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Radio Resource Allocation with QoS Constraints in
Energy Harvesting and Hybrid Power Systems

Jair A. de Carvalho, F. Rafael M. Lima, Tarcisio F. Maciel, and F. Rodrigo P. Cavalcanti

Abstract—In this paper we formulate the radio resource
allocation problem of maximizing throughput in an OFDMA (Or-
thogonal Frequency Division Multiple Access) downlink where
the BS (Base Station) adapts the power allocation according
to non-causal (offline) knowledge of the harvested energy and
channel state. The offline case is important from a theoretical
point of view since it provides a bound on the performance of
the online problem (causal). Differently from previous works that
consider a continuous mapping between SNR (Signal-to-Noise
Ratio) and transmit data rate, we employ a discrete mapping
that depends on the required MCSs (Modulation and Coding
Schemes). Also, we propose a heuristic algorithm that provides
near-optimal results and achieves a good complexity/performance
trade-off. In addition, we analyze the online version of the
problem, and we propose two novel solutions to solve the problem
only with causal information. Furthermore, we reformulate our
problem to satisfy QoS (Quality of Service) constraints for each
user in a hybrid power system where the BS is powered by a
fixed power source from the electric grid and by a stochastic
power source from renewable energy sources. Lastly, we present
an offline solution to this new problem that also achieves a
considerable complexity/performance gain.

Index Terms—Resource allocation, rate maximization, energy
harvesting, OFDMA, MCS, hybrid power system, QoS.

I. INTRODUCTION

Energy Harvesting (EH) communications are powered by
renewable energy sources and can enjoy an unlimited lifetime
[2]. However, such energy sources present a stochastic nature
since it depends on environmental conditions that determine
the amount of power available to perform transmissions.
Differently from communication devices that work with fixed
power supplies and have assurance of power availability,
EH devices save any unused energy in a storage component
such as a rechargeable battery. Then, because batteries have
finite storage capacity, we subject our problem to the battery
capacity constraints that limit the available energy to the
maximum value supported by the battery. Moreover, we apply
the energy consumption causality constraints that limit the
used energy to the quantity available at the moment, despite
the knowledge of future energy arrivals in the offline case.
Both restrictions are known as energy harvesting constraints,
and are present in several works [2]–[5].
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Many options of EH sources are available, for example:
solar radiation, natural wind, radio frequency waves, vibration
and thermal energy [2], [3]. Hence, in our study we considered
a BS powered by a photovoltaic system similar to [6]. Also,
our EH model follows a first-order stationary Markov chain,
supported by studies on solar energy in [6]–[8]. The main
advantages of EH systems include long term operation without
stable power supplies, decreased need of cabling and compo-
nent replacements, and consequently smaller cost per project.
Motivated by those advantages we investigate EH scenarios
related to wireless communications.

More specifically, our problem is in an offline setting, that
means previous knowledge of the EH profile and full CSI
(Channel State Information) at the BS. Even though previous
knowledge of channel gain and harvested energy is very hard
to obtain in practice, solutions for offline scenarios serve as
performance benchmarks to more realistic situations and offer
important insights on the development of solutions to the
online scenario, where energy arrivals and channel gains are
not known beforehand. Furthermore, RRA (Radio Resource
Allocation) is an essential functionality in order to improve the
use of the scarce radio resources such as power and spectrum
when devices are powered by energy harvesters [3], since the
main purpose of RRA consists in intelligently distribute the
available resources on the goal to satisfy requirements or to
optimize services. In this article we consider the RRA problem
of maximizing the system throughput that is a typical and
important problem studied in the literature [2]–[5].

We extend our analysis to the online case in order to study
our problem in practical scenarios. In this case, all available in-
formation is causal and we have the difficulty to allocate power
without exact knowledge of the next energy supplies. We also
deepen our investigations by adding the hardship of ensuring
QoS requirements per user. Nevertheless, the uncertain amount
of energy provided by EH systems may be insufficient to
fulfill the demands of each user [9]. Therefore, we add a non-
renewable energy source to complement the energy provision.
This extra supply is provided by the electric grid, as in [10].
Thus, we can overcome the limitations of energy availability
in EH systems when ensuring QoS requirements.

This paper is divided as follows: section II shows a literature
review on EH wireless communications and presents our main
contributions; section III describes the system modeling for the
problems developed in the next sections; section IV defines the
data rate maximization problem in offline scenarios, proposes a
heuristic solution and evaluates its performance in comparison
to the optimal solution; section V analyzes the problem in
section IV for online scenarios, proposes two online solutions
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and compares the results for offline and online cases; section
VI defines the rate maximization problem with hybrid energy
source and QoS constraints, describes a heuristic algorithm to
solve the problem and presents results for optimal and heuristic
solutions; finally, section VII presents our conclusions.

II. STATE OF THE ART AND CONTRIBUTIONS

Generally, cooperative communications and relay networks
have been studied in literature, and specially in EH scenarios
[2], [11], [12]. The authors in [2] analyze a source, relay, des-
tination network in offline (previous knowledge of EH profile)
and online (only casual information) situations, and propose
a solution for the online case through convex optimization.
The studies in [11], [12] present, respectively, optimal and
heuristic solutions for power allocation problems with relay
selection. Moreover, OFDMA systems and EH technology are
the main topics in [13], where the authors develop resource
allocation algorithms for a hybrid EH base station, powered
by fixed and renewable sources. Similarly, [14] introduces a
self-sustainable approach for OFDM receivers in the context
of green networks. In [9], the authors propose a solution that
maximizes the number of users with satisfied QoS in a EH
system. And [10] presents an algorithm that balances system
throughput and grid energy consumption in OFDMA wireless
networks with hybrid energy supplies.

Long-established studies in [3], [5] give the foundations of
rate maximization in EH systems, and more recent work in
[15], [16] consider cognitive radio networks (CRNs) powered
by energy harvesters, where [15] optimize spectral efficiency
and [16] focus on secrecy performance. Finally, the paper in
[17] investigates RF (Radio Frequency) EH for mobile devices
in cloud-based networks. Though the aforementioned works
provide relevant contributions, all these studies support the
unrealistic assumption of continuous mapping between SNR
and transmit data rate, but, in real systems, the set of possible
transmit data rate values is discrete and finite. Therefore,
we implement a discrete mapping through MCSs, where the
achievable transmit rates are determined by modulation levels
and channel coding. Also, unlike the authors in [2]–[5] and
[9]–[17], who employ a continuous mapping due to the ease
of using convex optimization methods, our problem becomes
entirely combinatorial with the use of discrete MCSs, which
increases the computational complexity to obtain the optimal
solution.

In addition, the papers in [2]–[4] assume an EH profile
with discrete values from a finite set. However, empirical
measurements in [6]–[8] demonstrate that the harvested en-
ergy assume continuous values in practice. The study in [7]
proposes the design of a quantizer in order to work with
discrete values of harvested energy. Such quantization process
is acceptable because some harvesters collect an approximately
constant amount of energy throughout the time [7], what
justifies the use of low order quantizers. Since our problem
is combinatorial, we prefer to enhance diversity by adopting
an EH model that accepts continuous values over a finite
range, thus, providing a more precise model because other
approaches are prone to quantization error. Lastly, as far we

know, the problem of rate maximization for multi-carrier and
multi-user systems in EH communications with discrete MCSs
has not been studied in the literature. Our contributions can
be summarized to:

• Mathematical formulation of resource allocation problem
with realistic model for link adaptation (discrete MCSs);

• More precise EH model based on Markov processes with
states represented by continuous intervals;

• Heuristic solution (offline case) that provides close-to-
optimal results at low computational cost;

• Online solutions that consider an empirical and a general
Markov model to predict the harvested energy;

• New problem formulation that mathematically describes
a hybrid power system with QoS constraints;

• Offline solution for the hybrid power system problem that
achieves a considerable complexity/performance gain.

III. SYSTEM MODELING

Our scenario consists of a BS located in the center of a
circular cell of radius R that transmits to J users. Moreover,
the system has a total of N OFDM subcarriers, and allows M
possible MCS levels per subcarrier. In our problem, informa-
tion is transfered through T transmission time intervals (TTIs),
and for each TTI, the BS harvests Hi units of energy at TTI
i. Assuming that γm is the needed SNR to achieve the m-th
MCS level, and that αi,n,j denotes the channel gain between
user j and the BS on subcarrier n for the i-th TTI, we define

pr
i,n,j,m =

σ2γm
αi,n,j

, (1)

as the required power to the BS transmit to user j on subcarrier
n at TTI i with MCS m, where the superscript “r” stands for
“required”. Also, note that σ2 is the noise power at the receiver
in the bandwidth of a subcarrier. Other important variables
are the maximum energy storage capacity of the battery,
Bmax, and the transmit data rate of the m-th MCS level, rm,
necessary to define the discrete mapping γm ←→ rm for the
link adaptation, where γm < γm+1 and rm < rm+1.

