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On the Use of Graph Fourier Transform
for Light-Field Compression

Vitor Rosa Meireles Elias and Wallace Alves Martins

Abstract—This work proposes the use and analyzes the viabil-
ity of graph Fourier transform (GFT) for light-field compression.
GFT is employed in place of discrete-cosine transform (DCT)
in a simplified compression system based on high-efficiency
video coding (HEVC). The effect on GFT efficiency of different
implementations for prediction procedure is analyzed, as well
as different methods for computing GFT given residual images.
Results indicate that the prediction scheme is sensitive to the
type of light field being compressed, and a preliminary method
for selecting the best prediction scheme is explored. Moreover,
considering multiple residual images when computing GFT,
instead of only one central image, improves compression rate and
makes compression more uniform across multiple views. GFT
achieves reduction of up to 21.92% in number of transform
coefficients when compared to DCT-based compression, while
providing better or equal mean squared reconstruction error.

Index Terms—Signal Processing on Graphs, Graph Fourier
Transform, Light Field, Compression, High Efficiency Video
Coding, Discrete-Cosine Transform, Prediction.

I. INTRODUCTION

Light field imaging is a promising technology that opens a
variety of new possibilities to entertainment industries, such
as photography and cinema, by capturing 4D data from a
scene [1]–[7]. Light field technology is based on the 5D
plenoptic function L(x, y, z, θ, φ), which describes the amount
of light L, denominated radiance, along every position (x, y, z)
in space and in any direction (θ, φ). Theoretically, if the
plenoptic function for a region of interest is known, any
image associated with that region can be recreated, from
every perspective. This motivates the use of light field in
entertainment industries, mainly photography and cinema [1].
Other application for light fields reside in medical imaging,
such as microscopy [8] and brain imaging [9]. In practice,
determining the plenoptic function is unfeasible, so light field
cameras capture a 4D parametrization of the plenoptic function
that consists of multiple photographs of a scene. This can be
done moving a digital camera in a grid of various positions and
taking photographs at each position, by using an array with
multiple cameras, or by adding a microlens array in front of
the camera sensor [3].

As light field data consists of multiple photographs, data
size may increase drastically depending on the configuration of
the light-field recording setup, making the manipulation of the
resulting data a challenging task [10]–[15]. The “JPEG Pleno”
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initiative, conducted by the JPEG standardization committee,
aims at providing solutions for framework and data manipu-
lation considering several multiview image techniques, such
as light field [6]. The delivery of a complete set of tools,
including framework, coding, tests, and software, is set to
2018 [6], [16]. This requires in-depth research in order to
develop and improve the various tools.

The use of graphs is specially relevant when dealing with
an irregular domain or any domain that is not well represented
by traditional time series [17]. In the current stage of the
information era, the necessity of dealing with data from
enormous networks, such as social networks, sensor networks,
transport networks, among many others, increases daily. Given
the non-ordered nature of these networks, using graphs as an
underlying domain for the associated data becomes an inter-
esting alternative to standard analyses [18]. Data from these
networks become signals on graphs and, in order to manipulate
these data, tools from classic digital signal processing (DSP)
are adapted to signals on graphs, yielding the emerging field
of digital signal processing on graphs (DSPG ) [17], [19]–[23].

Two important concepts that serve as basis for a signal
processing framework for signals on graphs are the definitions
of shift operator and frequency domain. As an emerging field,
there are no consensus regarding the proper definitions of
these concepts, giving rise to many researches addressing the
approach that best fits each particular application [24]. One
approach is based on the spectral graph theory [25], which uses
the graph Laplacian L as shift operator and its eigenvectors as
spectrum of the graph. This approach is usually restricted to
undirected graphs, for which relations between two different
elements are symmetrical, i.e., an edge from element i to
element j has the same value as an edge from j to i. A second
approach, valid for both directed and undirected graphs, uses
the adjacency matrix of the graph A as shift operator [19],
[26], [27]. In this case, the spectrum of the graph is defined
as the eigenvalues of A. This approach is the one adopted
throughout this work, as it allows the use of more general
classes of graphs.

This work is an extended version of the work presented in
[28], where the application of graph Fourier transform (GFT)
was proposed and studied as an alternative to the discrete-
cosine transform (DCT) in the compression of light-field data.
The objective of this work is to provide an improvement for
light-field compression systems based on high-efficiency video
coding (HEVC) [14], [29]. In HEVC, DCT and discrete-sine
transform (DST) are used as block transforms, with the objec-
tive of mapping data into a frequency-related domain where
quantization (and thus compression) is more efficient. This
increase in efficiency is due to the energy compaction property
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related to these trigonometric transforms when applied to
images. It has been shown in [30], [31] that GFT is able to
concentrate energy in fewer coefficients when compared to
DCT, decreasing compression distortion when using the same
number of coefficients. GFT usually depends on the original
data and, thus, is not a fixed transform. Transmitting the
transform basis from encoder to decoder is required, increasing
transmission rate, and the impact of this task must be dealt
with in order for GFT to be more efficient than DCT in the
rate-distortion sense.

A. Scope and Contributions

This work begins by providing a review on both light
field and DSPG theories and an overview on how both these
concepts are employed in this work. This includes: presen-
tation of introductory concepts on both topics, motivation
of the proposed approaches, notation, and database adopted
throughout this work. The remaining part of this work focuses
on analyzing the viability of using GFT in place of DCT under
different analysis methods. We investigate forms of improving
the performance of GFT by studying some of its parameters for
which no consensus has been reached. The main contributions
of this work are:
• Proposal and investigation of real applications for the

developing field of DSPG , given real and practical light
field data.

• Performance comparison between GFT and traditional
and broadly used DCT, analyzing viability of using GFT
in the proposed application.

