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Abstract - Cunent high-speed networks handle a variety 
of services, requiring different QoS constraints. The choice 
of appropriately accurate but also practically implementab/e 
measurement algmithms in this context becomes crucial. In 
this paper, we perform a comparative study of alternative 
on-line bandwidth allocation algorithms, we analyze their 
complexity, and petf01m comparisons via simulation exper­
iments. Moreover, we argue the relevance of a dynamic mea­
surement time scale approach and demonstrate the effective­
ness of this new approach over the static one. Our motivation 
is to use these algoxithms in the data plane of "'self-sizing" 
frameworks, and make use of their output in taking control 
plane decisions either locally or globally, in an on-line fash­
ion. Previously, no such comprehensive comparison of rel­
evant methods has been carried out, especially from a com­
bined accuracy versus implementation complexity point of 
view and from the perspective of changing the measurement 
time scale "dynamically". 

Keywords: On-line measurements, bandwidth allocation, ef­
fective bandwidth. 

Resumo - As atuais redes de alta velocidade u·ansportarn 
uma variedade de servis;:os com requisites heterogeneos de 
Qualidade de Servi9o. A escolha de algoritmos de medi9ao 
precisos e implement<iveis e de suma importfincia para a 
provisffo destes requisites. Neste artigo, algoritmos para a 
avaliac;ao em tempo real da capacidade efetiva de fluxes de 
tr<ifego sao comparados. Tanto a complexidade quanta o 
desempenho dos mesmos sao avaliados. Enfatiza-se a im­
portfincia da natureza dinfimica dos intervalos de amostragem 
quando comparada a abordagem tradicional de intervalos 
definidos estaticamente. As conclusOes da comparas:ao sao 
uteis na ado9ao de algoritmos baseados em medidas no plano 
de controle de redes auto-ajustiiveis. 

Palavras-chave: Medi96es em tempo real, aloca9ao de 
banda passante, capacidade efetiva. 

1. MOTIVATION AND INTRODUCTION 

The demand on high-speed networks is getting higher and 
tougher to satisfy everyday, with the invention and commer­
cialization of new bandwidth-hungry applications. Network 
resources are to be increased accordingly, to sustain an ac­
ceptable level of service. However. it is not always feasi­
ble to increase resources at the same pace of the increase in 
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tl1e traffic demand. In this regard, the bandwidth allocation 
in high-speed QoS-oriented networks is critical and needs to 
be made dynamic, adaptive and measurement -based, rather 
than static, to attain a more efficient use of resources. Espe­
cially for network links shared through statistical multiplex­
ing. adaptive bandwidth allocation algmithms based on traffic 
measurements can achieve important gains. 

For these reasons, we perf01n1ed a comparison of on­
line, dynamic measurement-based bandwidth allocation algo­
rithms, which have low time complexity, and are based only 
on measurements instead of unreasonable assumptions about 
the incoming traffic. To the best of our knowledge, no such 
comprehensive comparison of relevant methods has been pre­
viously carried out, especially from a combined accuracy ver­
sus implementation complexity point of view. 

We are also motivated by the fact that such algorithms can 
be used in the data plane of .. self-sizing" network frameworks 
such as [I, 2] and in which every node in the network mns a 
measurement-based bandwidth allocation algoritlun for ev­
ery traffic class or "band". Periodically, the output of the 
algorithms, which give the required capacity demands of the 
traffic types, are collected, and either locally or globally, a 
control plane action is taken (i.e., the virtual links or schedul­
ing allocations are re-calculated) so as to minimize a prede­
fined objective such as bandwidth cost or maximize revenue. 

In this context, it is very important to choose measurement 
methods that satisfy stringent constraints in terms of both ac­
curacy and complexity. Most of the algorithms we used in 
this paper naturally originated from the effective bandwidth 
concept, since effective bandwidth is the amount of the re­
quired bandwidth to be allocated for the satisfaction of a QoS 
constraint. Furthermore, in the literature, we identified two 
research areas which are related to our aim. These are net­
work traffic prediction [3, 4, 5, 6] and measurement-based 
admission control (MBAC) [7, 8, 9]. 

MBAC algorithms are composed of separate measurement 
procedure and admission criterion. We investigated the appli­
cability of these separable measurement procedures for our 
purposes. However, other than the trivial Gaussian Approx­
imation bandwidth estimator, such methods are not suitable 
for on-line re-sizing due to the fact that either they rely on un­
reasonable information (i.e., they presume that a priori traf­
fic descriptors, such as present number of connections are 
known) or they have unacceptable computational complex­
ity. 

These incompatibilities stem from the different design con­
siderations between measurement -based estimators in MBAC 
and se/f-sbng frameworks. First, MBACs are designed to 
operate only in the ingress nodes, where admission decisions 
are taken. Second, the period of execution of MBAC algo­
rithms is at the connection level time scales. Our aim is to 

209 



Fatih HaCJomeroglu and Michael Devetsikiotis 
A Dynamic Time Scale Approach for On-line Measurement-based Capacity Allocation 

obtain on-line algmithms, working on evety node in the net­
work. Therefore their timescale and computational complex­
ity are smaller than connection level timescales. Similar to 
MBAC algmitlm1s, traffic predictors do not suit our consid­
eration either. The reason this time is not because they are 
centralized and computationally complex as in MBAC algo­
tithms, but that they do not target a QoS constraint. 

