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Distribution by State Preparation With
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Abstract—We propose a continuous-variable quantum key
distribution protocol that uses Shannon-Kotel’nikov maps for
preparing coherent quantum states. Our protocol has similarities
with the no-switching protocol in the sense that it requires that
both quadratures need to be measured. It is also a Gaussian
modulated protocol, because the secret key is to be extracted
from Gaussian parameters. The use of this kind of map in the
preparation of coherent states allows the increase in the source-
to-distortion ratio (SDR) between Alice and Bob, thus making
information reconciliation easier. This increase in SDR is due to
the use of nonlinear maps of higher dimension instead of simply
raising Alice’s variance. We analyze here two kind of maps: the
uniform Archimedes’ spiral and the geodesics on a flat torus. We
assess the security of our protocol through simulations. In order
to do that, we simulate the optimal feedforward attack together
with a maximum-likelihood receiver, then we use Kraskov’s first
algorithm to estimate the mutual information.

Index Terms—Quantum cryptography, Continuous-variable
quantum key distribution, Shannon-Kotel’nikov maps, No-
switching protocol.

I. INTRODUCTION

Cryptographic protocols require a shared secret key in order

to allow two parties Alice and Bob to communicate in secrecy.

By carrying out a quantum key distribution (QKD) protocol

successfully, Alice and Bob can share a secret key even if they

are far apart and linked through an insecure communication

channel. The security of their communication is guaranteed

by quantum mechanics [1]. QKD can be implemented either

with discrete variables or continuous variables. While discrete

variables protocols require specialized equipment like APDs,

continuous-variable quantum key distribution (CVQKD) pro-

tocols can be implemented with standard telecom components

[2].

In CVQKD, the information is encoded in the quadratures

x and p of a quantized electromagnetic field [3]. There is

a diversity of continuous-variable protocols which differs on

how modulation, state preparation and measurement are real-

ized [2]. Protocols with practical implementations are mostly

based on the coherent state protocol GG02 [4], [5]. In this

protocol, the quadratures of a coherent state are modulated

according to a Gaussian distribution, then this state is sent to
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Bob. After receiving it, Bob chooses randomly to measure one

of the quadratures by homodyne detection. If X denotes the

quadrature sent by Alice and Y denotes the Bob’s measured

quadrature, then Y = X + Z , where Z is Gaussian with

variance σ2
Z and X has power P . So X and Y are described

by a Gaussian channel with signal-to-noise ratio (SNR) given

by P/σ2
Z . In order to get a secret key from the random

variables X and Y , it is still necessary to carry out the

classical procedures of information reconciliation and privacy

amplification. Besides GG02, it is also possible to measure

both quadratures of the coherent states as it is done in the no-

switching (NS) protocol [6], [7]. In this case, both quadratures

contribute to generate the secret key at the expense of adding

one shot noise unit to the measured outputs.

Security proofs for Gaussian modulated protocols are well

established. These protocols are proven secure against collec-

tive attacks which turn out to be the most powerful type of

attack [8]. Thus, at least theoretically, if reverse reconciliation

(RR) is employed, it is possible to distribute a secret key for

larger distances (hundreds of kilometers) using CVQKD as

long as the excess noise is below a given threshold [5].

When considering practical implementations of Gaussian

modulated protocols, a more severe limitation for CVQKD

is the inefficiency of reconciliation protocols. This is mostly

due to the fact that reconciliation protocols for Gaussian

variables rely on classical error correcting codes that need

to operate close to the channel capacity in order to achieve

higher efficiencies [9], [10]. Codes that are suitable for rec-

onciliation have long length, which results in a complex and

computationally demanding decoding process [11].

Extending CVQKD to larger distances requires efficient rec-

onciliation protocols at low SNRs. In [12], CVQKD was im-

plemented over a 25km link of optical fiber. The reconciliation

was accomplished by using multilevel coding and multistage

decoding (MLC/MSD) [9] together with low-density parity

check (LDPC) codes of 200,000 block length, resulting in

an overall reconciliation efficiency β = 0.898 for a SNR of

3.38 (5.3dB). Improvements in reconciliation efficiency were

reached in [13] keeping MLC/MSD together with the same

block length but employing a different design for LDPC codes.

In this case, β = 0.937 was reached for a SNR of 3 (4.77dB).

Further improvements can be attained by designing specific

codes for each coding level as in [14]. In this case, LDPC

codes of large length (more than a million bits) allowed a

β = 0.934 for a SNR of 0.55 (-2.6dB). For even low SNRs,

higher reconciliation efficiencies can be obtained with the
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multidimensional reconciliation technique [15], [16], allowing

practical implementations of CVQKD in a range of 80km [17].

