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Abstract - Speech compression plays an important role in 
applications which require the minimization of the storage 
and/or transmission requirements, such as multimedia, 
integrated services digital networks (ISDN), voice response 
systems and cellular telephony. Vector quantization (VQ) is 
a well-known compression technique which has been widely 
used in many speech coding systems. In the present work, 
an algorithm for designing codebooks for voice waveform 
vector quantization is presented. Simulations are carried 
out to compare the performance of the proposed algorithm, 
which is based on principal component analysis (PCA), to the 
performance of two other design approaches: the traditional 
LBG (Linde-Buzo-Gray) algorithm and a self-organizing 
neural network algorithm. 

Resumo- A compressao de voz desempenha urn papel im­
portante em aplicas:oes que necessitam minimizac;ao dos re­
quisitos de armazenamento e/ou transmissao, tais como: mul­
timidia, redes digitais de servic;os integrados (ISDN), siste­
mas de resposta vocal e telefonia celular. Neste contexto, a 
quantizac;ao vetorial (VQ) apresenta-se como urna poderosa 
tecnica de compressao, que tern sido bastante utilizada em di­
versos sistemas de codificac;ao de voz. No presente trabalho, 
e apresentado urn algoritmo para projeto de diciomirios para 
quantizac;ao vetorial de forma de onda de voz. Diversas simu­
lac;oes realizadas apresentam uma comparac;ao do algoritmo 
proposto, 0 qual e baseado em ana.lise de componentes prin­
cipais (PCA), com duas outras tecnicas de projeto de diciomi­
rios: o tradicional algoritmo LBG (Linde-Buzo-Gray) e urn 
algoritmo de redes neurais auto-organizativo. 

Vector quantization, codebook design, voice 
waveform coding, principal component analysis, Karhunen­
Loeve transform. 

The digital representation of speech and image signals allows 
the of many techniques of digital processing, 
which assure an adequate use of the available channel 

advantages may arise from the digital 
rep,res:en1tation, such as the efficient control of channel errors, 

of many of cryptography and 
of of signals and data. The 

high conmn;ssH)n 

rates for representing speech and image signals. Vector 
quantization (VQ) has been widely used in many speech and 
image coding systems [1, 2], due to the theoretically proved 
fact that it results in a lower distortion for a given rate as 
compared to scalar quantization [3]. 

Speech coding is essential for applications such as voice 
messaging, multimedia, teleconferencing, integrated services 
di~ital networks (ISDN), voice response systems, wireless 
communications, digital telephone answering machines and 
security devices [ 4]. In these applications, the fundamental 
purpose of speech compression techniques is to reduce the 
number ofbits,tequired to represent the speech signal, while 
maintaining a desired level of signal quality. 

Speech coding techniques may be classified into two 
general categories [5, 6]: waveform coders and voice coders 
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waveform coding speech compression systems is the efficient 
representation of the actual speech waveform; the coding 
process is directly carried out in the samples of the speech 
signal. On the other hand, in parametric coders, which are 
based on a model of the human voice production mechanism, 
the coding process is carried out in the parameters that 
describe such model. 

In the present paper, an algorithm for designing codebooks 
for voice waveform vector quantization is presented. It 
is based on Principal Component Analysis (PCA). Unlike 
the LBG (Linde-Buzo-Gray) algorithm and self-organizing 
neural networks algorithms, the proposed algorithm does 
not need a training sequence to update the codevectors. It 
consists on the use of the eigenvalues and the eigenvectors of 
the covariance matrix of a typical sequence of speech data to 
compute the codevectors. 

