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Temporal Motion Vector Filter for Fast Object

Detection on Compressed Video
Ronaldo Carvalho Moura, Elder Moreira Hemerly, and Adilson Marques da Cunha

Abstract—A novel Temporal Motion Vector Filter (TF) is
presented and evaluated for real-time object detection on com-
pressed videos in MPEG-2, MPEG-4 or H.264/AVC formats.
The filter significantly reduces the noisy motion vectors that do
not represent a real object movement . The filter analyses the
temporal coherence of block motion vectors to determine if they
are likely to represent true motion in the recorded scene.

Experiments are performed using the CLEAR metrics for
object detection and public available datasets from CAVIAR,
PETS and CLEAR. These experiments demonstrate that the TF
outperforms the Vector Median Filter, by providing better object
detection accuracy with reduced computational complexity.

The good results obtained by the TF make it suitable as a
first step towards implementing systems that aim to detect and
track objects from compressed video by using motion vectors.
The TF could also be used to improve other techniques based
on motion vectors such as Global Motion Estimation (GME) and
Motion-Compensated Frame Interpolation (MCFI).

Index Terms—Object detection, object tracking, video com-
pression, motion estimation, vector median filter, spatiotemporal
motion vector filter, compressed-domain segmentation, real-time
segmentation, video-indexing, MPEG, H.264/AVC, global motion
estimation, motion-compensated frame interpolation.

I. INTRODUCTION

O
BJECT tracking techniques aims at tracking objects in

consecutive video frames. During the last two decades

several techniques have been proposed for video object track-

ing with applications to Video Surveillance [1], Intelligent

Transportation System - ITS [2], Human Machine Interface

- HMI, Video Indexing [3], [4] and Shopping Behavior Anal-

ysis.

The adoption of surveillance cameras everywhere and inter-

est in automatic video indexing served as stimulus for recent

research on object tracking and behavior recognition, such

as in AVSS (IEEE International Conference on Advanced

Video and Signal based Surveillance from 1998, 2001, 2003,

2005-2013), PETS (IEEE International Workshop on Perfor-

mance Evaluation of Tracking and Surveillance from 2000-

2010,2012-2013), CLEAR (Classification of Events, Activities

and Relationship Evaluation Workshop from 2006, 2007),
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CBMI (IEEE International Workshop on Content-Based Multi-

media Indexing from 1999, 2001, 2003, 2005, 2007-2013) and

ICDCS (ACM/IEEE International Conference on Distributed

Smart Cameras from 2007-2013).

Despite the increasing microprocessors computational

power in recent years, the processing required by object

tracking techniques still consists in a bottleneck to their

wider adoption, specially in low cost embedded equipment

as surveillance cameras and mobile devices. To reduce this

computational power demand, some techniques that extract

object motion information from compressed video streams,

instead of the raw video, have been developed.

By taking advantage of important information inside video

compressed by standards like MPEG family, these techniques

are capable of tracking an object without the need to fully

decompress video data, reducing by orders of magnitude

the required computational complexity. The main compressed

domain information used for segmentation and tracking is

the block motion vectors and the Discrete Cosine Transform

(DCT) coefficients.

However, the motion vectors (mv) contained in the com-

pressed video are chosen to minimize video bitstream, while

maintaining its human perceptible quality, and not to represent

true objects motion. Consequently, the mv can represent both

a real object movement or two similar block textures in

consecutive frames (fake movements). To make the motion

vectors useful for further segmentation steps, it is necessary

to remove the noisy ones, i.e., the motion vectors that do not

represent a real object movement.

This paper presents a novel Temporal Motion Vector Filter

(TF) to remove noisy motion vectors for object tracking

purpose with low computational effort. The novelty of the TF

consist in the combined use of the Equations 1 to 5 presented

in Section III. The TF can be applied to motion vectors

grouped in any format, with fixed block-size as in MPEG-2

and MPEG-4, or with variable block-size as in H.264.

The TF consists in a faster and more accurate replacement

for Vector Median Filter, a still widely used technique for

motion vector filtering. The Temporal Motion Vector Filter is

intend solely to classify each motion vector as reliable or not

reliable representation of the real world motion. It does not

replace the techniques already proposed to estimated camera

motion, or to estimate motion vectors in intra-coded blocks or

frames. But the TF can be seamlessly associated with these

techniques to improve their results.

In Section II, several related works for spurious motion vec-

tor removal are reviewed, especially the widely adopted Vector

Median Filter. The TF approach is presented in Section III. In
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Section IV, the proposed approach is tested and evaluated.

