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Abstract - Persistent excitation and the condition of the 
data matrix are considered in the framework of RLS 
adaptive filtering with exponential weighting. Two persistent 
excitation conditions that are used in convergence and 
numerical stability analysis of RLS algorithms are shown to 
be equivalent. The boundedness of the data matrix condition 
number is also shown to be equivalent to the considered 
conditions as long as the input signal energy is lower and 
upper bounded. Some related inequalities are presented that 
give insight into the numerical stability behavior of RLS 
algorithms. The relations of excitation persistency with 
concepts like predictability, spectral content of the excitation 
signal, identifiability, exponential convergence and numerical 
stability of RLS algorithms are briefly addressed in order to 
give an overview of the subject. 

Resumo - 0 conceito de excita9ao persistente e o condicio
namento da matriz de dados sao considerados no ambito dos 
algoritmos adaptativos RLS com pondera9ao exponencial. E 
demonstrada a equivalencia de duas condi9oes de excita9ao 
persistente utilizadas na analise de convergencia e estabili
dade numerica de algoritmos da familia RLS. E mostrado 
tambem que a existencia de urn limite superior para a dis
persao dos. val ores singulares da matriz de dados e equiva
lente a estas condi9oes de persistencia de excita9ao, desde 
que a energia do sinal de entrada seja limitada inferiormente 
e superiormente. Alem disso, sao apresentadas algumas de
sigualdades que sao uteis para 0 entendimento do comporta
mento numerico de algoritmos adaptativos RLS. As rela96es 
entre persistencia de excita9ao e sinais perfeitamente predizi
veis, conteudo espectral de sinais, identifica9ao de sistemas, 
convergencia exponencial e estabilidade numerica de algorit
mos RLS sao abordadas de modo a permitir uma visao mais 
ampla do assunto. 

Adaptive filtering, RLS algorithms, persistent 
excitation. 

Identification of an unknown system is a central issue in 
various applications of the communications area such as 
channel echo cancelation in communication 
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channels, or acoustic echo cancelation for teleconferencing 
or for handsfree telefone terminals, and many others [1, 2, 3]. 
It is the procedure of determining a model for the unknown 
system in terms of a set of measurements of the input and 
output response signals and in terms of an appropriate chosen 
cost function that is optimized with respect to the parameters 
of the unknown model. Very often, such a procedure 
is implemented adaptively, that is, the model is improved 
as new measurements are received and this knowledge is 
incorporated. There are three fundamental aspects that 
must be considered for a successful implementation an 
identification procedure: the signals must provide sufficient 
information in order to assure identifiability, the cost function 
and the optimization method must be appropriately chosen 
and an efficient well behaved adaptive procedure should be 
used. By considering the Least Squares (LS) optrrmzatwn 
method this paper focus on the first point and also its relations 
with the convergence behaviour of adaptive LS algorithms, 
particularly with their numerical stability. 

The standard LS problem with exponential weighting is to 
choose a coefficient vector wM(n) to minimize the norm of 
an estimation error vector given by 

where d(n) is the desired response vector and AM(n) 
is the data matrix, defined as AM(n) = [A(i,j)] = 
[.A (n-i+I)/2u( i - j)], with .A being the weighting factor and 
u( n) the pre-windowed input sequence, i. e. u( n) = 0 for 
n < 0. In a LS problem of order M, which is the dimension 
of the coefficient vector w M ( n), the data matrix AM ( n) has 
dimensions (n+l) xM and the quadratic norm err(n)eM(n) 
is minimized by the optimal coefficient vector 

(1) 

where <PM(n) = At(n)AM(n) is the autocorrelation 
matrix of the pre-windowed exponentially weighted input 
sequence, and nM(n) Arr(n)d(n) is the cross
correlation vector between the input data and the desired 
response. 

There is a great number of Recursive Least Squares 
algorithms that may be used to solve the T'IT'a'"\i"'IIPrYI 

sketched above of them are fast algorithms, whose 
cornp1.1tational C<)mlJleiOty is to M. 
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of implementation of those algorithms in hardware and 
software and their application to channel equalization and 
echo cancelation can be found in [1, 2, 3, 5, 6]. Several 
of those algorithms deal directly with the coefficient vector 
w M ( n) while others use it only indirectly, for example 
through the coefficients of a lattice structure. As a matter 
of fact, regardless of the particular RLS algorithm, the 
literature reports that the conditioning of the data matrix or, 
equivalently, of the autocorrelation matrix, bears influence on 
the numerical behavior ofRLS algorithms [4, 7, 8, 9, 10]. 

