃W ⟩. (7)
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Fig. 2: Locations corresponding to elements of highest magnitude for
the frequency components corresponding to (a) the Fourier coefficient
of maximum magnitude and (b) the maximum ui. (a) Black represents
the maximum magnitude, purple 98% of the maximum magnitude,
and blue 90% of the maximum magnitude. (b) Black represents the
maximum magnitude and purple 96% of the maximum magnitude.
(Map data: ggmap [20], Google.)

Deconstructing (7), we define

ui =
∣∣s̃∗V,is̃W,i

∣∣ , (8)

for i = 1 , . . . , N corresponding to frequency component vi.
Figures 1c and 1f illustrate this quantity for the four-year and
2011 averages. We see that the highly expressed frequency
components change relative to the magnitudes of the Fourier
coefficients in Figures 1b and 1e, respectively.

Figure 2b shows the elements of highest magnitude in the
frequency component that maximizes ui. We see a different
set of taxi behaviors with this frequency component compared
to those shown in Figure 2a; the maximum magnitudes are in
the Upper East Side, and there is a cluster of highly expressed
locations near Rockefeller University and hospitals in the area.

B. Signal reconstruction

We reconstruct the original signal by using the partial spec-
tral decomposition in the following way. Define permutation σ,
which we will take to be the ordering of frequency com-
ponents by either decreasing Fourier coefficient magnitudes
or decreasing ui (8). Denote by s̃V,σ = [s̃V,σ(1) · · · s̃V,σ(N)]
and Vσ = [vσ(1), . . . , vσ(N)] the graph Fourier transform of s
and the frequency components with respect to the ordering σ,
respectively. Then the reconstructed signal is computed as

s̄(p) =

p∑

i=1

s̃V,σ(i)vσ(i), (9)

where p is the number of terms.

The reconstructed signals with 4500 and 5000 frequency
components are shown in Figure 3. The top row shows results
for σ with respect to the Fourier coefficient magnitudes,
where the 4500-component and 5000-component reconstruc-
tions have peak signal-to-noise ratios (PSNR) 29.90 dB and
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Fig. 3: Four-year averaged signals and reconstructed signals. Colors
denote the same values as in Figure 1a. (a,d) Original signals. (b,c)
Reconstructed signals based on ordering by Fourier coefficient magni-
tudes with 5000 components (PSNR=36.46 dB) and 4500 components
(PSNR=29.90 dB), respectively. (e,f) Reconstructed signals based on
ordering by (8), with 5000 components (PSNR=30.05 dB) and 4500
components (PSNR=20.40 dB), respectively.

36.46 dB, respectively. The bottom row, with results for σ
with respect to u defined by (8), shows 4500-component
and 5000-component reconstructions with PSNR 20.40 dB
and 30.05 dB, respectively. Thus, the ordering by Fourier
coefficient magnitudes produces better reconstructions. We
also see that a 4500-component reconstruction (70% of the
total) captures key characteristics of the original signal such
as high expression along Broadway and at Union Square and
E 14th street.

V. CONCLUSION

We applied graph signal processing to the 2010-2013 New
York City taxi data [4]. We first discussed the signal extraction
step that allows us to characterize taxi trajectories in terms
of Dijkstra shortest paths computed on 700 million taxi
trip records. We then described steps to find the spectral
decomposition of the New York City road network. These
steps allow us to conduct an analysis of taxi signals on
Fridays from 9pm to 10pm. We recovered a signal with
PSNR=29.90 dB with 70% of the frequency components
corresponding to the graph Fourier coefficients of highest
magnitude. In addition, the high-magnitude elements of this
frequency component lie along restaurant-rich areas. In this
way, the graph Fourier transform is a useful tool to discover
underlying behaviors in the New York City taxi data that may
not be clear from the raw signals.