Conclusions are presented in Section V.

II. RELATED WORKS

Several approaches have been proposed to object segmen-

tation and tracking on compressed videos.

In [2] it is presented a simple car tracking technique for

fixed cameras, based on motion vectors from MPEG2 video.

First, a vector median filter is applied to all motion vectors,

then nonzero motion vectors are grouped (labeled) according

to their direction and magnitude proximity. Each blob is

projected on previous frame, according to the mean block

motion vectors value, and then matched to the nearest blob.

The well referenced Favalli work [5] presents a supervised

tracking techniques based on motion vectors. The first step

consists in manually selecting the frame macroblocks that must

be tracked. Then, each selected macroblock is tracked in a

frame by frame basis by using its motion vectors projection.

In [6], a macroblock tracking technique improves [5] by

creating two independent layers on the top of the macroblock

grid, thereby allowing a more fine grained tracking of object

boundaries with resolution superior to macroblock size.

The work in [7] presents a cascade filter for motion-vectors

smoothing and noisy reduction. The cascade filter consists of a

two-dimensional (spatial) Gaussian filter followed by a median

filter. The cascade filter performance is compared with other

filtering alternatives, as vector median filter, in one video from

MPEG-7 testing dataset and presents better noisy removal

results.

For a non-fixed camera, i.e., performing zoom, rotation,

pan, tilt or translation operations, some techniques have been

proposed to determine the Global camera Motion Estimation

(GME), to deal with these operations before performing object

tracking. The GME allows the segmentation of the motion-

vectors associated with the camera motion (background), and

also associated with a real object movement (foreground).

The Kim and Kim paper [8] presents a detailed eight param-

eters linear estimation model for a camera performing three-

dimensional rotation and zooming, but without translation. The

motion vectors with high activity in luminance, such as edges

and high textures, are selected as feature point for a least-

square estimator.

In [9], Roy Wang et al. propose a set of confidence mea-

sures for DCT and motion-vectors based object tracking for

moving camera. The motion-vectors are compared with their

neighbors, resulting in separated magnitude and direction con-

fidences. A texture confidence measure is taken by analysing

regions with low AC energy in their DCT coefficients. This

lower AC energy represents lower textured regions, such as

roads and sky, where motion-vectors are usually less reliable.

All confidence measures are then weighted and used in a

recursive least square GME, to determine camera zoom, verti-

cal and horizontal translations. The resulting motion-vectors

are then processed by a 3-dimension vector median filter,

and segmented with a K-means clustering followed by an

Expectation Maximization (EM) clustering.

In [10], an eight parameters bilinear equation for camera

global motion estimation is presented. The parameters are

iteratively calculated by a least-squares estimator, by removing

outliers with error greater than average error.

The well referenced Mezaris et al. work [3] uses the

global motion estimation technique from [10] to automatically

segment macroblocks in frame t, as foreground or background,

and then applies the macroblock tracker [5] on foreground,

thereby resulting an estimated foreground map for frame t+1.

This estimated macroblock foreground map for frame t + 1,

and the foreground map created by application of [10] on next

frame t + 1, are intersected resulting in a filtered foreground

estimation. This process is executed during n consecutive

frames, providing good macroblock tracker without the burden

of infinite error propagation in [5], as the tracked region of

interest is constantly reset. The background with different

color tones is also segmented using DC coefficients of DCT

transform (Y, CB, CR) of macroblocks presented in I-frames.

The work in [11] employs the GME of six parameters from

[12] to automatically segment moving objects, and then applies

a median filter on foreground macroblocks along their motion

trajectory in the same group of pictures, usually containing 8

frames, to filter outliers. The filtered foreground macroblocks

are grouped into blobs by using timed Motion History Image

technique, from [13], together with a connected component

analysis. Blobs tracking are performed by 20x20 pixel window

search on previous frame from estimated position of blob

(center of gravity plus average motion vector).

In [4], motion-vectors and DC color coefficients are used to

overcome the Mezaris et al.. [3] limitations for tracking object

motion with small differences compared with camera motion

model. The GME from [12] is also used to automatically

segment moving object.

In the well referenced work [14], Babu et al. implement

object segmentation based on motion-vectors from compressed

videos. The motion vectors from P and B frames are accu-

mulated over a few frames, median filtered, interpolated and

segmented with an Expectation Maximization (EM) algorithm.