On the matter of harvest dynamics we consider a Markov
model for solar radiation, and according to [7], [8], we
can assume a first-order stationary Markov chain. Basically,
stationarity means that the states and transition probabilities
do not vary over time. By first-order process we mean that the
current state is the only and direct cause of the next one. These
assumptions simplify the model, since we have a memoryless
system with only one matrix of transition probabilities that
works for any instant in time. This is not the case for wind
energy [7] that needs a generalized Markov model.

Firstly, let S be the number of states in our model, and
P the square matrix of transition probabilities of order S.
Then, we define Ps,k as the probability of transition from
state s to state k. We also define the vector v = [v1, . . . , vS ]
where vk represents the probability of finding the system in
state k after a large number of transitions, which is called
marginal probability. Finally, following a model similar to
[8], the harvested energy Hi is a random number from
an uniform distribution belonging to a continuous interval
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Fig. 1. BS in operation powered by a hybrid power system.

[(k − 1)(Hmax/S), k(Hmax/S)] for k = 1, . . . , S, where
Hmax is the maximum energy that can be harvested, and each
interval represents the S possible states of the Markov chain.
This representation of states as continuous intervals simulates
the actual behavior of the harvested energy, that presents a
continuous nature in practice, thus, being an improvement over
the studies in [2]–[4] that consider discrete values of energy.
Figure 1 presents the scenario described in section VI: users
served by a BS powered by hybrid energy supplies. In sections
IV and V the BS is powered only by renewable energy sources.

IV. DATA RATE MAXIMIZATION WITH RENEWABLE
ENERGY SOURCE - OFFLINE CASE

In this section, we study a radio resource allocation problem
for rate maximization at the scenario described in section III.
In this case, the BS is powered by a renewable energy source
(solar radiation) and information regarding energy arrivals and
channel gains is known non-causally (offline).

A. Problem Formulation and Optimal Solution
Before showing the problem formulation, we define xi,n,j,m

as the binary decision variable that assumes 1 when subcarrier
n with MCS m is assigned to user j at TTI i. Furthermore,
our goal is to determine pa

i,n, that is the allocated power to
subcarrier n at TTI i, and the subcarrier assignment n←→ j,
with T = {1, . . . , T}, N = {1, . . . , N}, J = {1, . . . , J} and
M = {1, . . . ,M} being the set of all TTIs, subcarriers, users,
and MCS levels, respectively, where i ∈ T , n ∈ N , j ∈ J
and m ∈ M. The superscript “a” in variable pa

i,n stands for
“allocated”. The total data rate from T TTIs is given by

rtotal =

T∑
i=1

N∑
n=1

J∑
j=1

M∑
m=1

rmxi,n,j,m. (2)

Since, for a certain TTI i, a subcarrier n can assume only
one MCS m and be assigned to a single user j, we write this
restriction as

J∑
j=1

M∑
m=1

xi,n,j,m = 1, ∀i, ∀n. (3)

Once we determined a feasible configuration for xi,n,j,m,
the power allocated to subcarrier n at TTI i can be written as

pa
i,n =

J∑
j=1

M∑
m=1

pr
i,n,j,mxi,n,j,m, ∀i, ∀n, (4)

and we can finally define the energy consumption causality
constraints given by

t∑
i=1

N∑
n=1

pa
i,n ≤

1

τ

t∑
i=1

Hi, t = 1, . . . , T. (5)

The constraints in equation (5) mean that the BS cannot
use energy packets which are yet to arrive, and that the
used transmit power at TTI t cannot exceed the harvested
power until that TTI. The constant τ consists in a factor to
convert energy in/from power, i.e., the corresponding energy
is obtained by multiplying τ by the power. Lastly, we need
to consider that the harvested energy is being stored in the
battery, and that a remaining amount of energy is always left
over. In many situations, a considerable quantity of energy will
be saved for next transmissions, and the next energy packet
added to this saving can exceed the battery capacity. In order
to assure that energy will not be wasted we define

t+1∑
i=1

Hi − τ
t∑

i=1

N∑
n=1

pa
i,n ≤ Bmax, t = 1, . . . , T − 1, (6)

as the battery capacity constraints. Now, we have to maximize
the system throughput by solving the optimization problem:

max
x

T∑
i=1

N∑
n=1

J∑
j=1

M∑
m=1

rmxi,n,j,m, (7)

subject to

Equations (3), (5) and (6), (8a)

xi,n,j,m ∈ {0, 1}, ∀i, ∀n, ∀j, ∀m. (8b)

The problem described above is an ILP (Integer Linear
Programming) mathematical optimization, that in general is
an NP-hard problem. Algorithms based on BB (Branch and
Bound) methods provide optimal results at the cost of high
computational complexity, specially when the number of
constraints and variables is increased. Hence, we obtained
the optimal solution through the IBM ILOG CPLEX solver
[18]. Due to the high computational complexity to obtain
the optimal solution, we propose in the next section a low-
complexity algorithm to solve the problem.

B. Heuristic Solution

A classical and optimal bit loading algorithm for point-to-
point links with deterministic power supply is the HH (Hughes
Hartogs) solution [19]. The main idea of this algorithm is
to raise the MCS level of the subcarriers that need less
power to reach the next level. This procedure is repeated in
iterative manner while there is available transmit power or until
all subcarriers achieve the maximum MCS level. Naturally,
the HH algorithm could not be applied in an EH system
since using all the available power on the battery at TTI i,
represented by bi, is not the best option. This is true because
in EH systems we save energy to prepare for a poor harvest in
the future. In this section, we propose a solution that limits to
li the maximum used power per TTI i, and instead of starting
to load the subcarriers that require the least power, the heuristic
begins loading the subcarriers with smaller cost per bit, defined
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Algorithm 1 HH-Based Heuristic Power Allocation
1: Calculate pr

i,n,j,m using equation (1)
2: qa

i,n = min(pr
i,n,j,M : ∀j ∈ J ), ∀i, ∀n

3: ui,n = argmin(pr
i,n,j,M : ∀j ∈ J ), ∀i, ∀n

4: ps
i,n,m = pr

i,n,j,m, ∀i, ∀n, ∀m, for j = ui,n
5: for i← 1 to T do
6: for n← 1 to N do
7: m = M
8: while qa

i,n >
1
N

∑N
k=1 q

a
i,k do

9: m = m− 1
10: qa

i,n = ps
i,n,m

11: end while
12: λi,n = m
13: end for
14: end for
15: qi =

∑N
n=1 q

a
i,n, ∀i

16: AdjustReq(q,λ,ps, qa)
17: ∆rm−1 = rm − rm−1, for m = 2, . . . ,M
18: ∆ps

i,n,m−1 = ps
i,n,m − ps

i,n,m−1, ∀i, ∀n, for m = 2, . . . ,M
19: ci,n,m = ∆ps

i,n,m/∆rm, ∀i, ∀n, for m = 1, . . . ,M − 1
20: ci,n,M =∞, ∀i, ∀n ∆ps

i,n,M =∞, ∀i, ∀n
21: b1 = h1 + b0 pa

i,n = 0, ∀i, ∀n
22: λi,n = 1, ∀i, ∀n λi,1 = 0, ∀i
23: for i← 1 to T do
24: di = 0
25: if i < T then
26: di = (bi

∑T
t=i+1 qt − qi

∑T
t=i+1 ht)/

∑T
t=i qt

27: if di < 0 then di = 0
28: end if
29: if hi+1 + di > bmax then di = bmax − hi+1

30: end if
31: end if
32: li = bi − di spow = 0 p = 0 n = 1
33: while spow < li do
34: pa

i,n = pa
i,n + p

35: λi,n = λi,n + 1
36: n = argmin(ci,k,1 : ∀k ∈ N )
37: p = ∆ps

i,n,1
38: ci,n,m = ci,n,m+1, for m = 1, . . . ,M − 1
39: ∆ps

i,n,m = ∆ps
i,n,m+1, for m = 1, . . . ,M − 1

40: spow = spow + p
41: end while
42: if i < T then
43: f = (hi+1 + bi −

∑N
k=1 p

a
i,k)− bmax

44: if f > 0 and spow < bi then pa
i,n = pa

i,n + p
45: λi,n = λi,n + 1
46: else if f > 0 then
47: AdjustPA(λ,u,pa,pr, i, f)
48: end if
49: bi+1 = hi+1 + bi −