The remainder of this paper is organized as follows. 
Section 2. presents a brief description of vector quantization. 
Some aspects of principal component analysis, with focus 
on the eigendecomposition provided by the Karhunen-Loeve 
Transform (KLT), are provided in Section 3.. Section 4. 
points out the main differences between the role of the KLT 
on the proposed method for voice waveform VQ codebook 
design and the conventional application of the KLT in the 
scenario of transform coding. The proposed is 
described in Section 5.. Simulation results are in 
Section 6. and the remarks are given in Section 7 .. 
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Vector quantization [1, 2], also called block quantization or 
multidimensional quantization, has been established as an 
effective source coding teclli1ique that plays an important 
role in many speech and image compression systems. It is 
worth mentioning that according to Shannon's rate-distortion 
theory [3], a better performance is always achievable in 
theory by coding blocks of samples (that is, vectors) instead 
of coding each sample individually (that is, scalars). In other 
words, that theory states the superiority of vector quantization 
over scalar quantization. 

An N-level vector quantizer of dimension K can be 
defined as a mapping Q from a vector x in K -dimensional 
Euclidean space, RK, into a a finite subset W of RK 
containing N distinct reproduction vectors. Thus, 

(1) 

where the codebook W = {wi; i = 1, 2, ... , N} is the 
set of K -dimensional codevectors (reconstruction vectors, 
template vectors, quantization vectors). 

The mapping Q leads to ·a partition of RK into N 
subspaces Si, i = 1, 2, ... , N, for which: 

N u si = RK and sin Sj = 0 if i =I= j, (2) 
i=l 

where each cell or region Si is defined such as 

Si = {x: Q(x) = Wi}· (3) 

According to [2], the i-th cell Si is sometimes called the 
inverse image or pre-image of wi under the mapping Q and 
denoted more concisely by Si = Q-1 

( w i). 
Since the Voronoi cell Si collects together all input vectors 

mapping to the i-th codevector, as depicted in Figure 1, 
the codevector (prototype vector) wi may be viewed as a 
pattern-class label (prototype pattern) of the input vectqrs 
(input patterns) belonging to Si [7]. Accordingly, vector 
quantization may be viewed as a form of pattern recognition 
where an input pattern is "approximated" by one of a 
predetermined set (codebook) of standard patterns [2]. 

Figure 2 shows that a vector quantizer can be considered 
as a combination of two functions: a VQ encoder and a VQ 
decoder. The former maps an input vector x to a codevector 
WI if d(x, WI) < d(x, wi), Vi =I= I, where d(·) is some 
distortion function. In other words, it follows the nearest 
neighbor rule to find the codevector that presents the greatest 
similarity to x. Then, the llog2 Nl binary representation 
of the index I, denoted by bi, is transmitted to the VQ 
decoder Upon receiving the binary word bi, the VQ 
decoder looks up the I -th codevector, w I, from a copy 
of the codebook and outputs w I as the reproduction of x. 
As shown in Figure 2, the mapping of x into w I is captured 

the WI= Q(x) [9]. 
is a lossy compression 
is a version of 

Figure 1. Partition of the two-dimensional Euclidean 
space, R2

, introduced by the mapping of input vectors x 
into representative codevectors wi. Note that x 1 and x2 

represent the first and second components of vector x E R2, 

respectifely 

VQEncoder 

Source ~c:-':1-.--, 

L-.:.;_.1 

Codebook 
L-.:..:.._j 

Codebook 

Figure 2. Coding/decoding procedure of a signal 
compression system based on vector quantization. 

the original signal. The mean error obtained in representing 
the input signal by its corresponding quantized version is 
called the distortion of the quantizer. On the other hand, 
the code rate of the vector quantizer, which measures the 
number of bits per vector component, is R = -k log2 N. In 
voice waveform coding [10], R is expressed in bit/sample. 
In image coding [8], R is expressed in bits per pixel (bpp). 
An important issue regarding vector quantization is the 
compromise between rate and distortion. 

Codebook design plays a crucial role in the scenario of 
signal compression systems based on vector quantization. 
Techniques for codebook design attempt to produce a 
codebook that is optimum for a given source in the sense that 
the average distortion in representing the input vectors by the 
corresponding codevectors may be kept to a minimum. 