• Study of the effects of different settings for graph repre-
sentation on GFT.

B. Outline

In Section II, background review on both light field and
DSPG is provided, including theory, applications, and moti-
vation. Section III presents the proposed approach for using
GFT light-field compression in an HEVC-based system. Sec-
tion IV describes the entire methodology regarding database,
definitions, and other concepts adopted throughout this work.
Simulations and results are presented in Section V. Section VI
presents a brief discussion of the results and future works.
Section VII presents a conclusion for this work.

II. LIGHT FIELD AND DSPG : A REVIEW

This section reviews the main concepts related to both light
fields and DSPG . It begins by presenting light-field theory,
focusing on recent implementations and how light-field data
is generated. Then basic graph concepts and notations adopted
in this work are presented, along with recent advances in the
area.

A. Light field

Early notions of interpreting light as a field and conceiving a
vector function to represent the amount of light present at (and
passing through) points in space date back to the beginning of
the 20th century. In 1936, Andrey Gershun introduced the term

Figure 1: Planes st and uv, which serve as 4D parametrization
for plenoptic function.

light field [32] and an early version of the function that would
later be called the plenoptic function. In its standard interpreta-
tion, the 5D plenoptic function L(x, y, z, θ, φ), which is a scalar
field, describes light intensity that goes through a given point
in space as a function of its position and the direction toward
which the light ray is headed. Light intensity is denominated
radiance and is given in W⁄sr·m2 (watts per steradian per meter
squared, i.e., power per solid angle per area). The function L(·)
may be extended to higher dimensionality, for instance, by also
considering time or wavelength. The idea of this function is
to convey the complete information about a scene1 associated
with electromagnetic radiation. If L(·) is known, then every
possible view2 associated with a scene can be reconstructed
by correctly arranging evaluations of the function for different
points and directions in space, having several applications in
imaging, photography, rendering, and other areas.

In practice, the plenoptic function is not available or ob-
tainable in a feasible way. If free space is assumed, that is,
the space associated with the region of interest is free of
obstacles, the plenoptic function may be represented in lower
dimensionality, considering a light ray sustains its radiance for
different points along a given direction. The assumption of free
space may be generalized to keeping the region of interest
limited to the convex hull of any object. A straightforward
parametrization of the plenoptic function in four dimensions
is composed by two planes as shown in Figure 1. This
representation of plenoptic function in four dimensions leads
to current implementations of light-field-capturing devices. In
devices used for capturing scenes and creating a light-field
composition, the uv plane is taken as the camera plane and
the st plane as the focal plane. That is, multiple light rays from
the scene located at plane st travel along the space and hit a
sensor region in plane uv, creating a view of the scene [1].
Common implementations are:

• array of cameras, with all cameras focused on the scene,
creating a discrete version of plane uv;

• moving camera over a grid, capturing the scene at each
point of the grid. It is actually similar to using an array of

1In this context, scene is a region of interest in space, usually containing
an observable object.

2In the sense of a graphical projection of the scene onto a planar surface.
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Figure 2: Example of light-field data, consisting of multiple
views of a scene, captured by a moving camera.

cameras, but requiring a static scene. An example of light
field captured by a moving camera is shown in Figure 2;

• microlens array inside a conventional digital single-lens
reflex (DSLR) camera, where each microlens captures
light from a different direction rendering different per-
spectives of the scene.

Light-field technology comes with several applications,
most of them in the entertainment field. With light-field data
captured by systems such as the aforementioned ones, features
otherwise unfeasible become direct applications. For instance,
synthetic aperture photography allows changing the focal point
of a picture after it was taken. Light-field rendering allows the
creation of novel views not previously captured. Light field
displays may improve virtual-reality displays by using full
light-field data rather than simple stereoscopic views. Light-
field applications, however, are very data-intensive, since a
single traditional image is now represented by a set of multiple
images. Recent researches are dedicated to dealing with the
high amount of data from light field [10], [11], [14].

B. Digital signal processing on graphs

Graphs are commonly defined as mathematical structures
composed by two different sets: set V = {v0, v1, . . . , vN−1}
composed of N vertices (also known as nodes) and set
E = {e00, e01, . . . , e(N−1)(N−1)} of N2 edges. Vertices are basic
units and are interpreted as objects of a graph G = {V, E},
which can be used to model objects in diverse systems, e.g.,
points in R2, sensor locations in a network, social-network
users, or chemical elements on a molecule, among many
other applications. Edges ei j , whose meaning and (possibly
complex) value rely on the application of the graph, represent
pairwise relations between vertices vi and vj , being equal to
zero if there is no relation. The neighborhood of a vertex vi
is defined as the set of all vertices directly connected to vi

Figure 3: Example of undirected graph with N = 4.

by a non-zero edge. These assumptions consider that there
are no multiple edges between two vertices, but there are no
restrictions to self-loops, which means a vertex can be directly
related to itself. In this context, relation between elements does
not have a fixed definition and depends on the application. If
the relation between vertices vi and vj is the same as the
relation between vertices vj and vi for every pair of vertices,
i.e., ei j = eji, ∀i, j, the graph is denominated undirected
graph. Otherwise, if the direction of the edge is relevant and
ei j , eji for some pair of vertices, the graph is denominated
directed graph. An example for an undirected graph is shown
in Figure 3, with N = 4 vertices. This graph is not fully
connected, since many edges are equal to zero. Another form
of representing the relations between vertices is the adjacency
matrix A ∈ CN×N , whose element [A]i j = ei j . The graph is
undirected if, and only if, A is symmetric. Throughout the rest
of this paper, graphs will be represented by pairs G = {V,A}.