More specifically, how near or far AM(n) is from 'rank 
deficiency' may be measured using the spectral condition 
number, or the singular value dispersion, defined as 

with Smax ( n) and Smin ( n) being respectively the greatest 
and the smallest of theM singular values of AM(n). For 
high singular value dispersions the data matrix AM(n) is 
nearly rank deficient. Therefore, a large condition number 
x( n) shows that the data and correlation matrices are 
ill conditioned and that numerical errors, introduced by 
manipulations of those matrices, may be largely amplified. 
Generally, larger condition numbers will result in larger 
numerical error levels [4, 8, 10]. 

In the literature this behavior is also associated to the lack 
of persistency of excitation, a concept used in connection 
with the analysis of stability and exponential convergence 
of adaptive algorithms [11, 12, 13]. Loosely speaking, a 
nersistentlv exciting innut signal is one that is sufficientlv 
varied so that the resulting data provides as much information 
about the input/output characteristics of stable linear systems 
on which it acts as would be provided by all possible 
inputs. This means, as will be presented more precisely 
later, that the concept of persistent excitation is strongly 
connected to the ability of identifying an unknown system. 
Moreover, it has also been found that keeping the input 
signal persistently exciting is of paramount importance in 
practical implementations of RLS algorithms, especially 
when exponential weighting is used. The absence of 
persistent excitation may result in instability of several 
adaptive algorithms [7, 14]. 

The appropriate conditions to assure excitation persistency 
are not unique, and are algorithm dependent [8, 14]. In the 
case of RLS algorithms an excitation persistency condition 
used to guarantee exponential convergence [ 11, 14] is that the 
vector u'£-(k) = [u(k) u(k- 1) ... u(k- M + 1)) must 
satisfy 

1 
n+N-1 

0 < a1I::; N 2: uM(k)u'£-(k) ::; a2I < oo, (2) 
k=n 

for all n 2: 0, some positive integer N, some a1 > 0 and 
some a2 > 0. Here I stands for the identity matrix 
two matrices B and B < C means that C - B is nAc•,tnro 

definite and B ::; C means that C - B is semi
definite. Another condition useful for numerical 

particularly of 

LSL algorithms [8, 9], is 

0 < b1I::; A'fr(n)AM(n)::; b2l < oo, (3) 

for all n 2: M - 1, some b1 > 0 and some b2 > 0. 
Sometimes excitation persistency is directly associated to 

the condition number of the autocorrelation or data matrices. 
This fact and the different persistency conditions cause 
some confusion among beginners in the subject of adaptive 
filtering. 

The goal of this note is to show that the excitation 
persistency conditions (2) and (3) are equivalent and to 
clearly relate them to a bounded condition number of the 
data matrix. It is shown that a weighted input signal energy 
uniformly bounded from above and below is an adequate 
restriction to guarantee that a bounded condition number of 
the data matrix is equivalent to the mentioned persistency 
conditions. Some related inequalities are also presented that 
are useful for numerical stability analysis of RLS algorithms 
and give some insight into this subject. 

The paper is organized as follows. First, for the 
sake of clarity and precision the equivalence of . the 
mentioned persistent conditions is presented in the form 
of !l lemma. Then, some remarks and interpretations are 
pn;;~ented. The relations of excitation persistency with 
concepts like predictability, spectral content of the excitation 
signal, identifiability, exponential convergence and numerical 
stability of RLS algorithms are briefly addressed in order to 
give an overview of the subject. At this point some references 
are given, where the interested reader can find further details. 
The paper is closed by some comments about the importance 
~nrl ~nnlirMion of tht=> nrt=>"f"ntr-rl rt=>"nlt" Thr- rlPmon"tr~tion 

of the Lemma is presented in the Appendix, so that it may be 
skipped in a first reading. 