In the literature, a number of for codebook 
design has been proposed and 
traditional LBG algorithm [1 
neighbor (PNN) algorithm 
stochastic relaxation 
algorithm and other serr -oJrgamzmg 
algorithms [ 16, 17, 

The most used for designing 
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It is worth mentioning that the KLT diagonalizes the 
correlation matrix Rff, i. e., the transform coefficients are 
uncorrelated [24]. In fact, 

For zero-mean processes Rxx = Cxx, therefore, 

(15) 

From Equation (1 0), 

waveform segments that are typical of the input class 
whose statistics have been used in the KLT derivation. 
This in turn is reflected by the dimensionality needed for 
a given representation error to be the smallest when the 
representation is in term of KLT basis vectors (eigenvectors, 
principal components). In fact, since these basis vectors are 
signal-dependent, fewer of them can be used on the average 
to approximate a given input, as compared to representations 
using signal-dependent basis vectors. 

The proposed algorithm is based on principal component 
analysis of a typical speech sequence and consists on the 
following steps: 

AKZK ] · (16) 1. Define dimension K and codebook size N; 

Hence, from Equation ( 5), 

0 

(17) 

0 

Thus, the Karhunen-Loeve transform, also known as the 
Hotelling transform, is an orthogonal transformation which 
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uncorrelated components [24, 25]. 

Transform techniques have been widely applied to voice 
and image coding systems, leading to good results. In 
transform coding, the KLT is the optimum choice for 
obtaining uncorrelated coefficients, prior to individual scalar 
quantization of each feature [24]. The problem with tp.is 
approach is that the KLT must be computed in real time, for 
each incoming input data vector. 

The method proposed in this paper differs from the above 
mentioned method. The eigenvectors (principal components) 
are used to find L ~ K directions (in the RK space) 
along which the codebook vectors ( codevectors) are to be 
allocated. The eigenvalues corresponding to those principal 
directions are used to properly adjust the positions of the 
codevectors along the principal directions. Besides, real time 
calculation of the KLT is not used. Unlike transform coding, 
which calculates the KLT for each input vector, the proposed 
method computes the eigenvalues and the eigenvectors of the 
covariance matrix of an entire typical speech sequence, that 
is, the principal components are calculated only once and 
they are necessary when designing the codebook, prior 
to its use in the coding process. 

It is worth that, according to [24], the KLT 
basis vectors are for statistics. 
The KLT basis vectors exhibit the to 

2. From the K x K covariance matrix Cxx of a typical 
speech sequence X, find the eigenvalues Ai and the 
eigenvectors zi; i = 1, 2, ... , K, defined by: 

(18) 

3. Define L ::; K vectors zi (principal components) along 
the directions the codevectors are to be allocated. The 
number L is chosen according to the relative percent 
value Ai,p of each eigenvalue Ai: 

(19) 

Only the L most significant eigenvectors, which define 
the L principal directions, are chosen, according to the 
most significant Ai,p; 

4. For each Zi chosen, determine a vector Zi = rzi 
( i = 1, 2, ... , L ), where the scalar r is the reciprocal 
of the absolute value of the component with the 
largest absolute value. Therefore zi has, at least, one 
component with absolute value 1 and the other absolute 
values range from 0 to 1; 

5. Let Ni be the number of codevectors to be allocated 
along the direction defined by vector zi. Each Ni is 
chosen as a fraction of N, in proportion to Ai,p so that 

L 

N= (20) 
i=l 

6. Finally, Ni codevectors wi,ni are ~ .. ,_,.._a.~~;;u to each i-th 
principal to: 
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where i = 1, 2, ... , L, ni = 1, 2, ... , Ni and the 
scalars f ( ni, Ai) are determined assuming that each i­
th principal direction is related to a set of input vectors 
whose components have Gaussian distribution with 
mean equal to to the mean of the speech sequence and 
variance (ji

2 = Ai. Scalars f(ni, Ai), ni = 1, 2, ... , Ni, 
are determined in such a way that the area under the 
Gaussian probability density function is equally divided 
into Ni intervals. 

- ' 
In summary, a set of L eigenvectors is found and a number 

of codevectors Ni (a fraction of N) is then allocated to each 
principal direction defined by eigenvectors Zi (i = 1, 2, ... , L) 
according to considerations on eigenvalues (variances). 