∑N
n=1 p

a
i,n

50: end if
51: end for
52: rtotal =

∑T
i=1

∑N
n=1 rm, for m = λi,n

by ci,n,m. This variable stores the ratio between the increase
in power and the increase in data rate for raising the MCS
from m to m + 1, for m = 1, . . . ,M − 1, ∀i, ∀n. Now, we
describe the first part of Algorithm 1, that goes from lines 1
to 16, where we set an initial subcarrier assignment ui,n and
estimate an initial power allocation qa

i,n.
In Algorithm 1, we firstly calculate pr

i,n,j,m by using its
definition in equation (1), and in the next step we determine an
initial power allocation qa

i,n by taking the minimum required
power to achieve the highest MCS level among all users.
Consequently, we obtain an initial subcarrier assignment ui,n,
and define ps

i,n,m as the required power for the users selected
in this assignment. The for loop from lines 5 to 14 decreases
the MCS level of a subcarrier n until its power becomes
smaller than the average over all subcarriers in TTI i. Then,
the resulting MCS is stored in λi,n, and after the loop ends we

Algorithm 2 Adjust Requirement
1: procedure AdjustReq(q,λ,ps, qa)
2: for i← 1 to T do
3: while qi > 1

T

∑T
t=1 qt do

4: n = argmax(qa
i,k : ∀k ∈ N )

5: m = λi,n − 1
6: qa

i,n = ps
i,n,m

7: λi,n = m

8: qi =
∑N

n=1 q
a
i,n

9: end while
10: end for
11: end procedure

Algorithm 3 Adjust Power Allocation
1: procedure AdjustPA(λ,u,pa,pr, i, f )
2: gn = sortdesc(αi,n,j : ∀j ∈ J ), ∀n, where gn = {gn,j : ∀j}
3: ψn = argsortdesc(αi,n,j : ∀j ∈ J ), ∀n, ψn = {ψn,j : ∀j}
4: while f > 0 do
5: n = argmax(gs,2 : ∀s ∈ N )
6: m = λi,n
7: k = ui,n
8: j = ψn,2

9: ∆p = pr
i,n,j,m − pr

i,n,k,m
10: pa

i,n = pa
i,n + ∆p

11: ui,n = j
12: ψn,j = ψn,j+1, for j = 2, . . . , J − 1
13: gn,j = gn,j+1, for j = 2, . . . , J − 1
14: gn,J = 0
15: f = f −∆p
16: end while
17: end procedure

calculate qi, that is the total power requirement for each TTI
i. In line 16 we call the procedure AdjustReq, that reduces the
MCS level in overloaded carriers until the power requirement
qi gets smaller than the average over all transmissions. This
procedure is shown in Algorithm 2. These adjustments give a
more accurate estimation of the power to be used in practice,
because it is not worthy to spend resources in subcarriers
that require much power to achieve a higher modulation level.
Alternatively, we prefer to save power for subcarriers that, in
future transmissions, will experience more favorable channel
conditions. After calculating qi we start the second part of
Algorithm 1, that goes from lines 17 to 22, where we set all
variables needed to run the HH-based method.

Continuing Algorithm 1, we compute the data rate increase
∆rm and the incremental power matrix ∆ps

i,n,m in order to
determine the efficiency ratio ci,n,m, that measures the cost (in
power) per bit for each MCS leap. Since the rate increase ∆rm
is not uniform as m grows, the first subcarriers to be loaded
are chosen by evaluating ci,n,m, which is an improvement over
performing a selection through ∆ps

i,n,m as the HH algorithm
proposes [19]. Moreover, we set the last increment in ci,n,M
and ∆ps

i,n,M to infinity for indicating that the final MCS level
has been reached. Then, in line 21 we initialize the power
allocation pa

i,n to zero, and define the value of b1 (available
power at TTI 1) as the sum between h1 (available power at
TTI 1 resulting from the conversion to power of the harvested
energy H1) and b0 (the initial power at the battery). Next, the
MCSs λi,n are set to one except for λi,1, that is set to zero
because it always starts incremented by 1 in line 35. Lastly,
we describe the third part of Algorithm 1, that goes from lines
23 to 52, where we compute the final power allocation pa

i,n,
set the final subcarrier assignment in ui,n and determine the
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Fig. 2. Average data rate versus number of TTIs, for M = 16, N = 15,
J = 10, T = 3 to 12, hmax = 112 mW, bmax = 208 mW, and S = 7.

total data rate using the values of λi,n.
Hence, we finally run the for loop from lines 23 to 51, that

calculates for every i < T the power decrease di applied to
bi in order to compute the power limit li to be spent in the
i-th TTI. The calculation of di in line 26 is an intuitive result,
since the greater the available power bi and the requirements
for other transmissions (qt for t > i) are, the greater is the
decrease applied to bi and lower will be li. On the other hand,
the bigger the requirement qi and the available power for future
transmissions (ht for t > i) are, the smaller is the value of di
and higher will be li. In fact, the expression in line 26 is the
solution of equation (bi−di)/qi = (hi+1 +di−di+1)/qi+1 =
· · · = (hT + dT−1)/qT for di. This equation means that the
ratio between available power and required power must be the
same for each TTI, thus, applying the principle of reserving
more power to the TTI that needs it the most. The condition
in line 27 is necessary to enforce the energy consumption
causality constraints, because when di < 0, this would mean
to take power from energy packets still not accessible. And the
extra condition in line 29 adjusts di to prevent the violation
of the battery capacity constraints.

Thereafter, the while loop from lines 33 to 41 applies the
HH-based method described previously in the beginning of
this section, and obtains the power allocation pa

i,n for TTI i
and the corresponding MCSs λi,n. Nevertheless, we need to
calculate f that is the battery overflow in case the current
power allocation is enforced. This becomes necessary because
the power increase p is discrete, and the sum of the allocated
power never equals li. If the overflow f > 0 and the power
sum spow does not exceed what is available in the battery, we
employ the last power increment p chosen previously. This
ensures that f ≤ 0 because of the condition in line 29, as
spow surpasses li guarantees that the battery power limit bmax

will be observed.
Our final option to eliminate the overflow is to call the

procedure AdjustPA, that gradually increases the power con-
sumption by changing the user to subcarrier assignment stored
in ui,n. Since the achieved MCS is kept the same when chang-
ing users, this procedure has the disadvantage of raising the
consumed power without improving the data rate. However,
this is necessary to always comply with the restrictions in
equation (6). This raise in power is gradual because we choose
the users with greater gains in the second column of gn,j
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Fig. 3. Average rate difference versus number of TTIs, for M = 16, N = 15,
J = 10, T = 3 to 12, hmax = 112 mW, bmax = 208 mW, and S = 7.

(the first column contains values already selected). Given large
enough values for N and J the loop in procedure AdjustPA is
guaranteed to finish and the problem constraints are imposed.
This procedure is presented in Algorithm 3, where sortdesc
is a function that returns a vector sorted in descending order
and argsortdesc returns the indexes corresponding to the sorted
values. Lastly, the battery level is updated in line 49 by adding
the remaining amount to the next harvested value, and after
the for loop ends the total data rate is computed in line 52.

C. Performance Evaluation

On the goal to compare optimal and heuristic solutions, we
performed simulations of the proposed model with M = 16, N
= 15, J = 10, and T = 3 to 12. Our choice to vary T is justified
by the fact that decisions related to power saving become
more difficult as T increases. The results were obtained by
running 3,000 instances for each set AT = {T,N, J,M},
counting to a total of 30,000 instances analyzed. The mapping
through MCSs is D = {(γ,r): (0,0), (0.3,25), (0.4,39), (0.6,63),
(0.9,101), (1.4,147), (2.1,197), (3.5,248), (5.1,321), (7.8,404),
(12.3,458), (19.1,558), (28.8,655), (42.7,759), (79.4,859),
(109.6,933)}, with r in bps. The SNR thresholds in γ were
taken from [20], and the values of r are based on the channel
quality indicators reported in [21]. Other important constants
were defined as hmax = 112 mW, bmax = 208 mW, σ2 = 4.74
× 10−16 W, with αi,n,j ranging from 10−8 to 10−10.

Also, the number of states of our Markov model is S = 7,
with each state being an interval of length 16 mW. Initially,
the simulation distributes uniformly J = 10 users inside a
circular area of radius R = 467 m, and establishes a minimal
distance of 70 m between user and BS in order to avoid near-
field effects. Then, we define the Markov chain initial state
s based on the marginal probabilities in v, and determine
the succession of states using the transition probabilities Ps,k

for obtaining all the values of hi. After that, we build the
matrices necessary to specify the ILP described in section IV,
and solve the optimization problem through the CPLEX solver,
that returns the values of xi,n,j,m. The total throughput of
the system is calculated according to equation (2). The sub-
optimal solution is obtained next by running Algorithm 1, and
by applying HH algorithm we obtain a result denoted as naive
solution. The HH method receives this name because it does
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not save any power for future TTIs and does not consider the
rate increase ∆rm for raising the MCS levels.