����

(c)

(a) (b)

Fig. 2: Locations corresponding to elements of highest magnitude for
the frequency components corresponding to (a) the Fourier coefficient
of maximum magnitude and (b) the maximum ui. (a) Black represents
the maximum magnitude, purple 98% of the maximum magnitude,
and blue 90% of the maximum magnitude. (b) Black represents the
maximum magnitude and purple 96% of the maximum magnitude.
(Map data: ggmap [20], Google.)

Deconstructing (7), we define

ui =
∣∣s̃∗V,is̃W,i

∣∣ , (8)

for i = 1 , . . . , N corresponding to frequency component vi.
Figures 1c and 1f illustrate this quantity for the four-year and
2011 averages. We see that the highly expressed frequency
components change relative to the magnitudes of the Fourier
coefficients in Figures 1b and 1e, respectively.

Figure 2b shows the elements of highest magnitude in the
frequency component that maximizes ui. We see a different
set of taxi behaviors with this frequency component compared
to those shown in Figure 2a; the maximum magnitudes are in
the Upper East Side, and there is a cluster of highly expressed
locations near Rockefeller University and hospitals in the area.

B. Signal reconstruction

We reconstruct the original signal by using the partial spec-
tral decomposition in the following way. Define permutation σ,
which we will take to be the ordering of frequency com-
ponents by either decreasing Fourier coefficient magnitudes
or decreasing ui (8). Denote by s̃V,σ = [s̃V,σ(1) · · · s̃V,σ(N)]
and Vσ = [vσ(1), . . . , vσ(N)] the graph Fourier transform of s
and the frequency components with respect to the ordering σ,
respectively. Then the reconstructed signal is computed as

s̄(p) =

p∑

i=1

s̃V,σ(i)vσ(i), (9)

where p is the number of terms.

The reconstructed signals with 4500 and 5000 frequency
components are shown in Figure 3. The top row shows results
for σ with respect to the Fourier coefficient magnitudes,
where the 4500-component and 5000-component reconstruc-
tions have peak signal-to-noise ratios (PSNR) 29.90 dB and
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Fig. 3: Four-year averaged signals and reconstructed signals. Colors
denote the same values as in Figure 1a. (a,d) Original signals. (b,c)
Reconstructed signals based on ordering by Fourier coefficient magni-
tudes with 5000 components (PSNR=36.46 dB) and 4500 components
(PSNR=29.90 dB), respectively. (e,f) Reconstructed signals based on
ordering by (8), with 5000 components (PSNR=30.05 dB) and 4500
components (PSNR=20.40 dB), respectively.

36.46 dB, respectively. The bottom row, with results for σ
with respect to u defined by (8), shows 4500-component
and 5000-component reconstructions with PSNR 20.40 dB
and 30.05 dB, respectively. Thus, the ordering by Fourier
coefficient magnitudes produces better reconstructions. We
also see that a 4500-component reconstruction (70% of the
total) captures key characteristics of the original signal such
as high expression along Broadway and at Union Square and
E 14th street.

V. CONCLUSION

We applied graph signal processing to the 2010-2013 New
York City taxi data [4]. We first discussed the signal extraction
step that allows us to characterize taxi trajectories in terms
of Dijkstra shortest paths computed on 700 million taxi
trip records. We then described steps to find the spectral
decomposition of the New York City road network. These
steps allow us to conduct an analysis of taxi signals on
Fridays from 9pm to 10pm. We recovered a signal with
PSNR=29.90 dB with 70% of the frequency components
corresponding to the graph Fourier coefficients of highest
magnitude. In addition, the high-magnitude elements of this
frequency component lie along restaurant-rich areas. In this
way, the graph Fourier transform is a useful tool to discover
underlying behaviors in the New York City taxi data that may
not be clear from the raw signals.
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(d)