The proposed algorithm (from now on referred to as PCA) 
differs from that one reported in [26] by the introduction 
of normalization in the set of eigenvectors, as described in 
step 4. The multiplication of the normalized vectors Zi by 
the scalars f ( ni, Ai) permits the resulting codevectors to 
incorporate, simultaneously, two important informations of 
the speech signal: the principal directions (via eigenvectors) 
and the statistical distribution of vectors (via eigenvalues) in 
each direction. 

Voice waveform vector quantizers were designed and test­
ed for a variety of dimensions (K) and number of levels 
( N). The original speech signals were recorded at a coding 
rate of 8.0 bit/sample. The sample rate used was 8 kHz. 
~rrnmanons were carr1ea our w compare me perrormance 
of the PCA algorithm to other design procedures: the 
traditional LBG algorithm and an unsupervised learning 
neural network algorithm, referred to as SOA (self­
organizing algorithm) [18]. 

The first simulation was carried out to evaluate the 
coherence of the proposed method. Figure 3 shows a 
graphical representation of a typical speech signal, which 
consists of 10 phonetically balanced sentences [27] uttered 
by 10 different speakers (5 males and 5 females). J:igure 4 
shows the codebook designed using PCA algorithm. It is 
easy to observe that the proposed algorithm was able to build 
representative patterns inside the trained codebook, which 
is well adapted to the signal statistics. The final codebook 
configuration has incorporated some typical properties of 
the speech signal such as predominance of small amplitude 
components of speech (more codevectors are allocated to 
regions of greater incidence of speech signal samples) and 
typical correlation among consecutive samples, shown by 
the proper positioning of codevectors along the principal 
component direction. 

The second simulation concerned the performance 
evaluation of the proposed algorithm at different bit/sample 
rates for K = 2. The designed codebooks 
were tested a relatively long training sequence, the 

utterance: "0 sol ilumina a fachada de tarde. 
mais do que podia" (29120 samples, 3.64s). 

speech signals were evaluated 
segme:ntai "'"'.,.""' 1 -"""-.,.,"''"'~ ratio which is 
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obtained by averaging the conventionally defined signal-to­
noise ratio (SNR) over short time intervals [6, 24]. Figure 5 
indicates that, for coding rates ranging from 1. 7 bit/sample 
to 2.7 bit/sample, PCA performs better than the LBG 
algorithm. For coding rates ranging from 2.0 bit/sample to 
2.5 bit/sample, the performance of PCA is similar to that of 
the SOA algorithm. However, both LBG and SOA algorithms 
outperform PCA in the range 2.7-3.5 bit/sample. 

N 
X 

-~1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 
x1 

Figure 3. Speech signal used in the determination of 
the covariance matrix, which consists of 1 0 phonetically 
balanced utterances (18.76s, 75040 vectors); xi and x2 

represent the first and second components of vector x E R2 , 

respectively. 

1 

0 .E 

0 .E 0 
0 

0 

voo 
0/ .. 0 

0 

-0 

-0 .'-

-0 .E 0 
-0 .E 

1 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

w1 

4. Codebook designed using the PCA algorithm 
(K = 2 and N = 32); WI and w2 represent the first the 
second components of codevector w E R 2 , respectively. 

Another simulation consisted of designing vector 
quantizers at different bit/sample rates for vector dimension 
K = 4. As can be observed on Figure 6, PCA outperforms 
LBG in the range 0.75-1.35 bit/sample. For rates up to 
1.25 the performance of PCA is close to 
that of SOA. For rates higher than 1.35 bit/sam-

both LBG and SOA algorithms PCA. It 
1rn·nrn-t'>'111"~1l to mention that the values of the 
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Figure 5. Performance evaluation of LBG, SOA and PCA 
algorithms in speech compression: segmental signal-to-noise 
ratio (SNRseg) versus bit/sample rate for dimension K = 2. 