Instead of trying to improve the performance of CVQKD

through reconciliation, another possibility is to increase the

SNR at Bob’s side. This approach became theoretically pos-

sible with the concept of a heralded noiseless linear amplifier

(NLA) [18]. In the context of CVQKD, considering an ideal

model and the GG02 protocol, a NLA of gain g could allow

20 log10 g
2dB extra losses before the secret key rate drops

to zero [19]. When imperfections are considered, simulations

done for the no-switching protocol show that a non-ideal LNA

could still provide gains in distance and tolerable excess noise

[20]. It is not necessary to build a physical LNA to improve

the performance of CVQKD. In [21], [22], it is shown that

noiseless amplification operations can be simulated in the

classical data postprocessing stage.

In this paper, we follow a different approach in order to

improve the performance of CVQKD. We aim to increase

the source-to-distortion ratio (SDR) at Bob’s side through

the use of analog encoding in the preparation of coherent

states. In our approach, the SDR plays the role of the SNR

for traditional CVQKD protocols. We then make use of a

geometrical interpretation of nonlinear modulations given in

[23], [24]. According to that, the preparation of coherent states

can be viewed as a mapping of a given parameter to some point

belonging to a curve in a N-dimensional space. The noisy

measurement results are projected back in this curve and an

estimate of the encoded parameter is obtained. The fidelity

between the parameter and its estimate depends on the noise

level and properties of the curve like length and curvature.

In [25], we proposed a CVQKD protocol using this idea and

analyzed it for a uniform Archimedes’ spiral mapping under

a feedforward attack. Here, we extend our previous analysis

by detailing some theoretical aspects and exploring mappings

of higher dimension. It is worth saying that such kinds of

mappings have been used for security purposes in a totally

different scenario. In [26], the physical layer security was

analyzed for a wireless classical channel.

The paper is organized as follows: In Sect. II, we describe

the theory of Shannon-Kotel’nikov maps and the two kinds

of mappings that are used in our scheme. In Sect. III, we

review the Gaussian modulated CVQKD protocols and build

a simulation model for our protocol. In Sect. IV, our proposed

protocol is described. In Sect. V, we discuss some simulation

results obtained for our system. Finally in Sect. VI, some

conclusions about our work are presented.

II. SHANNON-KOTEL’NIKOV MAPS

We consider a system as depicted in Fig. 1 in which we

want to transmit time-discrete symbols of a continuous source

through an additive white gaussian noise (AWGN) channel.

These symbols are mapped directly onto channel symbols by

the transmitter. The receiver, in turn, produces an estimate of

the transmitted symbols in order to satisfy some optimality

criterion such as the mean-squared error (MSE). This joint

source-channel system can be given a geometric interpretation

where a parameter m ∈ R
M is mapped onto a point s(m)

Transmitter ReceiverΣ
m sm(t) r(t)

n(t)

m̂

Fig. 1. Source symbols m are mapped by the transmitter onto channel
waveforms sm(t). The channel simply adds some noise to its input. The
receiver gives an estimate m̂ of the transmitted symbols.

in a curve in R
N [23]. Such maps are referred as Shannon-

Kotel’nikov (SK) maps [27]. When N > M , SK maps act

like analog error correcting codes, allowing the reduction of

the MSE between the source symbols and their respective

estimates.

In this paper, we are interested in 1 : N mappings. More

specifically, we map a source real parameter m ∈ [−1, 1] onto

N channel coordinates through a chosen nonlinear mapping

scheme. Using the well known equivalence between vectors

and waveforms, for a given orthonormal basis {ϕi}Ni=1, chan-

nel waveforms can be represented as vectors

s(m) = [s1(m) s2(m) · · · sN (m)]. (1)

When m is varied along its support, the tip of the vector

s(m) moves along a twisted curve as depicted in Fig. 2.

Analogously, the noise process can be represented by a vector

n in such a way that the received signal by the receiver is given

by r = s(m)+n. For an AWGN channel with power spectral

density σ2
n, a maximum likelihood (ML) receiver produces an

estimate m̂ that maximizes the likelihood function

f(r|m) = f(r− s(m)) =
exp

{

− ‖r−s(m)‖2

2σ2
n

}

(2πσ2
n)

N/2
. (2)

This function is maximized by the value of m that minimizes

‖r−s(m)‖, that is, the closest point of the curve to the received

point.

According to Ziv [28], there is not a single map that reaches

the best performance in terms of MSE for all SNRs. The

optimal performance theoretically attainable (OPTA) bound

gives us a clue on the behavior of optimal maps when

dimensions M and N are modified. Considering an AWGN

channel with average power P and noise variance σ2
n, we can

define the channel signal-to-noise ratio (CSNR) as P/(Nσ2
n).