Figure 2 shows the results for ten different values of
T , where the performance metric is the average data rate
over all the 3,000 instances evaluated by each solution. The
CPLEX solver, the Algorithm 1 and the HH method generated
the results displayed in the curves Offline-Optimal, Offline-
Heuristic and Offline-Naive, respectively. We realize that as T
increases the difference between optimal and heuristic grows,
since the error of estimating qi in procedure AdjustReq is
greater as T becomes larger. However, our results remain
very close to optimal as the plot indicates. Figure 3 presents
the average rate difference from the optimal solution in order
to better display the separation between each curve. In fact,
the average difference between optimal and heuristic solutions
exceeds 1 kbps only for T = 12, as indicated by Figure 3.

The best results are obtained for T = 3, with average
difference of just 110 bps. The naive solution (HH) has poor
performance when compared to optimal solution, as Figure 3
shows that the difference for T = 12 is greater than 3.5 kbps.
Furthermore, the complexity/performance gain is high, since
for T = 8 the average execution time of a single scenario is
1338 ms for optimal solution, and only 16.7 ms for heuristic,
that is 80 times faster in this case. In order to complement
our results, we compare solutions by evaluating a performance
metric called NMSE (Normalized Mean Square Error). We
computed this metric by using the definition found in [22]:
NMSE = 1

K

∑K
k=1(Ck −Dk)2/C̄D̄, with C̄ = 1

K

∑K
k=1 Ck

and D̄ = 1
K

∑K
k=1Dk. Ck is the optimal result for sample k

in Figure 2. Dk represents the result for sample k in Figure 2
obtained by the heuristic or naive solution. The goal of NMSE
is to measure the average deviation between optimal solution
and other solutions. Based on the K = 10 samples given
by Figure 2, the NMSE for heuristic and naive solutions are
NMSEheu = 0.074 × 10−3 and NMSEnaive = 0.939 × 10−3,
respectively. Thus, the error for the naive solution is 12.7 times
greater than the error for the heuristic solution, what proves
that Algorithm 1 achieves considerable improvement over the
classical HH algorithm. All the results were obtained from a
Windows 10 computer with a 2.4 GHz core i7 intel processor.

V. DATA RATE MAXIMIZATION WITH RENEWABLE
ENERGY SOURCE - ONLINE CASE

This section is devoted to the study of the online version
of the problem presented in section IV. Now, all available
information is causal, in other words, at TTI i we only have
knowledge of harvested energy and channel gains from the
i-th TTI (present moment). These conditions provide a more
realistic scenario and the solutions presented in this section
can be applied to real systems.

A. Modified Problem Constraints

In regard to the problem formulation, all restrictions remain
valid for the online case, meaning that the problem keeps
constrained by the subcarrier and MCS assignment restrictions
in (3), and that the energy harvesting constraints in (5) and
(6) have to be enforced. However, since we do not know the
harvested energy values beforehand, we cannot guarantee that

the battery limit will always be observed and, therefore, energy
overflow can happen in some instances of the online problem.
Hence, for the online case, we rewrite the battery capacity
restrictions (6) in the following manner:

B1 = min(Bmax, H1 +B0), (9a)

Bi = min (Bmax, Hi +Ri−1) , i = 2, . . . , T, (9b)

Ri = Bi − τ
N∑

n=1

pa
i,n, i = 1, . . . , T − 1. (9c)

Bi represents the energy available in the battery at the
beginning of the i-th TTI, and B0 is the initial energy stored in
the battery before the transmission starts. Equation (9a) defines
the battery level for i = 1 as the minimum between Bmax and
H1 + B0. Since in our simulations B0 = 0 and H1 < Bmax,
we have that B1 < Bmax. Equation (9b) means that if the
sum between the remaining energy and the harvested energy
surpasses Bmax, then energy will be wasted and the battery
will reach the maximum level. Ri represents the remaining
energy in the battery at the end of the i-th TTI, as defined
in equation (9c). Furthermore, once we redefined the battery
capacity restrictions to (9a) and (9b), then we rewrite the
energy consumption causality constraints (5) in terms of Bi:

τ

N∑
n=1

pa
i,n ≤ Bi, i = 1, . . . , T. (10)

The above equation simply means that, for each TTI, it is
possible to spend only the amount of power provided by the
battery. Consequently, by replacing the expression for Bi into
equation (10) we write the energy harvesting constraints as

τ

N∑
n=1

pa
1,n ≤ min(Bmax, H1 +B0), (11a)

τ

N∑
n=1

pa
i,n ≤ min (Bmax, Hi +Ri−1) , i = 2, . . . , T. (11b)

B. Online Solutions

Our goal in the online problem remains the same of the
offline problem, that is, to maximize the total data rate
experienced by all users throughout all TTIs, as expressed in
equation (7). However, without knowledge of future channel
states, we cannot estimate the power requirement qi for
each TTI as described in procedure AdjustReq. This is a
consequence of not knowing all values of pr

i,n,j,m beforehand,
because we only know the required power for the current TTI.
Moreover, without knowledge of future energy arrivals, we can
not calculate di as expressed in line 26 of Algorithm 1 neither
the power limit li. Therefore, we need to find an expression
for di that uses an estimation for the values of hi.

In practice, this estimation can be done by using a Markov
model developed through empiric data of the harvested energy,
as shown in [6], [8]. Hence, in a similar way, the online
solution in Algorithm 4 estimates hi based on knowledge of
the Markov model used to simulate the energy arrivals. In this
case, knowing the model does not give precise knowledge of
the harvested energy, because we cannot determine the state
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Algorithm 4 Online Solution with Knowledge of the Markov Model
1: ∆rm−1 = rm − rm−1, for m = 2, . . . ,M
2: brem = b0 pa

i,n = 0, ∀i, ∀n
3: λi,n = 1, ∀i, ∀n λi,1 = 0, ∀i
4: for i← 1 to T do
5: Calculate pr

i,n,j,m for the current TTI
6: ui,n = argmin(pr

i,n,j,M : ∀j ∈ J ), ∀n
7: ps

i,n,m = pr
i,n,j,m, ∀n, ∀m, for j = ui,n

8: ∆ps
i,n,m−1 = ps

i,n,m − ps
i,n,m−1, ∀n, for m = 2, . . . ,M

9: ci,n,m = ∆ps
i,n,m/∆rm, ∀n, for m = 1, . . . ,M − 1

10: ci,n,M =∞, ∀n ∆ps
i,n,M =∞, ∀n

11: di = 0 bi = hi + brem

12: if bi > bmax then bi = bmax

13: end if
14: if i < T then
15: for k ← 1 to S do
16: if hi > ωk and hi ≤ ωk+1 then s = k
17: break
18: end if
19: end for
20: for t← i+ 1 to T do
21: s = argmax(Ps,k : k = 1, . . . , S)
22: ph

t = ωs + hmax/2S
23: end for
24: di = (bi(T − i)−

∑T
t=i+1 p

h
t )/(T − i+ 1)

25: if di < 0 then di = 0
26: end if
27: end if
28: li = bi − di spow = 0 p = 0 n = 1
29: while spow < li do
30: pa

i,n = pa
i,n + p

31: λi,n = λi,n + 1
32: n = argmin(ci,k,1 : ∀k ∈ N )
33: p = ∆ps

i,n,1
34: ci,n,m = ci,n,m+1, for m = 1, . . . ,M − 1
35: ∆ps

i,n,m = ∆ps
i,n,m+1, for m = 1, . . . ,M − 1

36: spow = spow + p
37: end while
38: brem = bi −

∑N
n=1 p

a
i,n

39: end for
40: rtotal =

∑T
i=1

∑N
n=1 rm, for m = λi,n

transitions neither the exact amount of energy obtained in a
state. Thus, with knowledge of the current state, we guess the
next state as indicated by the highest transition probability.
Then, we guess that the harvested energy will be the average
value of the predicted state.

The solution presented in Algorithm 4 is strongly based on
the heuristic we described in Algorithm 1. Nevertheless, the
online algorithm does not run the procedures AdjustReq and
AdjustPA. The former procedure cannot run because we do not
know pr

i,n,j,m beforehand. And the latter procedure cannot run
since we know hi only causally, what means that we cannot
predict the battery overflow for the next TTI. Consequently,
adjust the power allocation would be senseless because we
are not sure if the battery will overflow. For this reason, the
overflow is not always prevented, and we have to redefine the
energy harvesting constraints to (11a) and (11b).