Graphs are traditionally used as tools for data visualization
and system modeling, whereas classical digital signal process-
ing (DSP) is traditionally constructed around well-structured
domains, such as time or space. Time domain is interesting
for DSP as it holds properties that are particularly useful in
the analysis of discrete-time signals. Consider a discrete-time
finite-duration signal s[n] as a function s : {0, 1, . . . , N −1} →
C that maps instants n ∈ {0, 1, . . . , N − 1} in time domain
into the complex plane. Time domain is well-structured, as
comparisons such as n1 < n2 and n1 = n2 are feasible for
any two points n1, n2 within {0, 1, . . . , N − 1}, and it is a
totally ordered domain. For many applications that emerge
with recent advances and necessities in technology, treating
signals associated with unstructured and more general domains
is required. These applications are usually associated with
networks, such as social, transport, sensor, and biological
networks, for which representing the underlying domain with
time or space would waste part of the information regarding
connections among elements in the network. Graphs provide
the suitable discrete domain for signals extracted from these
types of network. Moreover, these applications are usually
data-intensive, and graphs are a natural tool for representation
of Big Data [20].

The concept of signals on graphs uses the set of N ver-
tices V of a graph G as the domain of a dataset of N
elements, equivalently to the use of N time instants n ∈
{n0, n1, . . . , nN−1}, as shown in Figure 4. The set of edges
E of the graph is used to encode any relevant relationship
between elements of the signal that could not be represented
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Figure 4: Relation between a signal represented in time domain
and in graph domain.

in the time domain. A classic example is a sensor network that
measures local temperature for N sensors distributed across
several points of a country. Each location is represented by
a vertex of the graph and the locally measured temperature
is the signal on the vertex. Edges may be used to indicate
distance between sensors, rendering an undirected graph. An-
other example is the measurement of user activity on a social
network. Vertices would indicate each user account, for which
an online-time is measured, and users are connected to each
other via “following” tags, rendering a directed graph. For
both cases, representing signals in time domain discards pieces
of information that could be of paramount importance when
processing these data.

The notation for signals on graph adopted throughout this
paper is as follows: a graph signal given by s : V → C is
referred to as a vector s. The n-th entry of vector s is sn =
s[vn], with vn ∈ V.

Once graph domain and the definition of a signal over
this domain are formally stated, one can build tools to pro-
cess signals on graphs, which lead to two major approaches
developed in the last years. The first approach is based on
graph spectral theory [25] and on the graph Laplacian, being
restricted to undirected graphs with non-negative edge values.
This approach has received great attention and much effort
was put into developing tools with these concepts [17]. Tools
for DSPG are mostly translations from already-consolidated
classical DSP tools, which was mostly exploited by the second
approach proposed by Sandryhaila and Moura [19], [20], [26],
whose concepts are adopted and reviewed in the following
definitions.

The first and most fundamental tool translated from classical
DSP is the unit-delay or unit-shift operator, denoted as T −1,
which consists of an essential block in filter design. In DSP,
when a unit shift T −1 is applied to a length-N discrete-time
signal s[n], the signal is shifted in time resulting in a signal

s̃[n] = T −1 {s[n]} = s[(n − 1) mod N]. (1)

The unit-shift operator T −1 is a linear transformation,
implying that it can be associated with a matrix. Indeed, when

Figure 5: Cyclic graph: generalization of discrete-time domain.

using vector notation, one can rewrite Equation (1) as
s̃[0]
s̃[1]
...

s̃[N − 1]


=


1

1
. . .

1


.

︸                ︷︷                ︸
=C


s[0]
s[1]
...

s[N − 1]


. (2)

One can interpret the relation in Equation (2) within a graph
framework. Indeed, consider the directed cyclic graph in Fig-
ure 5. Given all edges equal to 1, this graph can be interpreted
as a graph generalization of the discrete-time domain, where
each vertex vn represents a time instant n ∈ {0, 1, . . . , N − 1}.
The adjacency matrix of this graph is the cyclic-shift matrix
C appearing in Equation (2).

One can bring these ideias to the graph domain by con-
sidering a graph G = {V,A} as the underlying structure for
a signal s, and by identifying the graph-shift operator with
the graph adjacency matrix A. That is, a shifted signal s̃ on a
graph is given by

s̃ = As. (3)

This definition for graph shift means that shifting a signal
on graph domain is equivalent to replacing each signal sample
sn by a linear combination, given by the n-th row of A, of its
neighborhood. This approach is not restricted to undirected
graphs, allowing the use of directed graphs with complex-
valued edges. A straightforward property of this definition is
that it generalizes the unit-shift operator from classical DSP.

Given a formal definition for unit-shift in the graph domain,
defining filters is the next natural step and it is performed by
translating filtering concepts from classical DSP. In discrete-
time domain, the output from a finite-duration impulse re-
sponse (FIR) filter with length P is defined by the linear
combination of its P most recent inputs, i.e.,

s̄[n] = h0s[n] + h1s[n − 1] + · · · + hP−1s[n − P + 1],

=

P−1∑
p=0

hpT
−p {s[n]} , (4)

where the time-invariant coefficients h0, h1, . . . , hP−1 define
the impulse response of the filter and each term s[n−p] results
from shifting s[n] with a shift operator T −p . For a signal
with finite duration N , applying an FIR causal filter of length
P ≤ N , that is, hp = 0 for p < 0 and p ≥ P, induces the
following circular convolution
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s̄[0]
s̄[1]
...

s̄[N − 1]


=


h0 hN−1 · · · h1

h1
. . .

. . .
...

...
. . .