Similarly, for a Gaussian source of variance σ2
m and MSE

D between source samples and their estimates, we define the

source-to-distortion ratio (SDR) as σ2
m/D. The OPTA bound

is obtained by equating the rate-distortion function and the

channel capacity [29]. For the Gaussian source and the AWGN

channel, the OPTA bound is given by

σ2
m

D
=

(

1 +
P

Nσ2
n

)
N

M

. (3)

As noted in [27], practical mapping performances are far

away from OPTA bounds. However, the trend of better SDR

performances for higher CSNRs is still verified. From Eq. 3,

we can also see that SDR can be improved for a fixed CSNR

if we allow N to grow. Such result is known in classical

telecommunications as a trade-off between performance and

bandwidth expansion. Expressions for the MSE D of generic
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m = −1

m = +1

s(m)

ϕ1

ϕ2

Fig. 2. Representation of a general two-dimensional mapping. Source symbols
m ∈ [−1, 1] are mapped onto channel waveforms. The tip of the vector s(m)
goes through the signal locus.

mappings are usually obtained under the assumption of low

noise levels. In this case, the distance between curve folds

must be greater than three or four times
√

Nσ2
n.

Assuming that a source symbol m0 corresponds to a mapped

point s(m0). Under the low noise assumption, the received

point r will lie close to s(m0) with high probability. In this

way, the signal curve can be approximated by the straight line

s(m) ≈ s(m0) + (m−m0)s
′(m0). (4)

The ML estimate can be approximated by the projection of

the received point r onto this line. Then, it can be shown that

the conditional MSE is given by

E{(m− m̂)2|m = m0} =
σ2
n

‖s′(m0)‖2
. (5)

If the probability density function (pdf) of m is denoted by

fm, then the MSE is obtained by averaging Eq. 5 over all

values of m, that is

D = E{(m− m̂)} = σ2
n

∫ 1

−1

fm‖s′(m)‖−2dm. (6)

It is still necessary to define how source symbols m are

mapped onto the signal locus. For a given modulation method,

this locus corresponds to a curve of length L. If we introduce

an intermediate variable l(m) denoting the length along the

locus, it can be shown that [24]

D = σ2
n

∫ 1

−1

fm

∣

∣

∣

dl

dm

∣

∣

∣

−2

dm. (7)

The minimum MSE is attained if l(m) is chosen as

l(m) = L

∫m

−1 f
1/3
u du

∫ 1

−1
f
1/3
u du

− L

2
. (8)
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Fig. 3. General plot of an uniform Archimedes’ spiral. Dashed line represents
negative parameters while solid line represents positive parameters. In this
picture, we set P = 10, ∆ = 2.45 and σm = 0.25.

This operation is referred as a compander or a stretching

function. An SK mapping operation is often interpreted as

the combination of stretching followed by the bending of the

curve. Substituting Eq. 8 into Eq. 7, we get an expression for

the minimum MSE given by

Dmin =
σ2
n

L2

[

∫ 1

−1

f1/3
m dm

]3

. (9)

It can be seen in Eq. 9 that the MSE can be reduced

by increasing the length of the curve. However, due to the

power restriction, increasing curve length makes curve folds

get closer. In this situation, the threshold effect appears, which

makes the MSE to increase rapidly because received points are

decoded in different folds of the curve with high probability.

Next, we analyze two SK mappings: the uniform Archimedes’

spiral [27] and the geodesics on flat tori [30]. The former is

a 1 : 2 mapping while the latter is a 1 : 2k (k ≥ 2) one.

A. Uniform Archimedes’ spiral

A 1:2 mapping using the uniform Archimedes’ spiral is

illustrated in Fig. 3. It can be seen that the image of the

mapping consists of two intertwined spirals: one for positive

source values and the other for negative ones. The distance

between spiral’s arms is constant and denoted by ∆. Thus, the

design of the mapping consists of finding a ∆ that maximizes

the performance for a given CSNR subjected to an average

channel power restriction P .

Instead of using a stretch function like the one in Eq. 8,

it was used in [27] the inverse curve length approximation

ϕ(x) = ±
√

|x|/(0.16∆). This choice makes tangent vectors

along the curve have equal length, then assuring mutual

independence between signal and noise. The spiral map is then

given by

s(m) = sgn (m)
∆

π

√

gs|m|
0.16∆





cos
√

gs|m|
0.16∆

sin
√

gs|m|
0.16∆



 , (10)
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where sgn (·) is the sign function and gs is a gain factor

that is necessary to keep the power constraint. As previously

mentioned, we assume that the source values are truncated into

the interval m ∈ [−1, 1]. This means that source distribution

parameters have to be chosen properly so as truncation effects

might be neglected. For a gaussian source of variance σ2
m, gs

is given by

gs =
0.16P

√
2π5

σm∆(1 − e−1/(2σ2
m
))
. (11)

For a fixed P , a smaller ∆ means a spiral with a larger

length (more folds) and, consequently, a better SDR as noted

in Eq. 9. However, if ∆ is chosen too small compared to

the channel noise, the threshold effect becomes dominant, so

degrading the system’s performance. So, there is a tradeoff

that allows an optimal value for ∆ to be found. In [27], an

expression for the optimal ∆ as a function of the CSNR and

P is given. For σm = 0.25, this expression is given by

∆opt = 5.223
√
Pe−(3.10−4CSNR2

dB
+0.0801CSNRdB), (12)

where dB points out decibel units. It should be pointed out that

the threshold effect can be quite severe for this mapping if the

spiral is used for noise levels above designed thresholds. The

reason for this is that jumps in decoded arms may represent

transitions between signs for source parameters.