In our previous work [15], it was presented a Spatiotemporal

Motion Vector Filter (STF) that removes noisy motion-vectors

that do not represent a real object movement, and allows

improved object detection based on the motion-vector infor-

mation presented in compressed videos. The filter analyses

the spatial (neighborhood) and temporal coherence of block

motion vectors to determine if they are likely to represent true

motion in the recorded scene. The STF was compared with the

Vector Median Filter (VMF) approach, by using the CLEAR

Multiple Object Detection metrics described in Kasturi et

al. work [16]. In the two analysed scenes, from PETS and

CAVIAR public video datasets, the STF outperformed the

VMF, with improvements specially in highly noisy scenes.

In [17] is presented a method to estimate the reliability of

motion-vectors compressed in H.264/AVC format. Each block

motion-vector is compared with motion-vectors projected from

previous and forward frames to determine their likelihood of

representing a true object motion. The concept of motion-

vector projection used in this work is analogue to the temporal

analysis from the STF [15]. But while in STF a current

motion-vector is recursively projected to previous frames, in

[17] the motion-vectors from previous and forward frames are



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 29, NO. 1, MAY 2014. 14

projected to current frame. While in STF each mv has only

one projection path, in [17] several mv can be projected to the

same block, what results in true mv being averaged by noisy

mv that points to the same blocks. This difference results in

better STF temporal analysis performance, specially in scenes

with several noisy mv surrounding true mv.

The work [18] presents a method for detecting and tracking

objects from compressed H.264/AVC video using the motion-

vectors and block residue. The method uses a graph based

representation, with pixel blocks represented as vertices, vec-

tor of block properties (as location, motion vector direction

and magnitude, and residue amount) represented as vertices

attributes, and Euclidean distance between blocks properties

as the edges weight. The relation between blocks of adjacent

frames results in a spatio-temporal tracking graph. The work

also suggests that the use of the STF [15] should improve its

object boundary detection.

The Vector Median Filter Limitations

The Vector Median Filter is widely adopted for motion

vectors filtering and is presented in older and newer works as

in [14], [2], [11], and [9]. However, the use of two-dimensional

(spatial) vector median filter presents limitations, such as:

• Inability to filter highly noisy regions - Low-textured

regions such as floors, sky, and walls, have a high con-

centration of noisy motion vectors that are not removed

with the vector median filter.

• Inability to track small objects - Small objects, with

size of one or two blocks, are mostly incorrectly filtered

(removed), as their neighborhood do not have the same

moving pattern.

The attempt to reduce these problems, by also taking into

account temporal information and creating a three dimensional

(3D) vector median filter, presents another problem:

• Inability to track fast moving objects - Fast objects

are likely to present significant block movement, while

normal median filter assumes that temporally adjacent

blocks represent the same data. This will cause the

object to be deformed, with its front incorrectly filtered

(removed) and an incorrect tail created.

III. TEMPORAL MOTION VECTOR FILTER

The TF principle is based on the empirical observation of

block motion vectors. Real world moving objects, as persons

or cars, usually produce motion vectors with smooth variations

in successive frames, while homogeneous surfaces without real

object movement (as floor, wall, road or sky) produce almost

random motion vectors.

Other works have already considered the temporal con-

sistency of motion vectors to analyse their reliability as a

real motion, as described in section II. But all of them are

more computationally complex than the vector median filter,

or demands additional information as DCT residuals in [14],

hindering their adoption and implementation.

The origin of the Temporal Motion Vector Filter (TF)

proposition can be traced back to the careful analysis of the

two components of the Spatiotemporal Motion Vector Filter

(STF) presented in our previous work [15]. By observing

the individual results of the temporal analysis and the spa-

tial analysis, it was noticed that they have similar filtering

capability in less noisy scenes. In more noisy scenes, the

temporal analysis had a significant smaller false detection rate.

The spatial analysis was unable to deal with too much noisy,

just as the Vector Median Filter (VMF). The main comparative

advantage of spatial analysis was the early detection of objects,

when there is not enough temporal information.

As consequence of these observations, the new TF was

designed. It uses only the temporal analysis from the STF,

removing the slower and less effective spatial (neighbor)

analysis. Hence, the TF is a simplification of the STF and

aims to produce faster results with the same filtering quality.

Notation of TF Equations

• (x, y)t: the pixel coordinate (x, y) in frame t.

• mv(x, y)
−−−→
t,tref : the motion vector of pixel (x, y)t from

frame t to frame tref .

• mv(x, y)t : the normalized motion vector of pixel (x, y)t

from frame t to the previous frame t − 1, noted N and

defined by Equation 1.

• (x̂, ŷ)t−1: the estimated position of the pixel (x, y)t in

last frame t− 1.

.