We start Algorithm 4 in line 1 by calculating ∆rm, and in
line 2 we create a new variable, brem, that represents the power
provided by the remaining energy in the battery. Initially, brem

is set to b0 and then it is continually updated in line 38. Next,
we initialize pa

i,n and λi,n in lines 2 and 3. Then, we run the
for loop from lines 4 to 39, and in lines 5 to 10 we compute
pr
i,n,j,m, ui,n, ps

i,n,m, ∆ps
i,n,m and ci,n,m only for the current

TTI, since all available information is causal. Hence, in line 11,
we set di to zero, and update the battery power bi by adding the

Algorithm 5 Online Solution with General Markov Model
1: Repeat Algorithm 4 from lines 1 to 13
2: if i < T then
3: for k ← 1 to 3 do
4: if hi > φk and hi ≤ φk+1 then s = k
5: break
6: end if
7: end for
8: ph = φs + hmax/6
9: di = (T − i)(bi − ph)/(T − i+ 1)

10: if di < 0 then di = 0
11: end if
12: end if
13: Repeat Algorithm 4 from lines 28 to 40

harvested power hi to the remaining power brem. The condition
in line 12 enforces the battery capacity restrictions in (9a) and
(9b) by limiting bi to bmax. Thus, if i < T , we calculate di
as described in lines 15 to 26. Firstly, we need to determine
the current state of the Markov model by checking the power
interval which hi belongs. These intervals are defined by

Ωk = [(k − 1)(hmax/S), k(hmax/S)], k = 1, . . . , S. (12)

Therefore, the limits of the power intervals are given by

ωk = (k − 1)(hmax/S), k = 1, . . . , S + 1. (13)

In real systems, Ωk represents the empirical Markov model,
and P is the transition probability matrix obtained from
empirical data. Continuing Algorithm 4, we run a loop, from
lines 15 to 19, that iterates over each state k until we find the
state s corresponding to hi. This is done by checking if hi is
limited between ωk and ωk+1.

Once we determined the current state s, we can guess the
next harvested power values, ph

t for t = i + 1, . . . , T . This
is shown in lines 20 to 23, where we predict the next state
s by choosing the most likely state transition indicated by P.
Then, we set ph

t to the average value of the predicted state s.
This process continues until we guess all values for ph

t , what
means that we predict a chain with possible power values for
the coming TTIs. Finally, we calculate di as expressed in line
24, which is a simplification of the equation in line 26 of
Algorithm 1. In the online problem, we assume that all values
of qi are equivalent for each TTI, which is qi = q,∀i ∈ T .
This assumption cancels out all values of qi and we obtain:

di = (bi(T − i)−
T∑

t=i+1

ph
t ) / (T − i+ 1). (14)

Furthermore, in equation (14), we replace ht for ph
t , which

represents the estimated amount of power to be harvested in
the next TTIs. The results obtained for the online problem
heavily depend on a good estimation of ph

t . In many occasions,
a bad guess for ph

t will lead to poor results. For example, if we
predict a high value for ph

t in the next TTI, then we will spend
more power in the current TTI, since we have enough power
for the next transmission. However, if the prediction fails and
we harvest a small value of ht, we may not load some cheap
bits in the next TTI since we spent much power loading costly
bits in the current TTI. This causes a less efficient resource
allocation and decreases the total data rate.
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Fig. 4. Average data rate versus number of TTIs, for M = 16, N = 15,
J = 10, T = 5 to 14, hmax = 112 mW, bmax = 208 mW and S = 7.

After calculating di, we check if di < 0 in line 25, which
happens if bi is small when compared to ph

t . Since di < 0
violates the restrictions in equation (10), in this case we set di
to zero. Thereafter, in line 28, we compute the power limit li
by applying the power decrease di to bi. Then, we calculate the
power allocation pa

i,n by running the while loop from lines 29
to 37, exactly as in Algorithm 1. Lastly, in line 38, we update
brem by subtracting the allocated power from bi. And in line
40, we finally compute the total data rate with knowledge of
the MCSs stored in λi,n.

Algorithm 4 shows a solution that requires knowledge of the
Markov model that simulates the energy harvesting process.
Nevertheless, this model may not always be available, mainly
because of the difficulties in obtaining enough data to generate
a precise model. For example, in [8] the authors generated a
Markov model from data collected over 20 years. Moreover, in
order to account for weather changes throughout the seasons,
we may need a different model for each month [8]. Therefore,
we propose an online solution that uses a general Markov
model to predict the harvested energy. This general model is
a special case of Ωk, when S = 3. Thus, the model has only
three states: low, middle and high energy states.

Algorithm 5 presents a similar solution to Algorithm 4. In
line 1, we repeat the initial part of Algorithm 4 from lines 1 to
13. Thereafter, we rewrite the code snippet from lines 14 to 27
of Algorithm 4, that refers to the calculation of di. In fact, this
is the only difference between both solutions, as described in
lines 2 to 12 of Algorithm 5. Now, since we do not know the
empirical Markov model, we use a general model with S = 3.
Hence, the new limits for determining the current state s are:

φk = (k − 1)(hmax/3), k = 1, 2, 3, 4. (15)

Once we know the current state, after running lines 3 to 7, we
simply predict that this state will preserve itself for all TTIs.
This means that ph

t = ph, for t = i+ 1, . . . , T . Then, in line
8, we compute ph as the average value of state s.

The assumption of state conservation comes from the nature
of Markov models for harvested energy. As shown in [7],
the energy harvesting environment typically changes slowly,
which heavily contributes to state conservation. This becomes
evident in [6], since the probabilities in P tend to concentrate
on the main diagonal, what confirms the assumption of state
preservation. In addition, [7] shows that the harvested energy
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Fig. 5. Average rate difference versus number of TTIs, for M = 16, N = 15,
J = 10, T = 5 to 14, hmax = 112 mW, bmax = 208 mW and S = 7.

varies considerably inside a state, what justifies the choice of
ph as the mean value in order to decrease the average error.

Continuing Algorithm 5, in line 9 we calculate di through
a simplified version of equation (14). Since we assume that
ph
t = ph, we reduce the computation of di to

di = (T − i)(bi − ph) / (T − i+ 1). (16)

This is an interesting result because equation (16) suggests to
save less and less energy for future TTIs as the time passes.
In order to illustrate this, consider the case for T = 10. In
the first TTI, we have that d1 = (9/10)(b1− ph), what means
that we save 90% of the difference between b1 and ph to
next TTIs. Then, for i = 2, we have that d2 = (8/9)(b2 −
ph), and now we save 88.9% of the power difference. The
process continues until we save only 50% of this difference
when i = 9. Thus, it is worth noting that the series t/(t+ 1),
for t = T −1, . . . , 1, appears as a natural pattern in the online
solution of our problem. Finally, after we check for negative
di in line 10, then we repeat Algorithm 4 from lines 28 to 40.

C. Performance Evaluation

Once we presented two online solutions for our problem,
now we analyze the performance of the online case when
compared to the offline case. We used the same simulation
parameters chosen previously in section IV, with the exception
of T that now varies from 5 to 14. This change aims to better
display the progress of each solution. Similarly to Figure 2,
Figure 4 shows the average data rate over 3,000 instances
of the problem for each value of T . The curves for both
online solutions are located between the curves for heuristic
and naive solutions, as expected. The online solution with
knowledge of the Markov model, shown in Algorithm 4,
generated the results displayed in the curve Online-Know. The
curve Online-General corresponds to the online solution with
general Markov model, presented in Algorithm 5.

As we can see, the general Markov model provides a good
estimation for the model used in our simulations, since the
curves of the online solutions are very close to each other.
Therefore, this general model offers a reasonable solution,
given its simplicity and its considerable improvement over the
HH algorithm (naive solution). Since it is not easy to build
an empirical Markov model [8], the general model becomes
very useful in practice because it only requires knowledge of
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the maximum harvested power, hmax. In Figure 5, we see that
the rate difference between optimal and heuristic grows almost
linearly as T increments. However, this is not the case for the
other solutions, since the difference from the optimal solution
grows more and more as T increases. This is clear when the
curves become steeper in the interval between T = 13 and
T = 14. In order to compare the results, we analyze the
problem for T = 14, when the differences from the optimal
result are maximum.