Lemma: Consider 0 < -\ < 1 and a pre-windowed signal 
u(n) satisfying u(n) = 0 for n < 0 and u(O) f. 0. Then, the 
following statements are equivalent: ·· 

(i) The weighted energy ~u(n) = :L;=O An-£u2 (£) of the 
input signal u( n) is uniformly lower and upper bounded, 
and the spectral condition number of the data matrix AM ( n) 
is uniformly upper bounded, that is, there exist positive 
constants /31 , /32 and r o such that 

0 < /31 ::; ~u(n) ::; /32 < oo, for n 2: 0, (4) 

and 

Smax(n) ( ) x( n) = ( ) ::; r o < oo , for n 2: M - 1, 5 
Smin n 

where Smin ( n) and Smax( n) are respectively the smallest and 
greatest singular values of the data matrix AM ( n). 

Positive constants b1 e b2 can be found such that for n 2: 
M-1 

0< < oo, 
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withAM(n) = [A(i,j)] = [_A(n-i+l)f,2u(i- j)]. 

(iii) There are some positive integer N and some positive 
constants a 1 and a2 such that for all n 2::: 0 

with N being the smallest integer satisfying 

{
log(.Abl/b2) M} 

N 2::: max log(.\) , · 

1 
n+N-1 

0 < a1l ~ N 2: uM(k)u'k(k) ~ a2I < oo, 
(7) Proof: The proof is presented in the Appendix. 

k=n 

where u'k(k) = [u(k) u(k -1) ... u(k- M + 1)]. 

Moreover: 

(i.a) If positive bounds b1 and b2 as in (ii) are lmown and 
n 2::: M - 1, then the inequalities of (i) can be written as: 

and 

{[;; 
x(n) ~ y "br· (9) 

(ii.a) If bounds /31, {32 and r o of (i) are lmown and 
n 2::: M - 1, the inequalities of (ii) can be written as follows. 
Lower bound: · 

Remark 1: With hT = [ho h1 ... hM-l] and 

n 

A'k(n)AM(n) = LAn-kuM(k)u1(k) (16) 

k=O 

it follows that 

n 

LAn-khT uM(k)u1(k)h 
k=O 

n 

= LAn-ky2(k) ~ ~y(n), (17) 
k=O 

where 

M-1 
y(k) = 2: heu(k- R). (18) 

£=0 

0 < /311 < ~u(n)I < s2 · (n)I <AT (n)A (n) 2-2-mm -M M, 
To To 

Now, without loss of generality, considering only unit norm 
(10) vectors h, from (6) it follows that 

Upper bound: 

or 

M-1 

A'k(n)AM(n) < s~ax(n)I ~ :2: ~u(n- R)I 

(12) 

or 

A~(n)AM(n) < s;;,.,Jn)I :S ~~~~ \-_>.;I 
< ~u(n) MI < {32 M I< oo. (13) 

AM-1 - AM-1 

Moreover, if a positive integer N and positive bounds a 1 and 
a2 as in are lmown, then for n 2::: N the inequalities of 
(ii) can be written as: 

0 < b1 ~ ~y(n) ~ b2 < oo, Vh # 0. 

This implies that y( n) cannot converge uniformly towards 
_,., .. ,-,. ...,,.. ,_.. ;.,.,,.. .. ,..,C'OC' nnlocc h - f1l tC' f"'hi"\C'""T\ fcoP (17\\ 
~V.!.V f.41o.1 Ill ..I....L.LV.l,_,..L4.~'bo'I<J' ........_A.L'Iw'~'-' .a..a. -- ....., .&.IJ 'W'.L.8.'-'1tJ....,A..L , ................. ,...._ 'Jj• 