Figure 11: (a) Graph signal over the Manhattan road graph, created from the number of taxi trips from June to August on
Fridays, 9:00 pm to 10:00 pm, averaged from 2010 to 2013. The pseudocolor scale ranges from white/yellow to purple/black.
(b) GFT spectrum of the signal in (a), in the sense of GSPA (the variable in the horizontal axis is the index of the eigenvalue),
with frequency components ordered by the eigenvectors total variation. (c-d) Reconstructed signals using the initial 5000 and
4500 Fourier coefficients, respectively. From [37], with permission.
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Figure 12: (a) Smooth signal defined over the Minnesota road graph. (b) Result of adding a Gaussian noise with standard
deviation equal to 20% the amplitude of the original signal. (c) Spectra of the original signal, of the noise and of the ideal
low-pass filter. (d) Output of the low-pass filter.

so as to apply the method in classification problems [23]. For
that goal they ran an optimization algorithm to obtain the
signal s which minimizes the norm ‖s−Anorms‖2, subjected
to the restriction that the estimated signal was close enough to
the known values in the vertex subset mentioned previously.

A similar approach was conducted by us, but in the context
of GSPL. The following real situation was considered: given
the mean rainfall intensity on January of 609 Brazilian cities,
taken from the Embrapa database7, how could one estimate
this data in all other cities of Brazil? With such problem,
it is intended to illustrate the use of optimization techniques
applied to GSP.

The idea consists of obtaining a signal s(predicted) with
the mean precipitation indices in such a way it is smooth
in the sense of GSPL, while simultaneously preserving the
known a priori data at the 609 cities. That translates into the
optimization problem of the objective function

s(predicted) = arg min
s∈RN

‖Ls‖, (47)

subjected to
‖P(s− s(known))‖ = 0, (48)

7The Banco de Dados Climáticos do Brasil (freely translated as Brazilian
Weather Database) was compiled by Embrapa and ESALQ/USP, and it is
available at: https://www.cnpm.embrapa.br/projetos/bdclima/index.html

in which P is the diagonal matrix with entries given by

Pii =

{
1, if s(known)

i 6= 0

0, otherwise,
(49)

and s(known) is a vector of size N having only 609 non-zero
samples, corresponding to the vertices with known rainfall
data. For a solid reference on optimization algorithms, the
authors recommend [38].

In Fig. 13a all 5570 Brazilian cities are represented as
vertices of an edgeless graph8, over which is defined a
signal composed by zeros except at the 609 cities, to which
were assigned the known pluviometry data. So as to run the
optimization algorithm faster, it was decided to reduce the total
number of vertices to N = 1000 (decimating only vertices
with null samples), obtaining the signal s(known) shown in Fig.
13b, in which the underlying graph was created by connecting
a vertex to its 5 closest neighbours. This aimed to result in
a connected graph with reasonably sparse adjacency matrix
(as discussed in Subsection II-C). The edges were weighted
according to

Ai,j = exp
(
− dist2(vi, vj)

)
, (50)

8The geographic coordinates of each city were retrieved from the following
database: https://github.com/kelvins/Municipios-Brasileiros

https://www.cnpm.embrapa.br/projetos/bdclima/index.html
https://github.com/kelvins/Municipios-Brasileiros
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Figure 13: (a) Signal defined over the graph (without edges) of the 5570 Brazilian cities, with all samples equal zero except
at the 609 vertices which correspond to the Embrapa database. (b) Signal s(known), with 1000 samples, 609 of which are the
known pluviometry data. (c) Signal s(predicted), with the estimation of the previously null samples so as to obtain a smooth
signal along the whole graph. (d) Mean rainfall intensity diagram during January, from 1977 to 2006, in Brazil. The vector
image of the (approximated) profile of the Brazilian territory was made by Felipe Micaroni Lalli and is available under CC
By-SA license at https://commons.wikimedia.org/wiki/File:Contorno do mapa do Brasil.svg.

making 2θ2 = 1 in (3). Since the graph was already made
connected and there was no threshold T involved in the
decision of which edges were to be created, there was no clear
rule to indicate which value of standard deviation θ should be
used. For this reason, it was made 2θ2 = 1.