LBG algorithm in Figure 6 correspond to the best values 
obtained by applying different initialization strategies of 
the LBG algorithm, using a very small distortion threshold. 
Accordingly, the SNRseg values differs from those presented 
in [28]. 

It is important to emphasize that unlike LBG and SOA 
algorithms, the proposed algorithm does not require a 
training process. It simply "calculates" the codebook 
according to the eigenvalues and the eigenvectors of 
.1 .. ~ • r J. _ ,~..._ _,_ _ ~ __ ~ 1 
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Additionally, unlike SOA and other unsupervised neural 
networks algorithms, the PCA algorithm has no parameters 
to be adjusted. 
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6. Performance evaluation of LBG, SOA and PCA 
algorithms in speech compression: segmental signal-to-noise 
ratio (SNR.seg) versus bit/sample rate for dimension K = 4. 

conc~~rnm2 informal subjective evaluations of the speech 
was observed, for all considered coding rates of 

the 2-dimensional vector that the reconstructed 
obtained PCA codebooks lead to 

a weaker perception of the broadband background noise 
(quantization noise) when compared to the reconstructed . 
signals obtained by using the LBG and the SOA codebooks. 
On the other hand, for some coding rates of the 4-
dimensional vector quantization, the PCA codebooks made 
the reconstructed speech signal be affected by the presence 
of an artificial signal, like a "musical" tone, which is 
more easily perceived in the silence segments and does 
not present any similarity with the speech signal or the 
quantization noise. This effect, denoted in the literature as 
musical noise or tonal noise [29, 30] is produced when the 
spectral components on the regions ofhigher concentration of 
small amplitude samples are not adequately reconstructed, as 
occurs in the background noise on the silence segments. This 
phenomenon may appear as "spectral-gaps" in the spectrum 
of the reconstructed signal [31, 32]. In particular, the authors 
have observed the occurrence of non typical patterns in the 
spectrogram of the reconstructed signal. However, it is 
important to emphasize that, despite the introduction of some 
musical noise, the informal subjective tests indicated that 
the PCA codebooks lead to a broadband background noise 
(quantization noise) which is less annoying than that one 
obtainep by using both SOA and LBG codebooks. This 
result from the subjective evaluation was confirmed through 
objective evaluation. In fact, Table 6. shows an interesting 
aspect of the PCA algorithm. Unlike what typically occurs 
when using SOA and LBG codebooks, the segmental signal­
to-noise ratio (SNRseg) of the reconstructed signal obtained 
using PCA codebooks is higher than the conventionally 
defined signal-to-noise ratio (SNR). This behavior was 
nhC'.,_.,....,.,.,-1 fnr "'lrnAd "'11 l"Arl1no- rQt.:=•C' "'nrl l"lP"'rhr 1nrltr""'tPc:: t"h"'t 

~ . 
the PCA code books preserve the low energy speech segments 
as compared to LBG and SOA codebooks. 

K I N I SNRseg (dB) I SNR (dB) 

2 32 11.01 8.82 
2 64 12.11 9.71 
2 128 13.29 10.67 
4 32 7.81 6.51 
4 64 8.87 7.24 
4 128 9.44 7.66 

Table 1. Segmental signal-to-noise ratio (SNRseg) and the 
conventionally defined signal-to-noise ratio (SNR) for the 
reconstructed signals obtained by using PCA codebooks for 
different values of dimension (K) and number of levels (N). 

Simulations were also carried out to evaluate the PCA 
codebooks as the starting point of the LBG algorithm. 
Table 6. shows that the PCA codebooks may be used as a 
good alternative to the initialization of the LBG algorithm 
since they may lead to a significant improvement in the 
convergence speed of the LBG algorithm. Using the PCA 
codebooks as the initial codebooks of the LBG algorithm 
may result in a considerable decrease in terms of number 
of iterations of the LBG codebook design method. As an 
""-"-'•.uuJ ... ..,. for designing a codebook with K = 4 and N = 
128, the of the PCA initialization strategy under 

other C PC A as the initial 
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codebook) leads to 23 iterations, which represents a lower 
computational complexity as compared to initialization C I I, 
that requires 82 iterations. Table 6. also shows that, for a 
fixed dimension K, the gain in terms of convergence speed 
introduced by initialization C PC A over other initialization 
strategies seems to increase as the codebook size N increases. 
It was also observed that using PCA codebooks as the 
initialization of LBG may lead to a gain in terms of SNRseg 
when compared to other choices of initial code books. 