B. Geodesics on flat tori

Geodesic curves on a flat torus were used for analog error

correction in [31]. Such curves have constant curvature and

turn around a flat torus like a helix on a cylinder. For a flat

torus in R
2k, geodesics are generically described by

sθ(α) = [r1 cos (ω1α), r1 sin (ω1α), · · ·
· · · , rk cos (ωkα), rk cos (ωkα)], (13)

where θ = {r1, r2, · · · , rk, ω1, ω2, · · · , ωk} is a parametriza-

tion for the curve and α is the output of a stretching function

(Eq. 8). A twisted curve requires that the elements ωi be

different [30]. Besides, specific constraints for θ must be taken

in account in designing analog codes.

In the context of CVQKD, we are interested in good

performances for low CSNRs. Then, a bigger distance between

curve folds is more valuable than simply extending the curve

length. In [32], geodesics parameters were optimized so as to

achieve good performances for low CSNRs. This was done

by maximizing the global circumradius function over θ. The

minimum value of the global circumradius function can be

interpreted as the radius of a tube centered along the curve that

prevents self intersection [33]. Thus, the minimum distance

between curve folds is guaranteed to be twice the minimum

value of the global circumradius function.

The circumradius function may be written as

ρ(α1, α2) =
‖s(α1)− s(α2)‖

2| sin∠(s(α1)− s(α2), s′(α2))|
, (14)

where ∠(·, ·) denotes the angle between two vectors. For a

smooth curve like the one in Eq. 13, the global circumradius

function is given by

ρg(α) = min
α2

ρ(α, α2). (15)

Then, the minimum distance between curve folds is given by

dmin = 2min
α

ρg(α). (16)

Optimal θ were found in [32] for a given k by maximizing

Eq. 16 subjected to the following restrictions:

‖sθ(α)‖ =

k
∑

i=1

r2i = 1, (17)

‖sθ(α)′‖ =

k
∑

i=1

r2i ω
2
i = 1, (18)

ωi = iωi, i = 1, · · · , k, (19)
∫ L/2

α=−L/2

‖sθ(α)′‖dα = L. (20)

The two first restrictions are usual in designing torus related

curves. The third one simplifies the search by restricting it to

harmonic frequencies. Finally, the last one avoids the curve to

repeat itself at each period by restricting its path length.

III. GAUSSIAN MODULATED CVQKD PROTOCOLS

In Gaussian modulated CVQKD protocols with coherent

states, Alice prepares and sends coherent states |xA + ipA〉
to Bob. For these states, the displacement values xA and pA
for the quadratures x or p, respectively, are chosen from a

Gaussian distribution of zero mean and variance VAN0, where

N0 is the shot-noise (vacuum noise) variance and VA is a scale

factor. Bob gets his set of data by measuring randomly one

quadrature (GG02 protocol) or both quadratures (NS protocol)

for each state sent by Alice. After exchanging some classical

information through a public authenticated channel, they end

up with two sets of correlated data from which they can

distill a secret key. In order to achieve this goal, they have

to do some classical data processing that involves channel

parameters estimation, information reconciliation and privacy

amplification.

As CVQKD protocols are usually designed for fiber optics

physical channels, the channel model used to describe them is

the lossy channel [2]. In this case, the channel is characterized

by the transmission T (the fraction of power that arrives at

Bob’s, i.e. 0 ≤ T ≤ 1) and the excess noise ǫ. After estimating

these parameters, Alice and Bob can compute their mutual

information IAB . As our construction requires measuring both

quadratures, we report next some already known results for the

NS protocol.

For the NS protocol, INS
AB has the contribution of both

quadratures. Assuming that T and ǫ are the same for both

x and p, INS
AB is given by [34]

INS
AB = log

(T (V + χ) + 1

T (χ+ 1) + 1

)

= log
(

1 +
TVA

2 + T ǫ

)

, (21)

where V = VA + 1 and χ = 1/T − 1 + ǫ.
A lower bound to the key generation rate is obtained when

we get an upper bound for Eve’s knowledge, that means con-

sidering an optimal attack that maximizes Eve’s information.