The estimated signal should ideally approximate the map in
Fig. 13d, which depicts areas of constant rainfall index during
the month of January from 1977 to 20069. It is important to
notice the difference between the color pattern adopted in the
map and the one used in this paper: the warmer the color in
the map, the smaller is the represented value.

So as to reduce the number of variables in the objective
function, the restriction ‖P(s − s(known))‖ = 0 was inserted
into the declaration of the objective function itself, so that
only 1000 − 609 = 391 independent variables were left. As
a consequence, it consists of an unconstrained optimization
problem with 391 variables, and to handle it we used the BFGS
algorithm and the function optimize. minimize()10

from the package Scipy, in Python [39]. The result is shown
in Fig. 13c. Although the algorithm did not converge after
successively increasing the iteration limit (from 100 up to
2000), the final result reasonably approximated the map in Fig.
13d, keeping in mind the opposite color pattern as previously
commented. It matters to highlight shortly that it is not
possible to quantify the quality of this signal estimation, since
the database did not provide the mean rainfall intensity in the
391 Brazilian cities which had the data estimated, hence we are
restricted to a visual comparison between the resulting graph
signal and the reference map. However, as a way of illustrating
the notion of frequency in GSPL and the use of optimization to
estimate the information on a graph taking by hypothesis the
smoothness of the signal, the result was satisfactory, although
further studies are needed to verify which objective function
would be more appropriate for such an application, or which

9Data from the Geological Service of Brazil, also known as Companhia de
Pesquisa de Recursos Minerais (CPRM), public company vinculated to the
Brazilian Ministry of Mines and Energy. This and other pluviometry maps are
found in: http://www.cprm.gov.br/publique/Hidrologia/Mapas-e-Publicacoes/
Atlas-Pluviometrico-do-Brasil-1351.html

10Documentation available at: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html

minimization algorithm is the most adequate for the problem.

C. Other areas of applications

The previous examples illustrated the classical use of GSP in
sensor networks, which naturally arises from the definition of
the signal domain as a graph. However, less obvious scenarios
also greatly benefited from the tools of GSP.

Firstly, the reader may remind from a few pages ago that an
image may be modelled as an undirected graph (Fig. 4b) [15],
and setting the weights of a grid graph according to the image
signal defined upon it leads to great dimensionality reduction
in the GFT domain [22]. Indeed, the DCT analysis, which
is known as a useful image compression tool, is related to
the graph processing framework because, when dealing with
simple 1D and 2D grids (undirected line or grid graphs), the
DCT diagonalizes the graphs Laplacian matrices and therefore
matches the GFT [40]. GSP has also been used in light-field
images, which capture 3D information with a single exposure,
as for instance in coding [41], compression [42] and super-
resolution schemes [43]. For an extensive review on GSP on
image compression, restoration, filtering and segmentation, the
authors recommend [44].

Another important field of work for GSP involves biological
networks, i. e. the treatment of human or natural networked
systems for data/structure inference and processing. For ex-
ample, with respect to gene regulatory networks, the use of
graph-based methods lead to the improvement of the three
state-of-the-art schemes of network inference [45], [46]. A
work by Nguyen et al. represented the human body as a three-
dimensional dynamic mesh and applied graph wavelet filter
banks to compress information of position and color, outper-
forming usual methods for coding of the human body [47].
The processing of brain signals may be, however, the most
intriguing and prolific of such applications, arising through
the assignment of signals such as fMRI readings to graphs
defined by functional brain networks [48], [49], which have
for example demonstrated a close relation between the signals’
lowest and highest frequency components and the learning of
a motor task [50].

https://commons.wikimedia.org/wiki/File:Contorno_do_mapa_do_Brasil.svg
http://www.cprm.gov.br/publique/Hidrologia/Mapas-e-Publicacoes/Atlas-Pluviometrico-do-Brasil-1351.html
http://www.cprm.gov.br/publique/Hidrologia/Mapas-e-Publicacoes/Atlas-Pluviometrico-do-Brasil-1351.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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As mentioned in the Subsection V-B, the regularization of
a discrete-valued graph signal was used for data classification
in [23]. This was an example of the large application of GSP
in machine learning, from what we could also mention semi-
supervised learning through the use of adaptive graph filters
[51], recommendation systems consisting in collaborative and
content-based filtering, the latter via regularization with total
variation on graphs [52], and community detection in networks
via fine graph wavelet design, what allows for multiscale
community mining [53].