On the other hand, if h # 0 could be found such that 
~~~1 heu(n - R) = 0, it would imply that u(n) = 
- ·;:/:=~ 1 (he/h0)u(n- R), for h0 # 01

. This would 
mean that u( n) is perfectly predictable from at least M - 1 
samples from its past. Since (18) can not vanish identically 
as k increases, u( n) can not converge to such a situation 
with increasing n. In this sense, persistence condition (ii) 
guarantees that u( n) is not a predictable sequence given 
M- 1 samples from its past. A similar reasoning was used 
in the analysis of numerical stability of QR-LSL algorithms 
[8, 9]. 

Remark 2: A useful frequency domain interpretation follows 
quite straightforward from Remark 1 [15]. Considering 
initially a deterministic signal u(n), the frequency domain 
version ofEquation (18) is 

with Y( ejw), H( ejw) and U( ejw) being respectively the 
Discrete Time Fourier Transforms of y(n), he, 0 ~ R ~ 
M- 1, and u(n). Since any possible Y(ejw) can not vanish 

If some positive bounds b1 and b2 satisfying 
known, then the inequalities can be written as: 

are identically, it follows that at least U ( ejw) is nonzero at M 

0 < 

< 

88 

1-.\ 

N 

distinct frequencies. Note that ifU(ejw) # 0 only at M- 1, 
or less, distinct frequencies, then h.e could be chosen such 

1 If ho = 0 there would exist 0 < Co :::; M - 1 such that h.e0 =I= 0 and 

u(n- Co) =- "J:!£:+l (h.e/h.e 0 )u(n- C). Thus, for any n, u(n- .eo) 
would be predictable from less than M - 1 samples from its past and so 
would be u(n). 
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that theM- 1 zeros of its z-Transfonn H(z) lie on the unit 
circumference where U( ejw) is nonzero. 

If u( n) is a stationary stochastic sequence it results from 
statement (iii) of the Lemma that E{uM(k)uL(k)} is 
positive definite, with E{.} being the statistical expectation 
operator. Thus, considering h-=/= 0, 

E{hT uM(k)u~(k)h} 

E{y2 (k)} > 0. 

Therefore, it is not possible to obtain h -=/= 0 such that y ( k) , 
of Equation (18) vanish identically. Introducing the power 
spectral density function of u( n ), 

+oo 
'llu(ejw) = L E{uM(k)u~(k)}e-jwk, 

k=-oo 

it follows that 

E{hTuM(k)u~(k)h} = 
E{y2(k)} = 2~ r~: 'llu(ejw) iH(ejw)i2 di.u. 

(19) 

Thus, if E { u M ( k) u ~ ( k)} is positive definite it results that 
'llu(ejw), the power spectral density function of u(n), must 
be at least nonzero at M distinct frequencies. Again, note that 
if'llu(ejw) -=/= 0 only at M- 1, or less, distinct frequencies, 
then he could be chosen such that the M - 1 zeros of its z
Transfonn H (z) lie on the unit circumference exactly where 
W u ( ejw) is nonzero. In this case the integral in Equation(??) 
would be zero. 

Volume 15, Numero 2, dezembro 2000 

also, for sufficiently high condition numbers, tighter than the 
upper bound of (11). Moreover, (12) shows that for an ill
conditioned signal with finite energy the upper bound of ( 6) 
does not depend of the condition number, as it is determined 
only by the order M and the input signal energy bound. As 
shown by (10), it is the lower bound of (6) that depends 
on the condition number, being inversely proportional to it. 
Therefore, for a data matrix where x( n) increases with n, at 
least one eigenvalue of<P}}(n) will explode. As observed in 
[4, 14] such a behavior causes severe numerical problems. 

Remark 5: Considering the identification problem of a 
system excited by u( n) that produces an output d( n ), 
conditions (i) to (iii) guarantee that the solution of ( 1) is well 
defined and unique for all n 2: M - 1. In other words, 
they guarantee the identification of an unique FIR model of 
M coefficients for the system generating d( n). Thus, the 
input signal u( n) is sufficiently varied such that both u( n) 
and d( n) provide enough information about the input/output 