Eve’s bounds depend on the direction of the reconciliation

protocol that is being used. When Bob tries to estimate Alice’s
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data from his data set and some side information, recon-

ciliation protocols are said to employ direct reconciliation

(DR). When Alice and Bob roles are reversed, reconciliation

protocols are said to employ reverse reconciliation (RR). For

the NS protocol, the feedforward attack is proven to be an

optimal individual attack that reaches the bound

INS
AE =

1

2
log

(V + χXE1

1 + χXE1

)

+
1

2
log

(V + χPE2

1 + χPE2

)

= log
(V + χmin

E

1 + χmin
E

)

, (22)

for DR, where E1 and E2 denote Eve’s modes related to the

Eve’s measured quadratures XE1
and PE2

, respectively. For

RR, the bound [35] is given by

INS
BE =

1

2
log

( VB

VXB |XE1

)

+
1

2
log

( VB

VPB |PE2

)

= log
(V + χmin

E )[T (V + χ) + 1]

(1 + χmin
E )(V + 1)

, (23)

where

VB =
T (V + χ) + 1

2
N0, (24)

VXB |XE1
=

1

2
(VX

B′ |XE1
+N0), (25)

VPB |PE2
=

1

2
(VP

B′ |PE2
+N0), (26)

VX
B′ |XE1

= VP
B′ |PE2

≡ V min
B′|E =

V χmin
E + 1

V + χmin
E

N0,(27)

χXE1
= χPE2

≡ χmin
E

=
T (2− ǫ)2

(
√
2− 2T + T ǫ+

√
ǫ)2

+ 1. (28)

The asymptotic secret key rate bounds for the NS protocol

when considering individual attacks and perfect reconciliation

are then given by

∆IDR ≥ INS
AB − INS

AE , (29)

∆IRR ≥ INS
AB − INS

BE , (30)

where equalities are reached for an optimal attack like the

feedforward attack. In an ideal case, ∆IRR > 0 for arbitrary

distances if the excess noise is kept below a given threshold.

In practical situations, INS
AB is penalized by the reconciliation

efficiency β, so that the effective secret key rate for RR is

given by

∆IeffRR = βINS
AB − INS

BE .

As can be seen in Fig. 4, if CVQKD is to be deployed in a

given distance, a β < 1 limits Alice’s variance VA. In general,

a weak signal sent by Alice decreases both INS
AB and INS

BE , but

Eve is more affected than Bob. Therefore, the attainability of

positive secret key rates for larger distances may be achieved

by improving β through reconciliation and limiting VA.
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Fig. 4. ∆I
eff
RR

versus distance for the NS protocol. If β = 0.9 < 1, as VA

is increased, the maximum distance for CVQKD is diminished.

Alice Bob

xA, pA xB, pB

Channel

T, ǫ

xin, pin xout, pout

Fig. 5. Simplified model for quadrature variables. Alice’s and Bob’s
quadratures are denoted respectively by (xA, pA) and (xB , pB). (xin, pin)
and (xout, pout) denote the quadratures at the channel input and output,
respectively.

A. Simulation Model

In this paper, we assess the gain and security of our protocol

through simulations. Therefore, it is necessary to describe

how quadrature variables evolve throughout the channel, beam

splitters and measurement devices. As it is often assumed, we

follow a common approach in which the Alice to Bob channel

does not mix quadratures x and p [35]. In this way, quadratures

are treated as two independent channels.

In Fig. 5, we give a representation of our model. xA and

pA denote quadrature variables chosen by Alice, while xB

and pB denote variables measured by Bob. The quadratures

of coherent states at the input and output of the channel

are indicated by xin, pin and xout, pout, respectively. The

relationship among these variables is given by

xin = xA + x(a)
vac, (31)

xout =
√
T (xin +Bx), (32)

〈B2
x〉 = χN0 = (1/T − 1 + ǫ)N0, (33)

〈x2
in〉 = V N0 = (VA + 1)N0, (34)

〈x2
out〉 = (TVA + 1+ T ǫ)N0, (35)

where x
(a)
vac denotes the shot noise added to quadrature x in

the preparation of coherent states by Alice and 〈·〉 denotes

the expectation value. Similar equations are obtained for

quadrature p if we replace x by p in Eqs. 31-35.

Bob’s measurement involves splitting the incoming signal

in a beamsplitter, followed by a homodyne detection in each

output. Assuming an ideal homodyne detector and a real
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beam splitter with transmissivity 1/2 [36], Bob’s measured

quadratures are described by

xB =
1√
2
(xout + x(b)

vac)

=

√

T

2
(xA + x(a)

vac +
x
(b)
vac√
T

+Bx), (36)

pB =
1√
2
(−pout + p(b)vac)

=

√

T

2
(−pA − p(a)vac +

p
(b)
vac√
T

+Bp), (37)

where x
(b)
vac and p

(b)
vac denote the shot noise added to quadra-

tures in the beamsplitter. From Eqs. 36 and 37, it is clear

that Bob’s measured quadratures are made up of a signal

component and noise, so we can define a CSNR representing

the Alice to Bob channel as

CSNRAB = CSNRAB(x) = CSNRAB(p) =
TVA

2 + T ǫ
.