. . . hN−1
hN−1 · · · h1 h0

︸                                ︷︷                                ︸
=H(C)=

P−1∑
p=0

hpCp


s[0]
s[1]
...

s[N − 1]


, (5)

which shows that the filter is equivalent to a length-P poly-
nomial over the cyclic-shift matrix C. Analogously, the linear,
shift-invariant graph filter is defined as a polynomial over the
adjacency matrix A, i.e.,

H(A) =
P−1∑
p=0

hpAp . (6)

Once signals, shift, and filters on graphs are defined, con-
cepts of spectral decomposition and Fourier transform can
be extended to graph domain. For a signal space S, spectral
decomposition of S is the identification of W filtering-invariant
subspaces S0, . . . , SW−1 of S. Being invariant to filtering
means that, for a signal sw ∈ Sw , the output of filtering this
signal is s̄w = H(A)sw ∈ Sw . The spectral decomposition is
uniquely determined for every signal s ∈ S if, and only if:

• Sw ∩ Sr = {0}, w , r;
• dim (S0) + · · · + dim (SW−1) = dim (S) = N;
• Each Sw is irreducible to smaller subspaces,

and, in this case,

S = S0 ⊕ S1 ⊕ · · · ⊕ SW−1. (7)

Given S as defined in Equation (7), satisfying the above
conditions, any signal s ∈ S is univocally represented as

s = s0 + . . . + sW−1. (8)

The diagonalization of the adjacency matrix A leads to a
spectral decomposition of the signal space S on the graph
domain. Nonetheless, given the arbitrary nature of A, as
allowed in this DSPG approach, it is not always diagonalizable.
It is shown in [19] that the Jordan decomposition A = VJV−1

is used to conduct spectral decomposition of S on graphs. J
is the Jordan normal form and V is the matrix whose columns
are the generalized eigenvectors of A, which are the bases of
the subspaces of S. Hence, Equation (8) can be written as

s = Vŝ, (9)

where ŝ is the vector of coefficients that expand s into the
subspaces of S. The union of these subspaces is the graph
Fourier basis. The graph Fourier transform (GFT), which
provides the coefficients of the expansion of a signal over
the graph Fourier basis, is defined as

F = V−1, (10)

such that ŝ = Fs. The inverse graph Fourier transform (IGFT)
is given by

F−1 = V. (11)

If the graph is undirected, A is a symmetric matrix and it is
diagonalizable. The graph Fourier transform is then obtainable
from the eigenvectors of A. In this case, the eigenvectors are
orthogonal and V−1 = VT, which makes computation of the
transform matrix F less intensive.

III. PROPOSED APPROACH TO LIGHT FIELD COMPRESSION

The application of HEVC-based methods for compression
of light-field data has been intensively researched over the past
years [14], [29], [33], [34]. HEVC presents a complex scheme
composed by intra-frame and inter-frame prediction, motion
estimation and compensation, transformation, quantization,
coding, and other procedures, for which several configurations
are available. These procedures are applied to coding tree
units, which are blocks of up to 64×64 pixels into which video
frames are divided. Notable procedures considered in this work
are inter-frame prediction, transformation, and quantization,
whose general concepts are explained below.
• Inter-frame prediction: When encoding a block of pixels

of the current frame, the algorithm searches for a similar
block, denominated reference block, from the previously
encoded frame. Instead of encoding the raw values of
pixels of the current block, the algorithm encodes only
the difference between current and reference blocks. This
difference is denominated prediction residual. The pre-
diction procedure may be a complex process, using, for
example, algorithms to estimate and compensate move-
ment of blocks between different frames. Residual blocks
should have less entropy than raw blocks, which makes
compression in transformation, quantization, and coding
stages more efficient. It must be noted that, in order to
make inter-frame prediction possible, at least one frame
that was previously encoded must have been encoded
without inter-frame prediction. This frame is referred to
as intra frame.

• Transformation: HEVC applies two-dimensional
discrete-sine transform (DST) and, mostly, discrete-
cosine transform (DCT) to residual blocks.
Transformation is used to map data from residual
blocks into a frequency-related domain, where energy
concentration in lower frequencies can be exploited
during compression. The output of transformation stage
is a transform-coefficient block. Transform coefficients
are real values that indicate how much each frequency
component contributes to build the image in the original
domain, in this case, the residual block.

• Quantization: Quantization maps coefficient values that
may assume any value from a large, possibly contin-
uous, set into a smaller set, allowing application of
coding procedures otherwise unfeasible. The stronger the
quantization, the fewer bits will be necessary to encode
transform coefficients, thus reducing the associated rate.
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Figure 6: Block diagram describing the simplified compression
process adopted throughout this work.

Quantization is a lossy process, i.e., information is per-
manently lost once coefficients are quantized. The loss of
information is called distortion, for which several metrics
are available. Compression processes must consider the
trade-off between rate and distortion.

This work proposes and analyzes the viability of using
GFT in place of DCT in HEVC-based light-field encoders,
while exploiting the similarity among light-field images. The
use of GFT within data compression context, and specifically
image compression, is not new. The competence of GFT for
concentrating information in few transform coefficients in a
competitive manner when compared to other transforms is
known and has been approached in other works [30], [31],
[35]. Notwithstanding GFT inducing relatively high energy
concentration, the transform and its inverse IGFT depend on
the adjacency matrix A, which has no fixed structure and
depends on the application and on the data. The impact of
storing or transmitting A or the transform matrix F must be
considered during compression. The method proposed in this
work aims at reducing the impact of the extra data related to
graph structure by exploring the redundancy that exists among
images near to each other in light fields.