1. Motion Vector Normalization - A motion vector from

a P frame references a past frame. A motion vector from

a B frame makes reference to a past or a future frame. To

simplify motion vector projection equations and computing

data structures, motion vectors need to be normalized in order

to reference only to the previous frame. This is accomplished

by dividing the motion vectors by the difference between

the current frame number and the reference frame number,

according to Motion Vector Normalization (N) Equation 1,

similarly to the process used in [14]. If the reference frame

is a future frame, the divisor will be a negative number,

reversing the mv direction. The normalized motion vector is

an approximation of mv(x, y)
−−−→
t,t−1, i.e., the motion vector

referencing the previous frame. In this paper the normalized

motion vector N(mv(x, y)
−−−→
t,tref ) is represented as mv(x, y)t.

N(mv(x, y)
−−−→
t,tref ) =

mv(x, y)
−−−→
t,tref

t− tref
≈ mv(x, y)

−−−→
t,t−1 (1)

Another alternative for the Motion Vector Normalization

consists in discarding the B frames, and using only the motion

vectors from P frames. B frames can be discarded when the

frequency of P frames alone are enough to detect desired

motion, usually when the camera has a broad and far view

of the scene.

The TF algorithm makes no assumption about the mac-

roblock size or format, but in the case of variable block-

size, such as in H.264, it shall be useful to split the block

to the smallest size available (i.e. 4x4), as presented in [18],

to simplify the computing data structures.

2. Temporal Consistency Analysis - Each block center

(x, y)t has its position in previous frame estimated by adding
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to it the corresponding normalized motion vector, as presented

in Figure 1 and Projection (P) Equation 2.

Fig. 1. Illustration of the Projection (P) Equation 2. A pixel (x, y)t added to
its motion vector mv(x, y)t produces its estimated position in the previous
frame, represented as (x̂, ŷ)t−1.

P (x, y)
−−−→
t,t−0 = (x, y)t

P (x, y)
−−−→
t,t−1 = (x, y)t +mv(x, y)t = (x̂, ŷ)t−1

P (x, y)
−−−→
t,t−2 = (x, y)t +mv(x, y)t +mv(x̂, ŷ)t−1

= (ˆ̂x, ˆ̂y)t−2

P (x, y)
−−−→
t,t−k = P

(

P (x, y)
−−−−−→
t,t+1−k

)

−−−−−−−−→
t+1−k,t−k

(2)

Then, the motion vectors from these two related blocks,

(x, y)t and its projection in previous frame P (x, y)
−−−→
t,t−1,

have their direction and magnitude coherence simultaneously

analyzed by using the Vector Matching Ratio (R) Equation 3.

R(~a,~b) =







1, ‖~a‖ =
∥

∥

∥

~b
∥

∥

∥
= 0

1− ‖~a−~b‖

‖~a‖+‖~b‖
, otherwise

(3)

The Temporal Consistency Analysis can be recursively

calculated for previous frames t−1, t−2 . . . t−n, by means

of the Temporal Consistency Index(TCI) Equation 4a.

TCI(mv(x, y)t) =

n

√

∏

1≤i≤n

R
(

mv(P (x, y)
−−−−−→
t,t+1−i),mv(P (x, y)

−−−→
t,t−i)

)

(4a)

For n = 2 the TCI results in Equation 4b.

TCI(mv(x, y)t) =

2

√

R(mv(x, y)t,mv(x̂, ŷ)t−1) ·R(mv(x̂, ŷ)t−1,mv(ˆ̂x, ˆ̂y)t−2)

(4b)

A motion vector is considered consistent if its TCI is

above a minimum threshold, as described in Temporal Motion

Vector Filter (TF) Equation 5. The motion vector classified as

noise is set to the background motion vector value bg mv ,

for instance, (0, 0) in the case of static cameras or a value

calculated by a global motion technique as [10] for moving

cameras.

TF (mv(x, y)t) =

{

mv(x, y)t, TCI(mv(x, y)t) ≥ τ

bg mv(x, y)t, otherwise
(5)

Good filtering results were obtained from tested sequences

by setting the number of previous frames to n = 2, and the

temporal threshold to τ = 50%. Usually threshold selection

consists in a critical part of several segmentation algorithms

in the literature, making difficult to automatically apply a

given algorithm to different cases without threshold tuning for

each scene type. Fortunately TCI differs from these algorithms

by having a good natural segmentation capability, producing

most of the values near zero or near 100% in tested image

sequences, even with very different conditions of illumination

and scene types. As further demonstrated in Figure 8 very few

TCI values are between 20% and 60%, and τ = 50% can be

used as default threshold for all scene types.