Firstly, the offline heuristic solution reaches 1.3 kbps of
difference when T = 14. Now, without knowledge of future
energy arrivals and future channel gains, the difference more
than doubled to 2.7 kbps in the Online-Know solution. This
proves how the results are inferior in practical systems with
realistic conditions. Then, the difference increases to 3.3 kbps
in the Online-General solution, which is still better than the
naive solution for T = 12, that reaches 3.6 kbps. Lastly, far
from the other solutions, we have the naive solution with 4.6
kbps of difference when T = 14. This shows the importance
of saving energy for next TTIs as we limit the spent power to
li, and consequently, we see how essential is the calculation
of di in order to improve results. Additionally, by taking the
samples in Figure 4, we calculated the NMSE for curves
Offline-Heuristic, Online-Know, Online-General and Offline-
Naive: NMSEheu = 0.083×10−3, NMSEknow = 0.321×10−3,
NMSEgen = 0.529 × 10−3 and NMSEnaive = 1.029 × 10−3.
Thus, the results clearly show that the average deviation from
the optimal solution is gradually increased as the other solution
has less available information about the problem. Also, we see
how poor the HH algorithm performs even with full knowledge
of the problem variables.

VI. DATA RATE MAXIMIZATION WITH HYBRID ENERGY
SOURCE AND QOS CONSTRAINTS

In the previous problem, our goal was simply to maximize
the total data rate with the resources available to perform
the transmissions. In addition, we had to respect the physical
limitations imposed by the OFDMA and EH systems. Now,
we formulate a new problem that adds the difficulty to satisfy
QoS requirements for each user. Since the amount of harvested
energy is random by nature, we cannot hope to satisfy all users
only with renewable energy sources [9]. Hence, we include
a fixed energy supply from a non-renewable source in order
to fulfill the demand for power. Therefore, similarly to [13],
the BS is powered by a hybrid power system composed of a
renewable and a non-renewable source. This complicates our
problem, since we have to observe the QoS constraints as we
maximize the total rate, and because we have to respect the
power limitations of the non-renewable source.

A. Problem Formulation and Optimal Solution

Before we present the new problem formulation, we define
pwi,n as the power allocated from source w to subcarrier n
in the i-th TTI. We use w = 1 for the renewable source,
and w = 2 to the non-renewable source. This means that the
power allocated to a subcarrier comes in part from source 1,
in part from source 2. Thus, we define a continuous decision

variable yi,n,w,j,m ∈ [0, 1], that assumes a value bigger than
zero when subcarrier n transmits to user j during the i-th
TTI with energy from source w that provides 100 · yi,n,w,j,m

percent of the power needed to achieve MCS m.
The binary decision variable xi,n,j,m previously defined is

also present in the new problem, since we calculate the total
data rate as expressed in equation (2). Moreover, the problem
remains constrained by the subcarrier and MCS assignment
restrictions in equation (3). Finally, in order to determine a
feasible configuration for yi,n,w,j,m, we define the following
restrictions:

yi,n,1,j,m + yi,n,2,j,m = xi,n,j,m, ∀i, ∀n, ∀j, ∀m. (17)

The restrictions in (17) ensure that the powers p1
i,n and p2

i,n

will always complement each other, as p1
i,n + p2

i,n sums up to
100% of the power required to load subcarrier n at TTI i. In
other words, the percentages in yi,n,1,j,m and yi,n,2,j,m must
sum up to 1 or 0, as indicated by xi,n,j,m.

Furthermore, we define p1
i,n, the power spent by the renew-

able source in subcarrier n at TTI i, in terms of yi,n,w,j,m:

p1
i,n =

J∑
j=1

M∑
m=1

pr
i,n,j,myi,n,1,j,m, ∀i, ∀n. (18)

Consequently, we rewrite the energy harvesting constraints
in terms of p1

i,n:

t∑
i=1

N∑
n=1

p1
i,n ≤

1

τ

t∑
i=1

Hi, t = 1, . . . , T, (19a)

t+1∑
i=1

Hi − τ
t∑

i=1

N∑
n=1

p1
i,n ≤ Bmax, t = 1, . . . , T − 1. (19b)

Then, we define p2
i,n, the power spent by the non-renewable

source in subcarrier n at TTI i, in terms of yi,n,w,j,m:

p2
i,n =

J∑
j=1

M∑
m=1

pr
i,n,j,myi,n,2,j,m, ∀i, ∀n. (20)

The next restriction regards the power provided by the non-
renewable source that provides a fixed amount of power, pfix,
per TTI. Hence, p2

i,n is restricted to:

N∑
n=1

p2
i,n ≤ pfix, ∀i. (21)

The final restriction regards the QoS constraints that ensure
a minimum data rate, Qj , to be experienced by each user j
throughout the T TTIs. Therefore, the QoS requirements are:

T∑
i=1

N∑
n=1

M∑
m=1

rmxi,n,j,m ≥ Qj , ∀j. (22)

Now, we need the values of xi,n,j,m and yi,n,w,j,m that
maximize the total data rate for the optimization problem:

max
x, y

T∑
i=1

N∑
n=1

J∑
j=1

M∑
m=1

rmxi,n,j,m, (23)
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subject to

Equations (3), (17), (19a), (19b), (21) and (22), (24a)

xi,n,j,m ∈ {0, 1}, ∀i, ∀n, ∀j, ∀m, (24b)

yi,n,w,j,m ∈ [0, 1], ∀i, ∀n, ∀w, ∀j, ∀m. (24c)

This problem is a MILP (Mixed Integer Linear Programming)
mathematical optimization, since we have continuous and
discrete values for the decision variables. In order to obtain
the optimal solution, we run the BB algorithm implemented by
the CPLEX solver. The computational complexity has grown
considerably in comparison with the problem presented in
section IV, because of the many additional restrictions in (17),
and specially because of the QoS constraints in (22). These
QoS requirements completely change the reasoning behind the
heuristic solution in the offline case. Our new heuristic solution
is shown in Algorithm 6.

B. Heuristic Solution

We start Algorithm 6 by running the first four lines of
Algorithm 1, where we compute the values of pr

i,n,j,m, qa
i,n,

ui,n and ps
i,n,m. Differently from Algorithm 1, we do not

decrease the power requirements in qi by running procedure
AdjustReq, because each value of qi is decremented by pfix in
line 11 of Algorithm 6. This decrease is enough to remove
the extra power in overloaded subcarriers. Thus, running
AdjustReq would easily set qi to zero, what worsens our results
since qi = 0 means no need to spend power from the battery
at TTI i. However, this is only true when pfix is sufficient to
achieve MCS M in all subcarriers at TTI i. Hence, the best
action is simply to subtract pfix from qi. Then, we continue
Algorithm 6 by running lines 17 to 22 of Algorithm 1, where
we set the variables ∆rm, ∆ps

i,n,m, ci,n,m, pa
i,n, λi,n and b1.

After we determine the values for all these variables, we
run the for loop from lines 2 to 10 in Algorithm 6, that
calculates the power allocated from the non-renewable source,
p2
i,n, for each TTI. This means that we raise the first MCS

levels with power from pfix, and then, we add power from
the battery in order to achieve higher MCS levels. Also, we
compute an initial power allocation without checking the QoS
requirements, and next, we satisfy the QoS constraints by
running the procedure SatisfyQoS. In line 3, we initialize spow,
p and n on the goal to start the while loop from lines 4 to
6. This loop runs the HH-based method described in lines
34 to 40 of Algorithm 1, with the exception of loading p2

i,n

rather than pa
i,n. Moreover, we limit the spent power to pfix

instead of limiting to li, and after the loop ends we obtain
the values of p2

i,n for TTI i. In line 7, we calculate βi that
is the remaining power from the fixed power supply at TTI
i. Then, in line 8, we define ζi as the difference between the
last power increment p and βi. Thus, ζi is the power taken
from the battery that complements βi in order to apply the
power increase p. Lastly, in line 9, ηi stores the subcarrier n
that corresponds to p at TTI i.