characteristics of the system to be identified. This enables a 
signal u( n) satisfying (i) to (iii) to be named a persistently 
exciting signal of degree M. 

As observed, persistency of excitation is strongly connected 
to identifiability conditions. This is of fundamental 
importance for many applications in the telecommunications 
area. For example, the equalization of a linear 
communication channel is the attempt to identify a delayed 

n~li'lrii"JJlrlr ':t· 11-H=> o;,1nn1ll-:tr u-:tlll,. A,.I"'I"'\TT'IT'\A"1t1nn nf' A .,(-n\ "'""ro;,1nn nf'th,.l"'h-:tnn""l'c 1nu,.rc<>f-r.<>ncof'or,fnnl"'f;r...., l:'r..ll.-..n,;..,,.. 
~ L 

yields 

AM(n) = U M(n)SM(n)V M(n), (20) 

where SM(n) = diag{si(n), 1 ~ i ~ M} and UM(n) 
and V M ( n) are orthogonal matrices, respectively with 
dimensions ( n+ 1) x M and M x M. Thus, the corresponding 
autocorrelation matrix and its inverse are given by 

iPM(n) = AI,(n)AM(n) = V~(n)SJv.r(n)V M(n) (21) 

and 

<pA}(n) = V~(n)SAJ(n)V M(n), (22) 

where SAJ(n) = diag{si2 (n), 1 ~ i ~ M}. Therefore, 
excitation persistency condition (ii) (see (i.a)) guarantees the 
largest eigenvalue of the inverse autocorrelation matrix to 
be upper bounded by b!1 and its smallest eigenvalue to be 
positive and bounded away from zero by b21 for all n ~ 
M - 1. Roughly speaking, this assures that the recursive 
update of <p AJ ( k), characteristic for several RLS algorithms, 
behaves well. This behavior is of paramount importance 
to assure exponential convergence [11, and numerical 
stability of RLS algorithms that deal directly with <p "Nl ( k) 
[7]. 

Remark 4: The upper bound given by (12) is not 
then the one of which may be of interest when 

exoncn ae'j:~emten~::e of the energy ~u ( n) is but 

Remark 5, if the received signal (at the input of the equalizer) 
is persistent of degree M then a well defined FIR solution 
of order M - 1 can be found by using adaptive algorithms 
from the RLS family. Moreover, following Remarks 3 
and 4, the persistency of the received signal is important 
to guarantee a stable numerical behavior of the adaptive 
algorithm. Of course, it can not be expected that practical 
signals always satisfy persistency conditions, so that an 
important issue for practical applications is to investigate how 
to design algorithms that present stable behaviour even for 
non-persistent signals (for more details on this subject the 
interested reader is referred to [8, 9, 10]). To handle this 
problem, a clear comprehension and a precise definition of 
what excitation persistency means are essential. 

Proof of the Lemma: 

((i) ~ From (20) and (21) it readily follows 

b2I- A~(n)AM(n) > 0 {:? b2I- SJv.r(n) ~ 0 

{:? b2 ~ s~a.x(n) (23) 

and 

> Q{=?SJv.r(n)

q, b1 ~ s~in ( n). 
89 
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Consequently, if constants 0 < b1 < b2 < oo exist satisfying 
( 6) then for any2 n 2:: M - 1 the exdtation persistency 
condition ( 6) can be written as 

0 < b1I ~ s~in(n)I ~ A'ft(n)AM(n) ~ s~ax(n)I 
< b2I < oo (25) 

and the condition number x ( n) is upper bounded: 

(b; 
x(n) ~ y ~· (26) 

Moreover, considering unit norm vectors h in (17), it results 
from (25) that 

0 < b1 ~ s~in(n) ~ ~y(n) ~ s~ax(n) ~ b2 < oo 

for n 2:: M - 1. In particular, y(k) = u(k) if hT 
[1 0 ... 0]. As a consequence, for n;::::: M -1 one obtains 

0 < b1 ~ s~in(n) ~ ~u(n) ~ s~ax(n) ~ b2 < oo. 

If n 2:: 0 is to be taken instead of n ;::::: M -1, the lower bound 
/31 will be at least min{ b1, u ( 0)).. M -

1} and the upper bound 
/32 will be max{b2, ~u(k), k = 0, 1, ... , M- 1}. 

((i) => (ii)) On the other hand, the condition number x(n) 
may be bounded even in situations where Smax ( n) and 
Smin ( n) are both arbitrarily low or arbitrarily high. For that 
reason it is necessary to introduce a further condition (as 