A. Vector Matching Equations Analysis

To numerically calculate the difference between consecutive

motion vectors, a vector similarity equation must be chosen.

Following are presented some equations capable of comparing

the vectors ~a and ~b, with angle θ between them, and ‖~a‖ ≥
∥

∥

∥

~b
∥

∥

∥
considering its direction and magnitude. For all equations

R(~a,~b) = 1 if ~a = ~b = (0, 0).

Ra(~a,~b) =

∥

∥

∥

~b
∥

∥

∥

‖~a‖

180◦ − θ

180◦
(6a)

Rb(~a,~b) =

∥

∥

∥

~b
∥

∥

∥

‖~a‖

cos(θ) + 1

2
(6b)

Rc(~a,~b) =
e
−

‖~a−~b‖2

(‖~a‖+‖~b‖)2 − e−1

1− e−1
(6c)

Rd(~a,~b) = 1−
‖~a−~b‖

‖~a‖+ ‖~b‖
(6d)

Equation 6a consists in the reference equation, represent-

ing a direct relation between vectors magnitude and angle.

Equation 6b consists in a computational simplification of

Equation 6a, as the cosine between vectors is easier to cal-

culate than the angle itself, using the dot product equation

~a ·~b = cos(θ) ‖~a‖
∥

∥

∥

~b
∥

∥

∥
. Equation 6c consists in a version of the

equation used in [17], normalized to produce values between

0 and 1.
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The vector matching ratio can be represented in terms of

angle θ between vectors, and the magnitude ratio
‖~b‖
‖~a‖ . The

Figure 2 presents how the different equations segment vectors

with a matching ratio greater than 50%. For vectors pointing

to the same direction ( θ = 0◦ ) the matching ratio is greater

than 50% if the larger vector is limited to twice the magnitude

of the other vector in Equations 6a and 6b, to three times in

Equation 6d, and about four times in Equation 6c.

For a matching of 50% the maximum angle between vectors

,when

∥

∥

∥

~b
∥

∥

∥
= ‖~a‖, is 60◦ in Equation 6d, about 76◦ in

Equation 6c, and 90◦ in Equation 6a and 6b.

With proper threshold adjustment, all these equations could

be used to calculate Temporal Motion Vector Filter (TF)

Equation 5. Equation 6d (also Equation 3 ) was selected

because it needs less computer operations than Equations

6a and 6c, has a simpler mathematical representation than

Equation 6b, without the need to define the larger vector or

the angle between them, and presents a fair filtering capability

by penalizing vectors with greater angle difference.

Fig. 2. Relation of magnitude ratio
‖~b‖
‖~a‖

and angle θ between vectors for

matching ratio of 50%. The points above each equation line produce a match
greater than 50%.

B. Mathematical TF Analysis

In this section it is presented some theoretical TF algorithm

analysis in order to clarify its applications and limits. In

all following cases TF algorithm is applied with the default

threshold of 50% and n = 2.

One of the most common noisy motion vector value consists

in a vectors with magnitude equal to one in static cameras.

This observation can be illustrated by the noisy motion vectors

of test Figures 9 to 12. Let us assume the hypothesis that, for a

pixel block with non-real movement, any motion vector of the

set {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)} could be assigned

with the same probability of 20%. In this synthetic case, the

probability of a static block having a noisy motion vector, i.e.

mvt 6= (0, 0), would be 80%. But after applying the TF Equa-

tion this probability would be reduced to 16% as presented in

Equation 7, with θ1 representing the angle between mvt and

mvt−1, and θ2 representing the angle between mvt−1 and

mvt−2.

Prob
(

mvt 6= (0, 0)
)

· Prob
(

θ1 = θ2 = 0◦

⋃

θ1 = 0◦, θ2 = 90◦
⋃

θ1 = 90◦, θ2 = 0◦
)

=

4

5
·

(

1

5
·
1

5
+

1

5
·
2

5
+

2

5
·
1

5

)

= 16%

(7)

The motion vectors of a object performing uniform circular

motion, will be correctly processed by TF algorithm as long

as object instantaneous angular velocity is limited to 60 de-

grees/frame. A faster angular velocity will result in consecutive

motion vectors been wrongly classified as not coherent.

The linear motion of self-propelled objects, as persons and

vehicles, from a stopped state to its maximum velocity can

be reasonably approximated as an initial acceleration a and

jerk (derivative of acceleration) determined by Equation 8a,

with k representing the constant time when object reaches its

maximum velocity vmax, as illustrated in Figure 3.