(38)

Following a similar approach, Eve’s measured quadratures

xE and pE can be characterized when she implements the

feedforward attack described in Fig. 6. In this kind of attack,

Eve reproduces the channel parameters T and ǫ, so remaining

undetected. To accomplish this task, Eve has a beamsplitter of

transmissivity TE and a gain factor gE for their measurement

results that must be set to

gE =
√
ǫT , (39)

TE =
4T (2−

√

ǫ(2− 2T + T ǫ))

(2 + T ǫ)2
− T (2− ǫ)

2 + T ǫ
. (40)

In the first beamsplitter, the transmitted and reflected quadra-

tures are represented by

xTE =
√

TExin +
√

1− TEx
(e1)
vac , (41)

xRE = −
√

1− TExin +
√

TEx
(e1)
vac . (42)

Expressions for pTE and pRE are obtained by replacing x by

p in Eqs. 41 and 42, respectively. The reflected part of the

signal is measured by Eve, resulting in the outputs xE and pE
given by

xE =
1√
2
(xRE + x(e2)

vac )

=

√

1− TE

2
(−xA − x(a)

vac +

√
TEx

(e1)
vac + x

(e2)
vac√

1− TE

),(43)

pE =
1√
2
(−pRE + p(e2)vac )

=

√

1− TE

2
(pA + p(a)vac −

√
TEp

(e1)
vac − p

(e2)
vac√

1− TE

). (44)

Similarly to Eq. 38, a CSNR representing the Alice to Eve

channel is given by

CSNRAE = CSNRAE(x or p) =
(1− TE)VA

2
. (45)

As shown in Fig. 6, the remaining part of the feedforward

attack consists of applying a gain gE to xE and pE , then

Alice Bob

+ +

P

X

TE

1/2 gE

T, ǫ

xin, pin xout, poutxA, pA xB, pBxTE, pTE

xE

pE

xRE, pRE

Fig. 6. Feedforward attack. Eve captures a fraction 1−TE of the input signal,
then she measures both quadratures of this fraction. Measurement results are
used to translate the transmitted fraction TE of the input.

using this result to translate xTE and pTE . Finally, Bob’s input

quadratures are given by

xout = −gExE + xTE , (46)

pout = gEpE + pTE . (47)

If gE and TE are chosen according to Eqs. 39 and 40,

respectively, then Eqs. 46 and 47 reproduce the same statistics

of the original physical channel.

IV. MAPPINGS IN CVQKD

Our idea consists of using the nonlinear mappings like the

ones described in Sect. II to prepare the coherent states that

are sent by Alice in a Gaussian modulated CVQKD protocol.

More specifically, the displacement values xA and pA are now

chosen as points in a parametric curve. There is a one to one

correspondence between points in these curves and random

parameters m, which represent the information exchanged in

our protocol. If the selected maps fit the channel noise, we can

improve the SDR of the Alice to Bob channel, thus making

reconciliation easier.

Our protocol is illustrated in Fig. 7 and it is generically

described by the following steps:

1) Alice draws a random number m from a Gaussian

distribution N (0, σ2
m), then uses this value to get a

mapped point s(m) = [s1(m) s2(m) · · · sN (m)] in

a selected curve in R
N (N = 2k);

2) Alice prepares k coherent states

|xA(1) + ipA(1)〉 , · · · , |xA(k) + ipA(k)〉, where

s1(m) = xA(1),s2(m) = pA(1),· · · ,sN−1(m) =
xA(k),sN (m) = pA(k), then sends them to Bob;

3) Bob measures both quadratures x e p of the received

states, then uses the results and the selected curve to

obtain an estimate m̂;

4) A secret key is extracted from m and m̂ after informa-

tion reconciliation and privacy amplification.

The SK maps discussed in Sect. II are designed for AWGN

channels. In order to convert quadrature channels onto AWGN

channels, we must scale Eqs. 36 and 37 as

x′
B =

√

2

T
xB = xA + nx, (48)

p′B = −
√

2

T
pB = pA + np, (49)

where nx and np are Gaussian variables of zero mean and

variance (2/T+ǫ)N0. We assume that Eve knows the mapping
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Nonlinear
Map

s(m) |xA1 + ipA1〉 Feedforward
Attack

qE

m

m̂E

Alice Eve Bob

Meas-
qB

ML m̂State
Preparation

...

|xAk + ipAk〉

Receiverurement

ML
Receiver

Fig. 7. Block diagram of our protocol. A mapped point of a curve is used for state preparation. Bob and Eve get each an estimate of the parameter sent by
Alice through the use of a ML receiver.

that is being used by Alice and Bob, so she can use it to get

her own estimate m̂E . As it was done for Alice and Bob, the

AWGN channel for Alice and Eve is obtained by scaling xE

and pE (Eqs. 43 and 44) by ∓
√

2/(1− TE).