IV. METHODOLOGY

In order to assess the performance of using GFT for
light-field compression, a simplified compression process is
defined, as presented in Figure 6, which is detailed in the
next subsections. A database composed by 7 light fields is
used. Three of them, namely Humvee, Knights, and Tarot,
are obtained from the Stanford Light Field Archive [36] and
some sample views are shown in Figure 7. These light fields
are captured from real scenes using a moving camera on a
rectangular grid with 16 × 16 positions, yielding 256 total
images for each light field. The other four light fields are
generated synthetically, obtained from the HCI 4D Light Field
Dataset [37], [38]; sample views for boxes, cotton, dino, and
sideboard are presented in Figure 8. For these light fields,
views are captured over a grid of 9 × 9 positions, for a total
of 81 images for each light field. Database information is
summarized in Table I. Only the luminance component from

Figure 7: Sample views from light fields captured from real
scenes. Humvee (top), Knights (bottom left), and Tarot (bottom
right).

Figure 8: Sample views from light fields captured from syn-
thetic scenes. Boxes (top left), Cotton (top right), Dino (bottom
left), and Sideboard (bottom right).

these light fields is used throughout this work, despite the fact
that RGB versions are depicted here.

A. Prediction

The input of video codecs is a stream of frames ordered
according to their time stamps. It is reasonable to assume
that similarity between frames decays when two frames are
selected further apart in time if compared to similarity between
two consecutive frames. Thus, prediction for video streams
can be implemented by selecting the frame that comes right
before the current frame. It is worth noting that complex
prediction schemes are not usually limited to only one frame.
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Table I: Database information

Light field Scene View resolution [pixels] Grid size
Humvee Real 640 × 512 16 × 16
Knights Real 1024 × 1024 16 × 16
Tarot Real 1024 × 1024 16 × 16
Boxes Synthetic 512 × 512 9 × 9
Cotton Synthetic 512 × 512 9 × 9
Dino Synthetic 512 × 512 9 × 9
Sideboard Synthetic 512 × 512 9 × 9

For light fields, a prediction order is not straightforward. It
is expected that views close to each other should be more
similar. However, there is no consensus on how to determine
the optimal selection of views or the boundaries for spatial
neighborhood used for prediction in light fields. Considering
the light field humvee as example, with a grid of 16 × 16
positions, three prediction schemes are considered in this
work:
• Rows: Prediction is performed over each row with 1×16

images, independently from other rows. The first image
from each line is assumed to be an intra image, i.e.,
no prediction is used when coding this image. For the
remaining 15 images from each line, prediction residuals
are calculated. A simple prediction scheme is adopted.
The prediction image Ip

k
for the k-th image Ik in a light

field row, where k ∈ {2, 3, . . . , K} and K = 16 in this
example, is given by Ip

k
= Ik−1. That is, each image is

assumed to be equal to the previous image in the line,
given the high similarity among adjacent views in light
fields. Finally, the residual image Rk is computed as the
difference between current image and its prediction, i.e.,
Rk = Ik − Ip

k
= Ik − Ik−1. A total of K −1 residual images

are computed for each row.
• Columns: Prediction using columns is similar to predic-

tion using rows. Columns with 16× 1 images are treated
independently, and the first image from each column is
an intra image, whereas the remaining are inter images.
Computation of residual images Rk is analogous to the
one described for rows.

• Blocks: When using a block scheme to perform pre-
diction, a 3 × 3 block of views is selected. The central
view of the block is the intra image and the prediction
image for every inter image is the central view. In other
words, a block is composed by K = 9 views on a 3 × 3
grid. The central image Ic is intra-encoded, for some
c ∈ {1, 2, . . . ,K}. Per group, K − 1 residual images are
computed as Rk = Ik − Ic , for k ∈ {1, 2, . . . , K} and
k , c.

Given one of the prediction schemes described, the set of
views selected for prediction procedure, i.e, views from a row,
column, or block, will be referred to as prediction group.

B. Transformation

As stated, block transform is used to map data from residual
image blocks into a frequency-related domain. This allows
better compression of the data. HEVC uses DCT for residual
blocks from size 4 × 4 up to 32 × 32, and DST for some

cases of 4 × 4 blocks. In this work, GFT is used to transform
blocks of size 32 × 32 and results are compared to those of
DCT. If smaller blocks, such as 4 × 4 or 8 × 8, are used, it is
expected that blocks at the same position for different residual
images should have low correlation with each other, given the
parallax between adjacent views. For large 32×32 blocks, the
impact of parallax is reduced. High correlation among blocks
in the same position from several views in a prediction group
is beneficial for the proposed compression scheme, as will be
further explained in this section.

Up to this point, images are treated as sets of pixels in 2D
space. In order to make the use of GFT possible, the signal
associated with a residual block must be represented as a signal
on a graph, previously defined as a vector s, such that the n-th
entry sn is a function of the vertex vn ∈ V. Let the signal
associated with a pixel from an M1 × M2 residual block be
r : IM1×M2 → R, where IM1×M2 represents the set of integer
indexes for the positions of pixels on the M1×M2 block. That
is, for each position on the M1 × M2 block, a residual-related
real value is assigned. The signal on graph is defined such that
s[M1(m2 −1)+m1] = r[(m1,m2)], for (m1,m2) ∈ I

M1×M2 . That
is, the graph signal s is defined as a column vector formed by
stacking the columns of the residual block.