in (i)) to make the existence of an upper bound for x(n) 
equivalent to ( 6). One possibility, as used in (i), is to require 
the input signal energy to be lower and upper bounded as in 
(4) 
' / 

Considering now ( 4) and ( 5), a lower bound for s~in ( n) 
and an upper bound for s~ax ( n) can be obtained as follows. 

The autocorrelation matrix <!> M ( n) = A 'f:t ( n) AM ( n) is 
symmetric and at least positive semi-definite. Therefore, 
it may be decomposed as in (21) with Si:r ( n) = 

diag{ s7 ( n)} I ~1 being the eigenvalue matrix and V M ( n) 
being the eigenvector matrix with M orthonormal columns 
vi ( n). An unit norm column vector h of length M can be 
expanded using the eigenvector basis: 

M 

h = .I:: aivi (n), with 
i=1 

In this case 

M 

~y(n) = hT A'f:t(n)AM(n)h =.I:: a7sr(n) 
i=1 

follows, and consequently 

s~in(n) ~ ~y(n) ~ S~ax(n) 

holds for any unit norm vector h. Therefore, with 
[1, 0, ... , 0] and (5), it results 

s2 (n) 
rna~ ~ ~u(n) ~ r;s~in(n). 

ro 

Consldermg u(n) = 0 for n < 0 and u(O) i= 0, n 2:: M- 1 > 0 
should be taken, because for n < M - 1 the data matrix AM ( n) has at 
least one null column and consequently Smin ( n) = 0. 

Now, considering (4) and (21), the following bounds follow: 

0 fJ1 1 ~u ( n) 2 T ) ) < 2 ~ - 2-I ~ smin(n)I ~ AM(n)AM(n (27 
ro ro 

A'ft(n)AM(n) ~ s~ax:(n)I ~ r~~u(n)I ~ r~f32I < oo. 
(28) 

Alternatively, other upper bounds can be obtained. For 
this purpose one should note that the diagonal elements of 

<!> M ( n) = [ ¢ };;j) ( n)] are delayed energies of the input signal, 

i.e. cj))Ji)(n) = ~u(n- i + 1), for 1 ~ i ~ M. This 
result may be found in [ 4] or may be deduced directly from 
<I>M(n) = A'f:t(n)AM(n) = I:~=O .An-ku(k)uT(k). 

Thus, from 

M-1 M 

L ~u(n-£) =trace{A~(n)AM(n)} = L:sr(n) 
£=0 i=1 

one obtains 

M M-1 

s~ax(~) ~ L:sr(n) = L ~u(n-£) ~ M/32 . (29) 
i=l £=0 

Moreover, since ~u(n) = .Ai~u(n- i) + 2:~:~ .A£u2(n- £), 
which implies ~u(n)j)..i 2:: ~u(n- i), another upper bound 
may be obtained: 

2 ( ) < ""M-1 c ( ·) ~ ""M-1 ,1! 8 rnax n - L.,..i=O '::.u n- 't ~ )..M-1 L.,..£=0 /\ = 
c;,J, (n) 1-.A:"; < .;11 (n.) M < ;JCtlv[ 
)..M-1 1-A _ )..M-1 _ ).. -1 

(30) 

( (ii) ~ (iii)) Before going on with the proof of the 
equivalence of (ii) and (iii) it should be noted that given two 
M x M matrices B and C such that 

for all h =f. 0, then C ~ B. Thus, for proving the 
equivalence of (ii) and (iii), inequalities ( 6) and (7) could be 
taken multiplied from the left by h T and from the rigth by h, 
for any h satisfying h Th = 1. 

Having this in mind, from (7) one obtains for any h =f. 0 

1 
n+N-1 

N .I:: y2 (k)::; a2, \:In 2:: 0 => y2(k) ::; Na2, Vk 2:: 0. 
k=n 

(31) 

Thus, the upper bound of ( 6) follows immediately: 

n 
n An-k = Na 1- ;..n < Na2 

2 1-.A -1-.A' 
k=O k=O 

(32) 

Considering n 2:: N , using 

(33) 
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obtained from (7) and taking L as the integer part of n/ N, 
the lower bound of (6) is obtained as, follows: 

k=O 
L-1 (£+1)N-1 n 

L L ).n-ky2(k) + L ;..n-ky2(k) 

£=0 k=fN k=LN 
L-1 (£+1)N-1 n 

L ).n-fN L ).fN-ky2(k) + L ;..n-ky2(k) > 
f=O k=fN k=LN 

L-1 

L;..n-.eNNa1 > 
f=O 
L-1 

Na
1

>..2N L ;..n-(f+2)N > 
£=0 

For n < Nit readily follows that 

n 

LAn-ky2(k) ~ )..Ny2(0), (35) 
k=O 

setting a lower bound for this case. 
((ii) =>(iii)) With N ~ M and n ~ 0, the upper bound of(7) 
follows immediately from (6), (16) and (17): 

n+N-1 

~ L y2(k) < 
k=n 

< 

< 
(36) 

To obtain the lower bound of (7) one should again take N ~ 
M such that from ( 6), (16) and (17) 

n+N-1 

b1 < I:: ).. n+N-1-ky2(k) 

k=O 
n-1 n+N-1 

< AN L ;..n-1-ky2(k) + I:: ).n+N-1-ky2(k) 

k=O k=n 
n+N-1 

< )..Nb2 + L y2(k) 
k=n 
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