In line 11, we compute qi by subtracting pfix from the sum
of qa

i,n for each n, and in case qi < 0, we set it to zero in
line 12. Next, we initialize all values of di to zero in line 13,
and we begin the for loop from lines 14 to 35, that calculates

Algorithm 6 Heuristic Solution for Hybrid Power Systems
1: Repeat Algorithm 1 from lines 1 to 4 and 17 to 22
2: for i← 1 to T do
3: spow = 0 p = 0 n = 1
4: while spow < pfix do
5: Repeat Algorithm 1 from lines 34 to 40 by replacing pa

i,n for p2
i,n

6: end while
7: βi = pfix −

∑N
n=1 p

2
i,n

8: ζi = p− βi
9: ηi = n

10: end for
11: qi = −pfix +

∑N
n=1 q

a
i,n, ∀i

12: qi = 0, ∀i where qi < 0
13: di = 0, ∀i
14: for i← 1 to T do
15: if i < T and

∑T
t=i qt > 0 then

16: Repeat Algorithm 1 from lines 26 to 30
17: end if
18: li = bi − di spow = ζi p = ζi n = ηi
19: if spow < li then
20: p2

i,n = p2
i,n + βi

21: βi = 0
22: end if
23: Repeat Algorithm 1 from lines 33 to 41 by replacing pa

i,n for p1
i,n

24: if i < T then
25: f = (hi+1 + bi −

∑N
k=1 p

1
i,k)− bmax

26: if f > 0 and spow < bi then
27: p2

i,n = p2
i,n + βi

28: p1
i,n = p1

i,n + p
29: λi,n = λi,n + 1
30: else if f > 0 then
31: AdjustPA(λ,u,p1,pr, i, f)
32: end if
33: bi+1 = hi+1 + bi −

∑N
n=1 p

1
i,n

34: end if
35: end for
36: ξj = 0, ∀j
37: for i← 1 to T do
38: for n← 1 to N do
39: m = λi,n
40: j = ui,n
41: ξj = ξj + rm
42: end for
43: end for
44: SatisfyQoS(λ,u, ξ,β,p1,p2,pr)
45: pa

i,n = p1
i,n + p2

i,n, ∀i, ∀n
46: rtotal =

∑J
j=1 ξj

the power allocated from the battery, p1
i,n, for each TTI. If we

pass the conditions in line 15, then we determine the value of
di as described in lines 26 to 30 of Algorithm 1. In this case,
we add an extra condition regarding the sum of qt in order to
prevent division per zero in the computation of di. Hence, we
continue in line 18, where we set li, spow, p and n. The last
three variables are set according to ζi and ηi, since we will
firstly raise the MCS level of the subcarrier pointed by ηi. If
li is greater than ζi, then we add the remaining power βi to
p2
i,n in line 20. Thereafter, βi is set to zero in line 21, since

we spent all power from pfix at TTI i.

If we satisfy the condition in line 19, then we add ζi to p1
i,n

as we start the loop from lines 33 to 41 of Algorithm 1. This
loop will gradually load p1

i,n until we exceed the power limit
li. After the loop ends, we calculate the battery overflow f in
line 25, and if f > 0 and spow < bi, then we apply the last
power increment p. In line 27, we add βi to p2

i,n since we may
not run line 20 neither line 23, and we would still apply the
power increase p = βi + ζi. Finally, if the overflow f remains
greater than zero, then we run the procedure AdjustPA in line
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31 by inputting p1
i,n rather than pa

i,n. Now, running procedure
AdjustPA has some advantages, because as we take subcarrier
n from user k in order to assign n to user j, we may favor
a user that still needs to satisfy its QoS requirements. This is
what happens most often, because k is more favored than j
when the subcarrier assignment changes. In line 33, we update
the battery level for the next TTI, and as the loop ends we
have completed the initial power allocation for p1

i,n and p2
i,n.

However, we need to check the QoS requirements, and then
we compute the data rate experienced by each user j along
all TTIs, given by ξj . The calculation of ξj is shown in lines
36 to 43. Consequently, we run the procedure SatisfyQoS in
line 44, and after it runs, we determine pa

i,n and the total data
rate as described in lines 45 and 46, respectively.

Algorithm 7 shows the procedure SatisfyQoS, that iterates
over each user j until all users are satisfied. We start in lines
3 and 4 by sorting the channel gains for user j in descending
order, where θi,n stores the sorted gains and µi,n stores the
subcarriers corresponding to the sorted values. In line 5, we
calculate ∆Q, that is the difference between the desired QoS
and the current data rate for user j. Then, in line 6 we set the
variable f , that determines the fraction of ∆Q that must be
added to ξj when we assign subcarrier n to user j. Initially,
we set f to one, what means that we wish to add the whole
value of ∆Q to ξj in the first subcarrier assignment. If this
is not possible, then we increment f until we are able to add
at least ∆Q/f to ξj . This is done to minimize the number
of changes in ui,n, what maximizes rtotal since the initial
assignment stores the best matches between n and j in the
sense of rate maximization.

The while loop from lines 7 to 36 runs until we satisfy
the QoS constraints for user j. And after it starts, we load
the variables θi,n and µi,n to gi,n and ψi,n, respectively. This
is done to refresh the values of gi,n and ψi,n after we leave
the loop beginning at line 10. This loop finishes if we satisfy
the QoS restrictions or if we use up all the values of gi,n.
In line 11, we determine i, that is the TTI corresponding to
the greatest gain for user j found in gt,1,∀t ∈ T . Next, in
line 12, we set n to the subcarrier that has the greatest gain
as pointed by ψi,1. Hence, in lines 13 and 14, m stores the
achieved MCS in subcarrier n at TTI i, and k stores the user
who was assigned to subcarrier n at TTI i. For TTI i, the idea
is to take the power for allocating n with MCS m to user k
and use it to allocate n with MCS c to user j.

Therefore, in line 15, we define p = βi + p2
i,n + p1

i,n as the
power available to assign subcarrier n with MCS c to user j
at TTI i. Now, we have to determine the MCS c that can be
achieved with the available power p. This is done by running
the for loop from lines 16 to 21, that computes the biggest
value of c for p > pr

i,n,j,c. If we do not pass the condition in
line 17, this means that p > pr

i,n,j,M , and c = M since this is
the last value of c in the for loop. Then, in line 22, we check
the conditions needed to apply the new subcarrier assignment.
Firstly, rc has to add at least ∆Q/f to ξj . Secondly, we need
to maintain user k satisfied, as we subtract rm from ξk still
respects the QoS constraints for user k. If the conditions are
favorable, we take subcarrier n from user k and assign n to
user j. Finally, this results in subtracting rm from user k and

Algorithm 7 Satisfy QoS Constraints
1: procedure SatisfyQoS(λ,u, ξ,β,p1,p2,pr)
2: for j ← 1 to J do
3: θi = sortdesc(αi,n,j : ∀n ∈ N ), ∀i, where θi = {θi,n : ∀n}
4: µi = argsortdesc(αi,n,j : ∀n ∈ N ), ∀i, µi = {µi,n : ∀n}
5: ∆Q = Qj − ξj
6: f = 1
7: while ξj < Qj do
8: gi,n = θi,n, ∀i, ∀n
9: ψi,n = µi,n, ∀i, ∀n

10: while ξj < Qj and
∑T

t=1 gt,1 > 0 do
11: i = argmax(gt,1 : ∀t ∈ T )
12: n = ψi,1

13: m = λi,n
14: k = ui,n
15: p = βi + p2

i,n + p1
i,n

16: for c← 1 to M do
17: if p < pr

i,n,j,c then
18: c = c− 1
19: break
20: end if
21: end for
22: if rc ≥ ∆Q/f and ξk − rm ≥ Qk then
23: ξk = ξk − rm
24: ξj = ξj + rc
25: λi,n = c
26: ui,n = j
27: p = p2

i,n

28: p2
i,n = pr

i,n,j,c − p1
i,n

29: βi = βi + p− p2
i,n

30: end if
31: ψi,n = ψi,n+1, for n = 1, . . . , N − 1
32: gi,n = gi,n+1, for n = 1, . . . , N − 1
33: gi,N = 0
34: end while
35: f = f + 1
36: end while
37: end for
38: end procedure

in adding rc to user j, as shown in lines 23 and 24.
Moreover, we update the MCS and the subcarrier assign-

ment stored in λi,n and ui,n, as shown in lines 25 and 26. We
also need to adjust the power spent in this new assignment,
thus, we update p2

i,n as we keep the power allocated from the
battery unchanged. This is done in line 28, where we set p2

i,n

to the difference between pr
i,n,j,c and p1

i,n. Lastly, in line 29,
we update βi by adding to it the difference p − p2

i,n, where
p is the previous value of p2

i,n stored in line 27. In this case,
βi tends to increase because c ≤ m. Nevertheless, it may
decrease if βi, in addition to p2

i,n + p1
i,n, has enough power

to raise an extra MCS level, what may turn c equal to m.
On the other hand, the total data rate tends to decrease since
c ≤ m, and in the best case, it simply remains unchanged.
Hence, it becomes clear how the QoS constraints decrease
rtotal. Continuing Algorithm 7, in lines 31 and 32 we update
ψi,n and gi,n, and in line 33 we set gi,N to zero to indicate
that one gain was used up. After the loop ends in line 34, we
increment f by one in line 35, and after we satisfy all users
the procedure SatisfyQoS terminates.