Let a residual block Bk,t , k ∈ {1, . . . ,K}, t ∈ {1, . . . ,T},
be the M1 × M2 block from the k-th residual image Rk (in a
prediction group with K −1 residual images) that was divided
into T blocks. The graph signal associated with this block is
sk,t . The corresponding adjacency matrix is denoted by Ak,t

and the GFT matrix by Fk,t . Note that the transform matrix,
and consequently its inverse, depend on the signal, unlike
the DCT, which is the same for every M1 × M2 block. The
first consideration adopted in this work in order to reduce
the impact of transmitting the transform matrix is to build
a sparse adjacency matrix and transmit Ak,t instead of Fk,t .
The adjacency matrix Ak,t is built according to the nearest-
neighbor (NN) image model [39], which is shown to offer
an efficient image representation whilst providing a sparse
and fixed graph structure. This model defines an image as
a 2D nearest-neighbor graph. An NN graph is a graph for
which a vertex vi is connected to vj if, and only if, the
distance d(vi, vj) is minimum among the distance between vi
and all other vertices. For a regular structure like an image, the
minimum distance exists for more than one pixel, as depicted
in Figure 9. Using NN image model implies that each vertex
of the graph will have at most four non-zero edges, and pixels
at the corner, border, or interior of the block have different
number of edges. The model also assumes that an image is
a 2D NN graph constructed as a Cartesian product of two
1D NN graphs. A 1D NN graph is a possibly-directed line
graph similar to the one presented in Figure 5, apart from the
loop edge. This generates a structure where multiple edges
assume the same value, indicated by coefficients a0, . . . , aM1−2
and b0, . . . , bM2−2 in Figure 9. As a result, considering an
M1 × M2 residual block Bk,t , the corresponding adjacency
matrix Ak,t ∈ R

N×N , N = M1M2, has at most (M1−1)+(M2−1)
unique non-zero coefficients. For blocks of size 32 × 32, this
means 62 unique non-zero coefficients out of 1024 entires
of Ak,t . The coefficients a0, . . . , aM1−2 and b0, . . . , bM2−2 are
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Figure 9: Relation edges according to the NN image model.
Edges connect only pixels at minimum distance among all
pixels.

defined so as to minimize the `2 distortion introduced by
the shift operation, i.e., ‖Ak,tsk,t − sk,t ‖2. As described in
[39], this minimization is solved as an overdetermined least-
squares problem. This entire reasoning eventually implies that
the adjacency matrix Ak,t is transmitted in place of the graph
Fourier transform matrix Fk,t . While this saves bandwidth, it
adds complexity to the decoder, as the eigenvectors of Ak,t

must be computed. Note that Ak,t is symmetric and, thus,
diagonalizable. Finally, it is worth pointing out that other
schemes rather than the NN image model could have been
employed as well, which might induce different performances;
however, the NN model proved viable, as corroborated by the
results achieved in this work (see Section V).

The second consideration employed to reduce the impact of
Ak,t , besides forcing sparsity and fixed structure via NN image
model, is to exploit the redundancy among the many views in
the light field in order to avoid transmitting Ak,t with every
single block. Considering that every view is equally divided
into T blocks, only one At0 is transmitted for a given block
position t0 across the entire prediction group. Figure 10 shows
an example of block position t0 across views from a prediction
group. This consideration assumes that blocks in the same
position are highly correlated among several residual images.
In this work, two similar methods for computing matrix At0

are considered. The first is using only adjacency matrices
associated with one of the K − 1 residual images Rk . For
rows or columns prediction schemes, using the central residual
image (for example R8 when K = 16) is an intuitive choice,
since other views are symmetrically similar to it. For blocks
prediction scheme, there is no defined choice. The second
method is to use multiple residual images Rk and compute
the coefficients of At0 by minimizing

∑k2
k=k1
‖Ak,t0sk,t0−sk,t0 ‖2,

1 ≤ k1 < k2 ≤ K − 1. That is, the distortion introduced by
the shift operator is minimized jointly for multiple, possibly
all, residual images in a prediction group. For both methods,
using an adjacency matrix which is not specifically computed
for a given block may degrade the efficiency of the GFT, but
the impact of transmitting the matrix is slightly reduced.

Once the adjacency matrix is computed, the GFT matrix

k

K − 1

t0
t0

t0

t0

Figure 10: Representation of a block position t0 for residual
images from a prediction group.

for each block position is given by Ft , whose columns are the
eigenvectors of At —the reader should keep in mind that the
index k can now be dropped from Ak,t and Fk,t since it is
assumed that adjacency and transform matrices do not depend
on the residual image, given that only one matrix is considered
for a given block position across the entire prediction group.
The transform coefficients for each block from residual images
in the prediction group are computed as ŝk,t = Ftsk,t , where
sk,t is the graph signal corresponding to each block.

C. Coefficient selection

A heuristic technique is adopted to assess the performance
of GFT against DCT for light-field compression when em-
ployed in an HEVC-based compression system. The IGFT is
given by the transpose of Ft , since eigenvectors from At are
orthogonal. If IGFT is applied to transform coefficients ŝk,t ,
the signal sk,t is perfectly recovered. In practical applications,
compression occurs when transform coefficients are quantized,
resulting also in loss of information. In this work, a simplified
compression process is conducted by setting Q smallest trans-
form coefficients to zero, resulting in compressed transform
coefficients ŝQ

k,t
. When IGFT is applied to these coefficients,

the signal sQ
k,t

, which is recovered by inverse transform, is an
approximation of the original signal sk,t . A compressed version
BGFT
k,t

of the original block Bk,t can be constructed from the
signal recovered. For the case of DCT, the 2D DCT is applied
directly to block Bk,t and by setting the smallest coefficients
from the transform block to zero, a compressed block BDCT

k,t
is recovered via inverse discrete-cosine transform (IDCT).