Fig. 3. Modeling of objects linear motion, as persons and vehicles, with initial
acceleration a and constant jerk j(t) = −a/k until maximum velocity.

j(t) =

{

−a/k, t < k

0, otherwise
(8a)

v(t) =

{

at− at2

2k , t < k

0.5ak, otherwise
(8b)

mv(t) =

∫ t

t−1

v(t)dt (8c)

=











a−3t2+(3+6k)t−3k−1
6k , t ≤ k

∫ k

t−1
at− at2

2k dt+
∫ t

k
0.5akdt, k < t < k + 1

0.5ak, t ≥ k + 1

R(mv(t),mv(t− 1)) = 1−
mv(t)−mv(t− 1)

mv(t) +mv(t+ 1)
≥ 0.5

For t ≤ k

3t2 − 12t− 6kt+ 12k + 10 ≤ 0

2 + k −

√

k2 +
2

3
≤ t ≤ 2 + k +

√

k2 +
2

3
(8d)

Equation 8c determines the motion vector of an object

correctly detected by the motion estimation algorithm. In the
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first frames after an object starts its linear acceleration the TF

algorithm will wrongly classify the motion vectors as noisy,

until motion vectors of consecutive frames are similar enough.

Equations 8d and 8c imply that, for any acceleration, if k ≥ 2
and t ≥ 2 then Vector Matching Ratio (R) will be greater

or equal to 50%. Therefore, the TF will correctly classify the

motion vectors of an object performing the linear motion of

Figure 3 after 3 frames, no matter what its acceleration is.

IV. EXPERIMENTAL RESULTS

The CLEAR Multiple Object Detection metrics described in

Kasturi et al. work [16] were used to numerically compare the

capability of the Vector Median Filter (VMF), Spatiotemporal

Motion Vector Filter (STF), and the proposed Temporal Mo-

tion Vector Filter (TF) to correctly detect true objects motion.

CLEAR MOD metrics notation

• Nframes: the number of frames in video sequence.

• G
(t)
i : the ith ground truth object in frame t.

• D
(t)
i : the ith detected (by the evaluated technique) object

in frame t.

• N
(t)
G : number of ground truth objects in frame t.

• N
(t)
D : number of detected objects in frame t.

• N
(t)
mapped: number of match pairs between ground truth

and detected objects in frame t.

The Multiple Object Detection Accuracy - MODA metric

uses the number of missed detections mt , the falsely identified

objects fpt, to assess the accuracy aspect of the object

detection algorithm.

MODA = 1−

∑Nframes

t=1 (mt + fpt)
∑Nframes

t=1 N
(t)
G

(9)

The Multiple Object Detection Precision - MODP gives

the average overlapping ratio (match ratio) between the

bounding-boxes of ground-truth and detected objects, as de-

fined in Equation 10. It does not take into consideration the

missed or falsely identified objects.

MODP =

∑Nframes

t=1

∑Nmapped

i=1

∣

∣

∣
G

(t)
i

⋂

D
(t)
i

∣

∣

∣

∣

∣

∣
G

(t)
i

⋃

D
(t)
i

∣

∣

∣

∑Nframes

t=1 N
(t)
mapped

(10)

The following steps were adopted to convert motion vectors

to objects, so they can be analyzed by CLEAR MOD metrics: a

given block was considered as foreground if its motion vector

has a value different from the background, i.e., (0,0) in the

case of static cameras. Two foreground motion vectors were

grouped in the same blob (object) if they were 8-connected

neighbors and have a Vector Matching Ratio (R), Equation 3,

greater than 40%.

After the segmentation, objects with size below a given

threshold were ignored to reduce the huge number of false

detections. The minimum size threshold was tuned to each

filter configuration to obtain the best possible MOD metrics.

Four configurations of motion vector filters were compara-

tively tested:

• none - No motion vector filter is applied before segmenta-

tion. Objects with size of 6 blocks or smaller are ignored.

• VMF - The Vector Median Filter is applied before

segmentation. Objects with size of 6 blocks or smaller

are ignored.

• STF - The Spatiotemporal Motion Vector Filter is applied

before segmentation. Objects with size of 1 block are

ignored.

• TF - The Temporal Motion Vector Filter is applied before

segmentation. Objects with size of 1 block are ignored.

The usf date software from [16] was used to calculate the

metrics. The public available ground-truths of CLEAR and

PETS datasets were converted to the VIPER XML format

accepted by the usf date software. Table I displays information

about the video sequences used by the experimental tests.