C. Performance Evaluation

In order to assess the effectiveness of Algorithm 6, we ran
simulations for three different values of QoS requirements.
Initially, we define µ = 1

M

∑M
m=1 rm as the average over all

possible values of rm. Next, we define Qj = T · µ, ∀j ∈ J ,
as the middle QoS requirement for each user j. This means
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Fig. 6. Average data rate versus number of TTIs, for M = 16, N = 12,
J = 6, T = 4 to 11, hmax = 112 mW, bmax = 240 mW, pfix = 96 mW,
S = 7, and Qj for middle QoS.

that, at the end of T TTIs, all users have to achieve at least the
data rate that is equivalent to experiment µ bps at each TTI.
Consequently, we define the low and high QoS requirements
for each user j as Qj = (T − 1) · µ and Qj = (T + 1) · µ,
respectively. We also define pfix = 96 mW, and we decrease
the values of N and J to N = 12 and J = 6. This reduction
aims to minimize the effects of high memory consumption
and high computational time to obtain the optimal solution.
Additionally, we increase the battery capacity to bmax = 240
mW in order to reduce the occurrences of battery overflow,
since we added pfix to the power supply. The Algorithm 6
generated the results for the Heuristic-HighQoS, Heuristic-
MidQoS and Heuristic-LowQoS curves. The CPLEX solver
generated the results for the Optimal-MidQoS and Optimal-
LowQoS curves. Figure 6 shows the average data rate over
1,000 instances of the problem for T = 4 to 11.

Also, this figure shows the results for optimal and heuristic
solutions when Qj assumes a middle QoS requirement. We
realize that the difference between both solutions increases as
T grows but, as we shall see, not in the same way for each
value of QoS. Figure 7 shows how these differences grow as
we vary the required QoS. We observe that, for low and middle
QoS scenarios, the differences from the optimal solution grow
faster than in high QoS scenarios. On the other hand, the
heuristic solution presents the worst performance with high
QoS, because it performs extra changes in the subcarrier
assignment on the goal to satisfy the QoS constraints.

Curiously, even though the differences are greater, they
slowly increased in the high QoS problem, specially in the
interval between T = 9 and T = 10. Like this, the curves
in Figure 7 tend to become closer since we have more time
to fulfill the QoS requirements as T grows. For example, in
T = 4 the HighQoS and MidQoS curves differ by 434 bps,
and in T = 11 they differ only by 206 bps. Thus, higher
QoS demands have minor effects in the heuristic solution for
bigger values of T . Despite this fact, the difference between
optimal and heuristic will always grow because the problem is
more complex when T increases. Moreover, we calculated the
NMSE for each value of QoS in order to measure the impact of
higher QoS in the heuristic solution. The NMSE for LowQoS,
MiddleQoS and HighQoS, according to the samples in Figure
7, are: NMSElow = 0.201× 10−3, NMSEmid = 0.301× 10−3

number of TTIs
4 5 6 7 8 9 10 11

av
er

ag
e 

ra
te

 d
if

fe
re

nc
e 

(k
bp

s)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Heuristic-HighQoS
Heuristic-MidQoS
Heuristic-LowQoS

Fig. 7. Average rate difference versus number of TTIs, for M = 16, N = 12,
J = 6, T = 4 to 11, hmax = 112 mW, bmax = 240 mW, pfix = 96 mW,
S = 7, and Qj for high, middle and low QoS according to each curve.

and NMSEhigh = 0.477×10−3. As expected, the error grows as
we raise the required QoS because higher demands complicate
the resource management, what results in greater deviation
from the optimal solution.

After we compared two different solutions for the same QoS
scenarios, now we compare the same solution for different
QoS scenarios. This is shown in Figure 8 that compares
the progress of the heuristic solution for low and high QoS
requirements, where the performance improves when Qj de-
creases. This figure displays the opposite behavior of that
shown in Figure 6, since the difference between the heuristic
solutions decreases as T grows.

This behavior is explained by the fact that, as we add extra
TTIs, we have more available power and more combinations
for setting up pa

i,n and ui,n. Therefore, the loss in rtotal caused
by higher QoS requirements is reduced as T increases. This is
clearly visible in Figure 9, that shows how the differences
from the high QoS scenario decrease for the optimal and
heuristic solutions. This figure aims to demonstrate how lower
QoS demands result in higher values of rtotal. This is done
by comparing Heuristic-HighQoS to Heuristic-MidQoS and
Heuristic-LowQoS. Similarly, we compare Optimal-HighQoS
to Optimal-MidQoS and Optimal-LowQoS. In Figure 9, it is
noticeable that the optimal solution has superior performance
over the heuristic algorithm, because the optimal curves are
well below the heuristic curves. This shows that rtotal presents
greater variation in the heuristic solution, meaning that the
heuristic is more affected by the QoS requirements.

Furthermore, the curves for middle QoS are below its
respective curves for low QoS, what means that the differences
decrease when Qj grows. In addition, we see that the distance
between the heuristic curves is much greater in comparison to
the optimal curves. This is clear in T = 11, since the heuristic
curves differ by 243 bps while the optimal curves differ by
44 bps. Other observations include the faster decay displayed
by the heuristic solution, and the considerable reduction in
the rate difference when compared to Figure 7. For example,
in Figure 9 the greatest difference is 0.89 kbps when T = 4
in the Heuristic-LowQoS curve, whereas Figure 7 shows 1.56
kbps of difference when T = 11 in the Heuristic-HighQoS
curve. Thus, the differences are much bigger between different
solutions with same QoS than between same solutions with
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Fig. 8. Average data rate versus number of TTIs, for M = 16, N = 12,
J = 6, T = 4 to 11, hmax = 112 mW, bmax = 240 mW, pfix = 96 mW,
S = 7, and Qj for low and high QoS according to each curve.

different QoS. Lastly, we analyze the computational time for
optimal and heuristic solutions as Qj increases.

We define the pair (t1, t2), where t1 and t2 are the average
execution times in ms for optimal and heuristic solutions,
respectively. Then, for T = 6, we obtained E6 = {(t1, t2) :
(5466, 45.5), (6135, 48.3), (6683, 51.4)}, where the three pairs
correspond to low, middle and high QoS, respectively. We also
define the triple GT = (g1, g2, g3), where gi is the ratio t1/t2
with i = 1, 2, 3 corresponding to low, middle and high QoS,
respectively. Hence, for T = 6, we have G6 = (120, 127, 130)
with gi truncated to an integer. The results in E6 show that the
execution time grows considerably for the optimal solution as
Qj increases, while the time for the heuristic solution grows
at reduced rates. Additionally, G6 shows a good compromise
between performance and complexity, since for low QoS, the
heuristic runs 120 times faster than the optimal solution at the
cost of a small loss in data rate. The results in G6 improve as
Qj grows, because the gain in computational time increases
to 127 and 130 for middle and high QoS. For higher values of
T , the trade-off between performance and complexity becomes
more evident. In order to illustrate this, for T = 8 we have
E8 = {(t1, t2) : (11523, 61.8), (12108, 63.3), (12681, 65.5)}
and G8 = (186, 191, 193). In this case, the times for optimal
solution almost doubled in comparison to T = 6, whereas
the times for heuristic solution increased by small amounts.
Consequently, the gains in G8 achieved a maximum of 193 at
the cost of losing 1.47 kbps in the high QoS scenario.

VII. CONCLUSIONS

In this paper we studied the problem of resource allocation
for rate maximization in OFDMA systems with an EH Base
Station transmitting to several users. Firstly, we formulated the
problem in an offline scenario in the form of an ILP. Secondly,
we proposed a heuristic solution that, according to simulation
results, achieves near-optimal performance at the cost of low
computational complexity in the simulated scenario. We also
implemented the discrete relation between SNR and data rate
through MCSs, that is a more realistic assumption than the
continuous mapping proposed in several studies referenced by
this work. Finally, our EH model follows a Markov chain that,
differently from other models found in literature, has states
represented by continuous intervals, giving the advantage of
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Fig. 9. Average rate difference versus number of TTIs, for M = 16, N = 12,
J = 6, T = 4 to 11, hmax = 112 mW, bmax = 240 mW, pfix = 96 mW,
S = 7, and Qj for low and middle QoS according to each curve.

simulating the actual nature of the energy arrivals. To the best
of our knowledge, the problem formulation proposed in section
IV has not been presented in literature yet, and the heuristic
in Algorithm 1 introduces a novel solution for problems that
deal with EH technology in wireless communications.

In addition, we performed an analysis of the online case
as we developed two different solutions only with causal
information. The results in section V show the advantage of
saving energy for future TTIs, and how performance improves
according to better predictions of the harvested energy. Next,
in section VI, we presented a new problem formulation
that considers QoS constraints to be satisfied for all users.
This problem describes a new scenario where the BS is
powered by a hybrid power system, and the subcarriers are
loaded with power from two types of sources: renewable and
non-renewable. Afterwards, we proposed a heuristic solution
that solves the problem for offline settings, and simulation
results demonstrated the considerable compromise between
performance and complexity. As far we know, the algorithms
shown in section V, the problem formulation described in
section VI, and the solution presented in Algorithm 6 are new
contributions still not available in the literature.
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