VI. OPPORTUNITIES FOR FURTHER INVESTIGATION

As previously stated, GSPL was developed having in mind
undirected graphs with non-negative weights. In such cases,
L is diagonalizable and positive semidefinite, what brings
convenient properties to the application of theoretical concepts,
such as having only positive frequencies and a DC compo-
nent associated to the zero frequency. The GSPA framework
presents the advantage of considering more general graphs,
directed and with complex weights (provided that no loops
or multiple edges are included), but some disadvantages do
exist as well. For example, as mentioned in [54], the use
of the adjacency matrix as elementary block and the work
with directed graphs lead to a series of obstacles when
A = VGJV−1

G is not diagonalizable, as for instance the
fact that the generalized eigenvector basis VG is generally not
orthogonal, and therefore the GFT does not preserve the scalar
product, and the problems derived from numerical instability
that arise in the computation of the Jordan normal form of
practical-size matrices.

Beside this, Deri and Moura [55] show that both frameworks
still present the problem of non-unicity of the GFT, whenever
there are repeated frequencies (λi or γi) — even if the eigen-
values have equal geometric and algebraic multiplicities. This
problem can be illustrated using a numerical example with a
complete 3-vertex unweighted graph (a triangle). Complete
graphs with n vertices have normalized Laplacian matrix
with eigenvalues equal to 0 with multiplicity 1, and equal to
n/(n−1) with multiplicity n−1 [14, Example 1.1]. Therefore,
its non-normalized Laplacian matrix (in this case, it is equal
to the normalized version multiplied by 2) may be expressed
as

L =
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but another unitary eigenvector matrix is possible. Replacing
the eigenvectors associated to γ = 3 by the normalized
sum and difference of (−1/
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what leads to two different definitions of the GFT, and as a
consequence a signal may have distinct spectrum depending
on which matrix (U1 or U2 in this example, or, in fact, any
of the infinitely many linear combination possibilities) is used.
In this case, for example, the signal x = (−4 0 4)T would
have spectra given by U−1

1 x ≈ (0 5.66 0)T and U−1
2 x ≈

(0 4.9 2.83)T . In order to approach this problem, Deri and
Moura suggest the use of oblique spectral projectors to obtain
a unique GFT representation [55].

It matters to point out that, although GSPL considers only
undirected graphs, the framework does not forbid a priori the
application to directed graphs, since the Laplacian matrix is
still defined by L = D−A, provided that D is well defined
as the indegree or outdegree matrix. For example, the notion
of frequency as being the eigenvalues of L could still be valid,
for the norm ‖Lui‖ varies linearly with the magnitude of each
eigenvalue,

‖Lui‖ = ‖γiui‖ = |γi|, (52)

as illustrated in Fig. 14. However, the Laplacian matrix for
directed graphs is no more symmetric, and therefore it is not
guaranteed to be diagonalizable or positive semidefinite.

Many other problems in GSP remain open to investigation,
whether it is to develop schemes to properly apply GSP in the
context of large networks, or to better understand and improve
techniques applied to scenarios such as the ones mentioned
in Section V. For example, the Uncertainty and Sampling
theorems for graph signals (which relate to signal compression
and recovery) have been extensively studied [56]–[58], but
there is certainly room for further analysis, for instance on the
robustness of non-perfectly bandlimited signal sampling [59].

If it is true the statement of Hilbert, that “as long as a
branch of science offers an abundance of problems, so long is
it alive”, then we may certainly expect the field of GSP to be
living still for many years to come.
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