TABLE I
LIST OF PUBLIC AVAILABLE VIDEO DATASETS USED IN PERFORMANCE

EVALUATION.

Sequence Resol. Frames Objects Compression

CAVIAR

Fight

OneManDown
384x288 803 2036

MPEG-4, with EPZS motion

estimator, GOP = 12, I and

P-frames

PETS2001

Dataset1 Test-

ing/Camera1
768x576 2500 7849

MPEG-4, with EPZS motion

estimator, GOP = 128, I and

P-frames

PETS2001

Dataset1 Test-

ing/Camera2
768x576 2500 7849

MPEG-4, with EPZS motion

estimator, GOP = 128, I and

P-frames

CLEAR2006

PVTRA101a01
720x480 6567 1875

MPEG-4, with EPZS motion

estimator, GOP = 128, I and

P-frames

The performance analysis for the video sequence are sum-

marized by Figures 4, 5, 6, 7. Qualitative analysis are provided

by Figures 9, 10, 11, 12, were the motion vectors values are

in white color, and boundaries of blobs in yellow. The motion

vectors with value (0,0), of blocks belonging to background,

are not displayed. The motion vector value is drawn over each

block with the layout dx

dy
.

The TF allows a superior object detection accuracy, as sum-

marized in Figure 4. In the sequences with more noisy motion

vectors, Fight OneManDown (Figure 9) and PVTRA101a01

(Figure 12), the superior filtering capability of the TF becomes

more evident. The TF significantly outperforms the VMF

object detection accuracy for sequence Fight OneManDown

(MODA 45% against -22%) and sequence PVTRA101a01

(MODA 31% against -14%). The TF and STF have very

similar accuracy, except in sequence Fight OneManDown,

when the temporal analysis performed by the STF produces a

high number of false detections.

Fig. 4. Object detection accuracy - MODA.
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In the less noisy sequences Camera1 (Figure 10) and Cam-

era2 (Figure 11), the VMF has an object detection accuracy

near to that exhibited by TF. In these sequences, even without

any mv filter, the minimum size filter applied to segmented

blobs presents a detection accuracy as good as the VMF.

The missed detections account for the great majority of

detection errors, and are 10 times more frequent than false

detections, as presented in the detailed metrics of TF in

Figures 9, 10, 11, and 12. Without these missed detections,

the accuracy metric would reach a value as high as 95% in

evaluated sequences. These missed detections occur mainly

because objects near each other with similar velocity are

grouped as one big object, instead of several smaller ones,

as can be visualized in the person group with Figure 10 frame

950, and within Figure 12 frame 1900.

This object grouping also leads to significant reduction in

bounding box overlap precision. The develop of techniques

to further decompose these near objects would bring great

improvements in metrics results.

Objects without movement, that do not have motion vectors,

also accounts for a significant part of missed detections, as the

woman standing near the window within Figure 9 frame 150,

and the stopped white van within Figure 11 frame 2350.

The TF and STF presented an almost constant bounding box

overlap precision (MODP) in the video sequences, with values

between 41% and 47%. In sequences Camera1, Camera2,

and PVTRA101a01 the TF, STF, and VMF presented similar

bounding box precision as presented within Figure 5. The

MODP metric is calculated only in the detect objects, so

the smaller objects missed by VMF and detect by TF tend

to favor the VMF average bounding box precision. This

explains the small MODP advantage of the VMF in Camera1

and Camera 2. Nevertheless, in the highly noisy sequence

Fight OneManDown, the TF outperforms the VMF (MODP

47% against 19%).

Fig. 5. Object detection bounding box precision - MODP.

The computational effort for executing the four tested

configurations, including the motion vector and object segmen-

tation, is presented within Figures 6 and 7. As video sequences

have different resolutions, the frames per second (fps) where

scaled proportionally to the number of pixels presented in a

720 x 480 image within Figure 6. The tests were executed

in a Compaq Presario M2000 Notebook produced in 2005,

with AMD Sempron-2800 1.60 GHz processor, and 650 MB

of DDR DIMM memory.

Fig. 6. Measured frames per second adjusted to 720 x 480.

Fig. 7. Measured clocks consumed per video pixel.

The clock/pixel is equal to the number of processor clock

consumed by an algorithm divided by the number of pixel of

a video sequence(width · height · frames). The clock/pixel
is a better measure than fps, because it is less dependent on

image size, and computer processor clock.

The object detection with TF is twice faster than VMF

or STF in the video sequences presented in Table I. Table

II displays the theoretical number of computer operations

necessary to compute the filters, based on their equations.

The VMF requires five times more operations than the TF.