K I N I CI I Cn I Cni I CPcA 
4 8 21 16 32 22 

4 16 33 44 45 34 
4 32 59 62 52 53 
4 64 72 85 59 39 
4 128 77 82 39 23 

Table 2. Sensibility of LBG algorithm to four different 
initial codebooks (CI, Cn, Cni and CPcA) in terms of 
number of iterations for different values of codebook size N 
for dimension K = 4. The subscript PC A denotes the 
initialization using the PCA codebooks. 

An interesting aspect of ·the PCA codebooks regards 
the uniformity of the distribution of the source vectors 
(input vectors) in Voronoi cells. The values of normalized 
entropy (see Appendix for more details) in Tables 6. and 6. 
show that the PCA codebooks lead to a more uniform 
distribution of source vectors in Voronoi regions as compared 
to SOA codebooks. In fact. the PCA codebooks present 
higher values of normalized entropy. This behavior favors the 
PCA based voice waveform VQ codebook design algorithm. 

KIN Hn 

2 32 0.94 
2 64 0.93 
4 32 0.94 
4 64 0.95 
8 32 0.96 
8 64 0.95 

Table 3. Normalized entropy (Hn) of the codevectors for 
different values of codebook size (N) and dimension (K) for 
the PCA codebooks. 

KIN Hn 

2 32 0.88 
2 64 0.91 
4 32 0.87 
4 64 0.88 
8 32 0.84 
8 64 0.89 

Nonnalized entropy (Hn) of the codevectors for 
values of codebook size (N) and dimension for 

the SOA cod,ebooks. 

Volume 15, 2, dezembro 2000 

Figure 7 shows that the proposed. method generates 
structured codebooks, unlike both LBG and SOA algorithms, 
which generate codebooks without structure, as can be seen 
in Figure 8. It is worth mentioning that structured codebooks 
may be used as an interesting attempt to circumvent the 
complexity problem of the vector quantization encoding 
phase, that is, the nearest neighbor search (33]. 

O.t3r---.--,----,.---,-----.------,----,-----, 

-O.S1~--'-----':2:------'-----:-3---'----4.L...---L-----.J5 

Figure 7. Codebook designed by the PCA algorithm: K = 5 
and N = 76. Each curve in the set of76 curves is obtained by 
linking the points corresponding to the components (samples) 
of the codevectors. 

O.Sr 

o.~t-----
--'-<::::::----~ 

0. 

-O.S1'----'------':2---'-----l..3 __ _,__ __ 4.L__ _ _j_ _ ____J5 

Figure 8. Codebook designed by the SOA algorithm: K = 5 
and N = 76. Each curve in the set of76 curves is obtained by 
linking the points corresponding to the components (samples) 
of the codevectors. 

A PCA based for designing voice waveform 
Unlike other design 

the the Kohonen 
sel:t:-oJrgrurrizing neural networks 
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sequence to iteratively update the codevectors, since the 
codebook vectors are calculated in ' a very simple and 
intuitive manner. Basically the proposed method performs 
an eigendecomposition on the covariance matrix of a 
representative speech sequence, orders the eigenvectors 
(principal components) according to the descending order of 
the corresponding eigenvalues, chooses the most significant 
eigenvectors and allocates (along the direction defined by 
each chosen eigenvector) a number of codevectors according 
to considerations on the eigenvalues. Additionally, the 
PCA based algorithm, unlike Kohonen's self-organizing 
algorithm. and other unsupervised learning algorithms, has no 
parameters to be adjusted. Since the PCA based method does 
not need the definition of an initial code book, unlike the LBG 
algorithm, both performance and convergence speed do not 
depend on an initial codebook. 