A. Archimedes’ spiral

For the Archimedes’ spiral, each parameter m is mapped

onto two points according to Eq. 10. This pair of points is

used to prepare the coherent state |xA(1) + ipA(1)〉 that is sent

to Bob. In order to have curves of finite length, we restrict

the support of the source to the interval [−1, 1]. We assume

that our information source is Gaussian with zero mean and

variance σ2
m = (0.25)2. By making this choice, truncation

effects may be neglected. The variance of quadratures x and

p is controlled by adjusting the gain gS (Eq. 11). We set the

average channel power P to VAN0. This choice results in an

average CSNR per quadrature equals to Eq. 38, thus allowing

to compare our protocol to the NS protocol.

We design a spiral for each transmission value T , that means

calculating a ∆opt (Eq. 12) for each T . The CSNR used in

these calculations is given by

CSNRdes =
P

〈n2
x〉+ 〈n2

p〉
= 0.5

VAT

2 + T ǫ
. (50)

B. Geodesics on a flat torus

Our simulations regarding curves on a flat torus were carried

out for N = {4, 6}. That means that a point in a curve is

used to prepare two or three coherent states. As before, our

source has support restricted to the interval [−1, 1] and is

Gaussian with zero mean and variance σ2
m = (0.25)2. Before

mapping the source symbols, it is necessary passing them

through a compander (Eq. 8). For the sake of comparison to

other protocols, we scale the vectors generated according to

Eq. 13 by
√
P , where P is the average input channel power. If

we set P = NVAN0, the average CSNR per quadrature equals

to Eq. 38. Unlike the spiral mappings that are designed for

each value of T , a single curve on a torus is used for all values

of T in a simulated range (N fixed). A direct consequence of

this choice is that the threshold effect is more pronounced for

small values of T .

C. Maximum likelihood decoding

When Bob measures both quadratures of the k coherent

states sent by Alice, he ends up with the vector qB =
[xB(1), pB(1), · · · , xB(k), pB(k)]. Before using the ML re-

ceiver, he has to scale the components of qB as done in Eqs. 48

and 49, so getting q
′
B . For an AWGN channel, the ML receiver

chooses m̂ as the value of m for which the Euclidean distance

between q
′
B and s(m) is minimum. Analogously, when Eve

implements the feedforward attack, she ends up with the vector

qE . After scaling qE and getting q
′
E , she uses her knowledge

about the curve to get her own estimate m̂E .

D. Security analysis

As we consider only individual attacks in this paper, a secret

key can be distilled from shared data if the secret key rate

given by Eqs. 29 or 30 is positive. In our case, we replace the

mutual information bounds for the NS protocol by simulated

values for our protocol. More specifically, in order to calculate

the secret key rate for our protocol, it is necessary to calculate

the mutual information among the variables m, m̂ and m̂E .

We define the followings mutual information for our protocol:

ISK
AB = I(m; m̂), ISK

AE = I(m; m̂E) and ISK
BE = I(m̂; m̂E).

In our setup, we assume that Eve implements the feedfor-

ward attack, an optimal individual attack for the NS protocol.

The quadratures measured by Eve are processed with a ML

receiver, then she gets her own estimate of Alice’s parameters.

From Alice’s data together with Bob’s and Eve’s estimates, the

secret key rates for our protocol under DR and RR are given

respectively by

∆ISK
DR = ISK

AB − ISK
AE , (51)

∆ISK
RR = ISK

AB − ISK
BE . (52)

It is worth saying that the feedforward attack with param-

eters given by Eqs. 39 and 40 may not be optimal for our

protocol. This happens because the nonlinear structure of the

SK maps makes the distribution of Alice’s quadratures non-

Gaussian. In this way, further analyses are required in order

to treat Eqs. 51 and 52 as optimal bounds for our protocol.
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Fig. 8. Simulated values for SDRAB and CSNRAB are plotted against
the transmission T . Here, sp stands for spiral while 4D and 6D stand for
the geodesics dimension. It is possible to note the trend of higher gains with
higher dimension maps.

V. SIMULATION RESULTS

In order to assess the gains of our protocol, we compare

the SDR between Alice’s and Bob’s variables to the CSNR

for the NS protocol (Eq. 38). Thus, we define SDRAB =
σ2
m/ 〈(m− m̂)2〉, where the denominator represents the dis-

tortion between m and m̂. From the previously defined ISK
AB ,

ISK
AE and ISK

BE , we calculate the ratios βDR
lim (SK) = ISK

AE /ISK
AB

and βRR
lim(SK) = ISK

BE /ISK
AB that represent the minimum nec-

essary reconciliation efficiencies for DR and RR, respectively.

Similarly, for the NS protocol, we have the ratios βDR
lim (NS) =

INS
AE /INS

AB and βRR
lim(NS) = INS

BE/INS
AB for DR and RR,

respectively. In this case, the ratios are calculated according to

bounds given in Sect. III. Mutual information was estimated

using Kraskov’s first algorithm [37]. This algorithm is based

on entropy estimates from p-nearest neighbor distances. In our

simulations, we set p = 5 for blocks of 10,000 samples. With

these choices, we can achieve an estimation error of order

10−3 while keeping a reasonable simulation time.