V. SIMULATIONS AND RESULTS

Simulations were conducted in order to compare GFT
against DCT when employed in the proposed compression sys-
tem. The basic concept underlying all simulations presented in
the next subsections is to set GFT coefficients to zero as much
as possible while still recovering blocks with less distortion
when compared to a specific DCT compression. The number
of compressed DCT coefficients is fixed at QDCT = 924, i.e.,
only the 100 largest out of 1024 coefficients are kept and DCT
is fixed at approximately 10:1 compression ratio. Distortion
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Table II: Simulation results for transform-setup analysis

Central residual Part of group Entire group
Light field Reduction [%] Standard deviation of Q Reduction [%] Standard deviation of Q Reduction [%] Standard deviation of Q
Humvee 8.97 6.97 9.65 4.63 8.63 1.82
Knights 13.40 11.04 16.67 8.57 17.53 1.93
Tarot -3.91 3.50 -0.65 1.96 -0.29 0.83
Boxes 0.22 4.56 6.57 2.45 7.76 1.42
Cotton 5.90 3.05 6.28 1.94 6.07 1.00
Dino 21.22 5.14 21.92 3.61 21.18 1.92
Sideboard -3.89 2.67 -2.29 1.23 -2.04 0.86

DDCT is evaluated for DCT. For each residual image, the
simulation searches for the largest number of compressed GFT
coefficients QGFT for which the corresponding distortion DGFT

is still smaller or equal to DDCT. It is important to note that
both QDCT and QGFT are set for an entire residual image and,
thus, every block in each residual image will be represented
by the same number of coefficients. The figure of merit used
to characterize distortion is the mean squared error (MSE)
between compressed and original residual images. For some
simulations, the structural similarity (SSIM) index [40] is
also considered as figure of merit for distortion. While MSE
represents an indication of absolute error between images,
the SSIM index provides information related to changes in
structural information between images.

Different simulation setups are considered given the op-
tions described in Section IV. Three prediction methods were
proposed, namely: rows, columns, and blocks. Moreover, two
methods for building the adjacency matrix are considered.
The first uses only one reference residual image, whereas
the second uses multiple residual images when computing the
coefficients of At . The effects of these different setups are
analyzed in this section. The database presented in Section IV
and detailed in Table I is used.

A. Transform-setup analysis
As presented in Section IV-B, the coefficients of At may

be computed either for a single reference residual image or
jointly for multiple residual images. For this simulation, using
the rows prediction scheme, three setups are considered for
transform computation:
• Using only one central residual image as reference. The

8-th residual image R8 for real light fields, where K =
16 images per line, and the 5-th residual image R5 for
synthetic light fields, with K = 9 images per line;

• Using part of the prediction group. Residual images from
R5 to R10 for real light fields and from R3 to R6 for
synthetic light fields;

• Using all residual images from the prediction group.
Table II shows the results obtained for simulations consid-

ering these three setups. Results show the reduction in number
of coefficients used by GFT when compared to DCT for the
entire light field, so that GFT is still able to yield better or
equal distortion for every residual image. Reduction values
for the total number of coefficients (#) for each light field are
computed as

Reduction =
# DCT coefficients − # GFT coefficients

# DCT coefficients
. (12)

Figure 11: Number of compressed coefficients Q according
to residual image position for the three proposed methods for
computing At .

It is worth highlighting that the number of coefficients as-
sociated with the adjacency matrices is included in # GFT
coefficients and, thus, the impact of transmitting At is consid-
ered. GFT shows slight improvement over DCT for most cases,
yielding up to 21.92% of reduction in number of coefficients.
The analysis shows that using multiple residual images when
building At improved the results for all cases when compared
to results obtained using only one residual image as reference.
This result can be observed in Table II by considering each
light field independently, which is represented by each row.
For each light field, an increasing trend in the reduction value
can be noted when going from “Central residual” to “Entire
group” sections, with few exceptions, indicating the overall
improvement when using multiple residual images.

A relevant analysis given different transform setups is to
observe the standard deviation of the number of coefficients
used by the GFT across the residual images. The standard
deviation of QGFT is estimated for each light field, using
the number of compressed GFT coefficients QGFT from each
residual image as sample for the standard deviation estimator.
From Table II, it is notable that using the entire prediction
group reduces the standard deviation of QGFT. When GFT is
built using only the central residual image, its efficiency is high
for the central residual image, but decays as residual images
get further apart form the central reference. This is expected,
since correlation is reduced and the impact of using a single
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Table III: Results for simulation using SSIM index and At computed from all residual images

Humvee Knights Tarot Boxes Cotton Dino Sideboard
Reduction [%] 4.22 10.56 1.15 2.38 -5.36 10.74 -1.14
Standard deviation of Q 1.50 1.83 0.99 1.06 1.15 1.73 1.33

Table IV: Simulation results for prediction-setup analysis

Rows Columns Blocks
Light field Reduction [%] Standard deviation of Q Reduction [%] Standard deviation of Q Reduction [%] Standard deviation of Q
Humvee 8.63 1.82 -2.80 4.06 3.15 5.52
Knights 17.53 1.93 11.50 2.24 16.09 1.86
Tarot -0.29 0.83 -8.42 0.81 -5.55 3.07
Boxes 7.76 1.42 11.00 1.18 7.38 1.81
Cotton 6.07 1.00 6.10 0.90 6.18 3.00
Dino 21.18 1.92 15.22 1.24 15.53 5.00
Sideboard -2.04 0.86 2.10 1.84 -0.25 2.72

transform matrix is increased, requiring more coefficients.
Constructing the transform while considering multiple images
reduces the efficiency decay across the prediction group.
This effect is depicted in Figure 11, where the difference
∆Q = QGFT − QDCT in number of compressed coefficients
for one row of the humvee light field is presented. In this
case, the coefficients of At are not considered. The three
proposed transform setups are considered. The peak for ∆Q at
R8 is notable when this residual image is the only one used
for transform computation. When using all residual images,
this effect is no longer present, allowing for a more uniform
compression across all images.

This simulation was replicated using SSIM as metric when
searching for QGFT. Only the transform setup based on all
residual images for the construction of At was used, consid-
ering it achieved the best results in the previous simulation.
Results are presented in Table III. Values for reduction in
number of coefficients are lower than the ones obtained when
using MSE, but GFT is still competitive when compared
to DCT. Moreover, small values for standard deviation are
achieved, as expected.