The VMF with 3 x 3 window requires the computation of

36 vector euclidean distance calculations, and consequently

36 square roots. The TF requires the computation of only 7
square roots.

TABLE II
THEORETICAL INSTRUCTIONS TO FILTER ONE MOTION VECTOR BLOCK.

Sum/Sub Mult Div Cmp Sqrt

VMF 108 72 0 36 36

TF 18 12 2 1 7

The use of TF produces even faster results than not using

any motion vector filter. The higher number of blobs created in

segmentation step explain the reduced fps for the configuration

without any motion vector filter (configuration none) compared

to the TF, presented in Figure 6.

The experiments demonstrate that the Temporal Motion

Vector Filter (TF) outperforms the Vector Median Filter

(VMF) with better object detection accuracy (MODA), lower

computational complexity, and better bounding box overlap

precision (MODP) in noisy scenes. The TF presents half the

computational cost of the Spatiotemporal Motion Vector Filter

(STF), while preserving the same accuracy and precision. The

results obtained with the TF make it suitable as a first building

block of any system that aims to detect and track objects from

compressed video, by using its motion vectors.
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Fig. 8. Histogram of TCI results for non static motion vectors in sequence
PETS2001 Camera1. The TCI of static motion vectors (0,0) are not represent
in this histogram, as they only produce two TCI values: 0% or 100%. Others
videos sequences have a similar histogram.

The histogram in Figure 8 indicates that 88% of TCI results

for non static motion vectors are equal to zero in sequence

PETS2001 Camera1. Others videos sequences have a similar

histogram. The TCI naturally segments most of motion vectors

to zero, and the threshold value τ of TF Equation 5 allows

only a fine-tuning of the filter. Setting this threshold does not

represent a critical part of the TF Filter, since values between

τ = 20% and τ = 60% produce similar filtering results.
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frame 0150 frame 0200

none

VMF

STF

TF

Filter detec. missed false detec. MODP MODA fps clock/pixel

none 716 1320 1085 28% -18% 822 18

VMF 285 1751 740 19% -22% 479 30

STF 997 1039 356 46% 31% 410 35

TF 974 1062 65 47% 45% 915 16

Fig. 9. Object detection in sequence CAVIAR FightOneManDown, by using different motion vector filters.
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frame 0600 frame 0950

none

VMF

STF

TF

Filter detec. missed false detec. MODP MODA fps clock/pixel

none 3342 4507 1269 29% 26% 171 21

VMF 2302 5547 23 44% 29% 130 28

STF 3777 4072 297 42% 44% 123 29

TF 3779 4070 313 42% 44% 309 13

Fig. 10. Object detection in sequence PETS2001 Camera1, by using different motion vector filters.
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frame 0600 frame 2350

none

VMF

STF

TF

Filter detec. missed false detec. MODP MODA fps clock/pixel

none 3367 4428 735 32% 34% 166 22

VMF 2279 5516 101 47% 28% 130 27

STF 3651 4144 450 42% 41% 122 31

TF 3652 4143 547 41% 40% 313 12

Fig. 11. Object detection in sequence PETS2001 Camera2, by using different motion vector filters.
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frame 1900 frame 2450

none

VMF

STF

TF

Filter detec. missed false detec. MODP MODA fps clock/pixel

none 586 1289 2798 28% -118% 214 22

VMF 367 1508 636 42% -14% 163 28

STF 682 1193 111 47% 30% 147 32

TF 677 1198 88 47% 31% 381 12

Fig. 12. Object detection in sequence Clear2006 PVTRA101a01, by using different motion vector filters.
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V. CONCLUSION

A novel Temporal Motion Vector Filter (TF) was proposed

and evaluated in this paper. The experiments demonstrate that

the TF outperforms the Vector Median Filter (VMF) with

better object detection accuracy (MODA), lower computa-

tional complexity and better bounding box overlap precision

(MODP) in noisy scenes. The TF exhibits half the computa-

tional cost of the Spatiotemporal Motion Vector Filter (STF),

while preserving the same accuracy and precision. The results

obtained from the TF make it suitable as a first step towards

implementing systems for detecting and tracking objects from

compressed video using its motion vectors.

Future works on the Temporal Motion Vector Filter could

be:

• Evaluation of the TF as part of a complete object tracking

system with video sequences in MPEG-4 and H.264

formats.

• Integration of the TF to global motion estimation (GME)

techniques. The TF could be used to select the reliable

motion vectors in the least square estimator of [10]. By

discarding the noisy motion vector in earlier iterations,

the technique [10] may converge faster, and with better

results.
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