In our simulations, we set VA = 50 and we used ǫ =
0.0015VA ([14]) for the excess noise. For the Archimedes’

spiral, simulations were done for transmission values T ∈
[0.1, 1]. As previously mentioned, a spiral is designed for

each value of T . When dealing with curves on a flat

torus, we extended the transmission values to the interval

T ∈ [0.05, 1]. If we consider an optical fiber with a 0.2

dB/km attenuation, T = 0.1 and T = 0.05 correspond to

maximum distances d = 50km and d = 65km, respec-

tively. For the geodesics on a flat torus, we started from

the optimized parameters given in [32] and we made some

adjustments in the curves length. When N = 4, we have θ =
{0.8165, 0.5773, 0.7071, 1.4142} and L = 7.74. When N =
6, we have θ = {0.69, 0.63, 0.3564, 0.5584, 1.1169, 1.6753}
and L = 10.2.

In Figs. 8 and 9, we compare the SDRAB for the spiral

and the geodesics (N = 4 and N = 6) to the CSNR for the

NS protocol. It is possible to verify the trend of higher gains
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0
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Fig. 9. Simulated values for SDRAB are plotted against CSNRAB . Here,
sp stands for spiral while 4D and 6D stand for the geodesics dimension. It
is possible to note the trend of higher gains with higher dimension maps.

with higher dimension maps. Besides, geodesics have a more

steep graph in low CSNR regions. For N = 6, there is a 3.3dB

gain in SDRAB compared to CSNRAB for T = 0.05. For

the same N , when T is doubled, the gain increases to 8.47dB.

In Fig. 10, we plot mutual information for the simulated

points. In general, plots exhibit the same tendency of bounds

given in Eqs. 21, 22 and 23. For DR, the 3dB point happens

around T = 0.6. Similarly, for RR, ISK
AB > ISK

BE in the

simulated range. It is worth noting that mutual information

values increases with dimension. This is a direct consequence

of higher SNR gains for higher dimensions.

In Fig. 11, we plot the ratios βDR
lim (SK) and βRR

lim(SK)
for our protocol. It is possible to note that SK maps also help

Eve to improve her mutual information, thus making necessary

the use of more efficient reconciliation protocols for a given

T . To compensate this growth in reconciliation efficiency, we

could use a lower value for VA. For VA = 50, geodesics with

N = 6 requires βDR
lim (SK)6D = 98.6% for a CSNRAB =

0.96dB (T = 0.05), resulting in a SDRAB = 4.27dB. If we

have VA = 12.5 for the same CSNRAB = 0.96dB (now

T = 0.20), we will still have a similar SDRAB, but now with

βDR
lim (SK)6D = 93.4%. This new required efficiency is lower

than the ones reported in [14] for this SNR, thus allowing the

extraction of a secret key from shared data for our protocol.

The cost of lowering VA in this example was the increase

of T . In order to keep low values for T we could use maps

of higher dimensions like the geodesics on a flat torus with

N = 8 or higher.

In Fig. 12, we plot the maximum secret key rates (β = 1)

for our protocol considering the RR scenario. It is possible

to note that these simulated curves are below the bound for

the NS protocol (Eq. 30). This happens because the mapping

also helps Eve to get more information. However, with our

protocol, these secret key bits are to be extracted in a higher

SNR, which may likely improve the effective secret key rate

because it is easier to get a higher β for a higher SNR.
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Fig. 10. Simulated mutual information for our protocol. On the left side, it is shown the DR scenario. On the right side, it is shown the RR scenario. (a) and
(b) were obtained for the Archimedes’ spiral. (c),(d) and (e),(f) were obtained for geodesics on a flat torus with N = 4 and N = 6, respectively.
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VI. CONCLUSION

In this paper, we proposed a CVQKD protocol that uses

nonlinear SK maps for the preparation of quantum coherent

states. Our idea was to increase the SDR between Alice

and Bob by exploiting the error correcting properties of

these maps. We assessed the security of our protocol for the

feedforward attack optimized for the NS protocol. Simulations

have shown that our construction really increases the SDR

between Alice and Bob and allows the extraction of a secret

key from shared data. The downside of our method is that it

also helps Eve to get more information. This fact is inferred

from the increase in the minimum necessary reconciliation

efficiency when compared to the NS protocol. As suggested in

Sect. V, we could lower the required reconciliation efficiency

by lowering Alice’s variance combined with maps of higher

dimension, keeping the geodesics structure.

Some possibilities are envisaged in order to improve our

results. One of these would be to include in the design criteria

of maps some restriction to confuse Eve. This could prevent

Eve of getting the benefits given by maps. The other one would

be to conceive a protocol that requires only one quadrature to

be measured. This would allow us to get rid of the 3dB penalty

of measuring both quadratures.
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