Simulations results have shown that, for fixed dimensions 
K = 2 and K = 4, at a wide range of bit/sample rates 
evaluated, the PCA based algorithm performs better than the 
traditional LBG and close to the performance presented by 
an unsupervised learning neural network algorithm, referred 
to as SOA (self-organizing algorithm). Regarding informal 
subjective evaluations of the speech material, it was observed 
that the reconstructed speech signals obtained by using PCA 
codebooks lead to a weaker perception of the broadband 
background noise (quantization noise) when compared to the 
reconstructed signals obtained by using the LBG and the 
SOA codebooks. Unlike what typically occurs when using 
SOA and LBG codebooks, the segmental signal-to-noise ratio 
1ofthe reconstructed signal by using PCA codebooks is higher 
th~n thP rrmvPntirm~ lhr rlPnnPrl ~1 an~ 1-tn-nnt(1P r~t1n Tht(1 

behavior clearly indicates that the PCA codebooks preserve 
the low energy speech segments as compared to the LBG and 
the SOA codebooks. 

Through a set of simulations, it was observed that the 
PCA codebooks may be used as a good alternative to the 
initialization of tl1e LBG algorithm since they may lead to 
a significant improvement in the convergence speed of the 
LBG algorithm. 

It was shown that the PCA based algorithm generates 
structured codebooks. The authors also observed that 
the codebooks designed by the proposed algorithm 
incorporate important characteristics of speech signals, 
such as predominance of codevectors with small amplitude 
components and typical correlation among consecutive 
samples of the codevectors. This happens according to the 
allocation of the codevectors to the principal components 
of the speech signal, due to information extracted from the 
eigenvectors and eigenvalues of the covariance matrix of 
the speech sequence. Therefore, the proposed algorithm is 
simple, intuitive and presents a good performance. 

The authors would like to express their thanks to CAPES and 
the financial to the research. 

In the present section, the normalized entropy [34] of the 
codevectors is described. It serves as a measure for assessing 
the uniformity of the source vectors distribution along the 
Voronoi cells. 

Let W = {wi I i = 1, 2, ... , N} beaN-level codebook, 
where w i is a K -dimensional codevector. Let Pi be the 
probability that a given source vector belongs to the Voronoi 
region or cell corresponding to the codevector wi. In other 
words, Pi corresponds to the probability that w i be the nearest 
codevector for a given input vector x. 

Let S = { X 8 , s = 1, ... , n} be a long representative 
training sequence, that is, S is a large sequence of 
representative vectors which are used in the codebook 
design algorithm. The sequence S may also be a large 
representative sequence of source vectors to be coded (i.e., 
to be vector-quantized) by using a previously designed 
codebook. According to the mapping introduced by vector 
quantization, the setS is partitioned into N non-intercepting 
subsets or Voronoi cells Si, i = 1, ... , N, where each cluster 
Si collects together all source vectors mapping into the i-th 
codev~etor, that is, Si = { X 8 : Q ( X 8 ) = W i}. In other 
words;cwi is the nearest codevector to all X 8 E Si. 

Let ni denote the size of the subset Si, that is, ni is the 
number of input vectors mapping to the i-th codevector. The 
probability that w i be the nearest codevector to any Xs (which 
is the probability that si be the Voronoi cell of Xs) may be 
obtained as 

Pi = ___:_ 
n 

The entropy H K of the codevectors is defined as 

(22) 

(23) 

The normalized entropy Hn of the codevectors is defined 
as 

(24) 

that is, 

N 
I: Pi log2( .l) 
. 1 P~ H __ ?-=......;_ ___ _ 

n- log
2

N (25) 

The maximum normalized entropy occurs for equiprobable 
codevectors. In fact, equiprobability HK = log2 N. 
As a consequence, Hn = 1. It is worth mentioning that 
H n ___, 1 as the uniformity in the distribution of input vectors 
along the Voronoi cells increases, that is, ___, 1 as -t 

log2 N. On the other hand, the normalized decreases 
as the number of small Voronoi cells mcreases. 
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