B. Prediction-setup analysis

In this simulation, the three proposd prediction methods,
namely rows, columns, and blocks, are tested. The transform
matrix is built using all residual images from each group when
computing the matrix coefficients. Results are shown in Table
IV. For real light fields, using the rows prediction scheme
yields the best results, followed by blocks, which increases the
standard deviation of QGFT across residual images. For syn-
thetic light fields, the discrepancy in results among different
methods is reduced and the efficiency of columns prediction
scheme slightly increases.

These results indicate that different prediction methods may
be better suitable for some specific type of light field. Video
encoders usually work with several possible configurations for
each processing stage. This opens the possibility of searching
for the best prediction method when compressing light field
images in a more complex system. An analysis of how the
similarity between images in a prediction group affects the
compression efficiency in that group was conducted. For each
light field, prediction groups based on the three proposed
methods were constructed. For each group, the SSIM index is

Figure 12: Analysis of the correlation between average sim-
ilarity in a prediction group and the resulting efficiency of
using that group for light-field compression.

computed for every pairwise combination of residual images
in that group and the average SSIM index value is computed.
That is, for each prediction group, the corresponding average
structural similarity is computed. Figure 12 shows the average
SSIM results for every group for all light fields in the available
database, along with the average reduction in number of
coefficients used per group. This simulation is conducted for
the three prediction methods. Results indicate high correlation
between intra-group similarity and compression efficiency. In
a more complex compression system, similarity could be used
as a metric for the selection of the best prediction method.

C. Transform coding gain

The transform coding gain is a criterion commonly used in
order to assess the effectiveness of a transform, by comparing
the transform quantization against direct quantization in the
original domain [41]. For orthogonal block transforms, which
is the case for both GFT and DCT, and assuming high-rate, i.e.,
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Table V: Transform coding gain for GFT and DCT computed
for each light field, considering independent transforms At

Humvee Knights Tarot Boxes Cotton Dino Sideboard
GGFT 9.24 28.13 19.20 3.40 2.05 5.04 5.18
GDCT 5.12 27.53 21.47 2.91 1.90 4.07 4.24

Table VI: Transform coding gain for GFT and DCT computed
for each light field, considering all At as a single transform

Humvee Knights Tarot Boxes Cotton Dino Sideboard
GGFT 5.45 8.04 7.58 1.91 1.66 2.59 2.25
GDCT 5.24 8.06 9.79 1.98 1.80 2.67 2.40

every coefficient contributes equally to distortion after optimal
bit allocation, the transform coding gain is given by

GT =
1
N

∑
i σ

2
i

N

√∏
i σ

2
i

, (13)

where σ2
i is the variance of the i-th transform coefficient across

all blocks. The transform coding gain is the ratio between
arithmetic and geometric means of coefficient variances. When
estimating the transform coding gain from data from a light
field, it must be considered that GFT is not a single transform,
since it was defined as a data-dependent transform. In order
to compute the transform coding gain GGFT associated with
GFT, blocks are treated according to their position t, for which
a single At is defined. That is, given a prediction group, an
independent GGFT,t is computed for each block position, since
the transform Ft is restricted to that block position in that
prediction group. For each light field, the final gain GGFT is
given by the average gain across all block positions for all
prediction groups. For DCT, the transform coding gain GDCT
is computed in the same way as GGFT to make comparison
possible. Results for the estimation of transform coding gain,
using rows prediction method and using all residual images
for computing At , are presented in Table V. Transform coding
gain shows better efficiency for GFT when compared to DCT
for all light fields but one (Tarot). For some block positions
from Humvee light field, GGFT,t could not be computed due
to zero variance encountered in some coefficients, resulting
in zero geometric mean. For Humvee, the dynamic range of
GGFT,t was set to 10 by limiting the maximum value.

Table VI shows results for transform coding gain if the
entire light-field data is considered at once, i.e., assuming
that GFT is a unique data-independent transform. As expected,
these results are worse for GFT.

VI. DISCUSSION AND FUTURE WORK

The simulations show mixed results in the comparison be-
tween GFT and DCT for light-field compression in an HEVC-
based system. When comparing the reduction in number of co-
efficients, GFT is rather promising, being capable of reducing
the number of transform coefficients by up to 21.18% in some
cases, while keeping equal or better distortion when compared
to DCT. Transform coding gain was used in order to provide an
insight of how well transform coefficients may be coded, but
results may be biased due to GFT not being a data-independent
transform. The compression system employed is a simplified

model based on HEVC, therefore several possibly relevant
optimization procedures were not considered. Employing GFT
in a more complex system is required so as to allow practical
operation analysis. Moreover, several possible methods for
implementing GFT were proposed, but some analyses were
restricted to a single setup using rows prediction scheme and
computing At from all residual images. A broader analysis
could offer better understanding of GFT behavior.

VII. CONCLUSIONS

This work proposed and analyzed the use of GFT for light-
field compression in an HEVC-based compression system. The
comparison of the proposed method against the traditionally
used DCT shows that GFT greatly reduces the number of coef-
ficients required to represent light-field residual images while
providing smaller distortion when compared to DCT. Different
methods for constructing and employing GFT were tested for
real and synthetic light fields. Using multiple images when
computing the coefficients of the adjacency matrix provides
a more uniform compression across residual images within
a prediction group and improves reduction when compared to
computing coefficients from a single reference residual image.
An analysis of different prediction methods was conducted, as
well as an analysis of how similarity between images within
a prediction group affects the performance. When estimated
from coefficients from the entire light field, transform coding
gain favors DCT. Given the fact that GFT is data-dependent
and, thus, not a fixed transform, a transform coding gain analy-
sis regarding blocks for which GFT is unique was conducted.
This analysis yields better transform coding gain for GFT.
The compression system adopted may be improved in order
to allow the comparison with practical coding systems.
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