The algorithms in this paper take a window of traffic mea­
surements as input, estimate the parameters they need in a 
bandwidth allocation calculation fommla and output the re­
quired amount of capacity to be reallocated. The measure­
ments conespond to the amount of incoming traffic during a 
slot duration, istot· Consequently. the algmithm is called pe­
riodically every N * I slot seconds (the reallocation period), 
where JV is the window size. The choices of islot and JV are 
critical [ 1 0] and affect significantly the pelformance of algo­
Iithms. 

~ 
I'' I · · · ~m,........, =nil}-()-
" t slot 

.,_____, 
[X1,X2, ... ,XN] 

Number of Arrivals 

Buffer c 

Figure 1. Simulation scenario. 

The on-line measurement-based resource allocation algo­
rithms are implemented and tested in a simulation scenario 
as shown in Figure 1. In our simulations, the performance 
metric is related to a QoS constraint, in our case packet loss 
probability. To quantify the amount of expanded resources, 
we use two cost meuics, namely, 

• Allocation Ratio (Average Capacity Allocation divided 
by Average Traffic Rate) 

• Average Queue Occupancy 

Our purpose is to obtain a feasible algorithm which is able 
to use bandwidth optimally (i.e., dynamically as in Figure 2) 
while still obtaining a performance close to the QoS target. 
The ideal algmithm should not require any know ledge or 
umeasonable assumptions on the traffic, and be based com­
pletely on measurements. 

The remainder of the paper is structured as follows. After 
desctibing the algmithms in Section 2, we compare their re­
sponse to different scenarios (i.e., vmiable buffer size, level 
of aggregation of sources, long-range dependence of traffic, 
computational and memory complexity requirements) and 
choose promising ones for further simulation study in Sec­
tion 3. Then we explain our simulation methodology in 
Section 4. Later, simulation results highlighting the impor­
tance of measurement time scales in algorithm performance 
are presented in section 5. Section 6 introduces the use of 
a measurement-based time scale and shows its effectiveness 
over the static time scale approach. Finally, we conclude with 
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a discussion of the results and outline prospects for further 
enhancements. 

2. BANDWIDTH ESTIMATION ALGO­
RITHMS 

2.1 DIRECT EB ALLOCATION (DEB) 

DEB algorithm relies on a direct analytical evaluation, us­
ing the definition in [II]. 

hl(E(e'X(O.t))) 
eb(s, t) = --'--'---:.:.. 

st 
(I) 

X (0, t) is the amount of incoming work dming a duration 
oft. The (s, t) pm·ameters are usually called the space and 
time parameters. Parameter s is calculated by using Large 
Deviations Theory <LDT) and by making a large buffer as­
sumption. The overflow probability is calculated from an 
asymptotically exponential decrease assumption. 

P(B < Q) = e-s(C)B (2) 

The time parameter t is related to time scales which are 
responsible for buffer overflow. It should be chosen small 
enough so that traffic is observed for buffer overflow analy­
sis. Finally, the expectation in (I) is approximated by a time 
average, as suggested in [12]. 

The empirical evaluation of (I) is simulated and compared 
with analytical effective bandwidth of known Poisson and 
ON-OFF source types in [13]. 

2.2 COURCOUBETIS EB ALLOCATION (CEB) 

This method [ 14] is based on LDT and a large buffer as­
sumption, similar to the DEB algorithm: 

IDs 
eb=m+-B 

2 
(3) 

The parameters m, B, s and I D are the mean rate, buffer 
size, space pmameter and index of dispersion of X[O, t]. The 
space parameters is calculated using (2). 

ID estimation process has a computational complexity pro­
portional to J\T 2 • 

1D = Var(X(O, t)) (4) 

(1+2 l~V (1-4"1/)AC(k)) 

(t x;~t))_, 
k=l 

2.3 MANY SOURCES ASYMPTOTIC EB AL­
LOCATION (MSAEB) 

This approach [15] is also based on the effective bandwidth 
approach similar to the first two algolithms, but unlike them, 
this algorithm uses a different way of estimating the time and 
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space parameters in ( 1 ). An assumption of many sources is 
made, instead of a Large Buffer assumption, while using LDT 
to solve the problem of estimation of the space and time pa­
rameters (s, t). As described in [15], if M sources are mul­
tiplexed in the buffer B. rj is the percentage of streams of 
type j, and maximum allowed buffer overflow probability to 
be guaranteed is e-a, then minimum required bandwidth can 
be calculated by solving 

C = sup(inf(R(s, t))) (5) 

' ' 
where 

stM'£.rJeb(s,t)+a B 
R(s, t) = J st - t (6) 

In (6), the eb(s, t) term is found from (1). 
For a given t, the R( s, t) is a unimodal function of s, hav­

ing a unique minimizer. Then, R( s, t) = R1 ( s) is solved by 
using a golden section search method as described in [15]. 
Tills process is repeated for a range of t values smaller than 
the measurement window time, and the maximum among 
them is taken as the required capacity to be allocated. 

2.4 ON-OFF EB ALLOCATION (OOEB) 

The idea is to obtain estimation values of an equivalent 
ON-OFF traffic model from measurements, and substitute 
them in the specific analytical effective bandwidth formula 
(7) for ON-OFF sources [16]. 

-sr +a+ b- 1/2 ( -sr +a- b)"- 2 ba 
eb(s, t) = ? (7) 

~s 

Parameters a, b and r denote a ON-OFF traffic model 
where ON and OFF periods m·e exponentially distributed with 
parameters a and b respectively, and r is the constant traffic 
generation rate in the ON state. These pm·ameters can be es­
timated by matching the first three moments of N data mea­
surements falling into the window. These estimations have 
difficulties and require search algorithms, since direct solu­
tion of high order equations is not trivial. Moreover, this 
method is weak because of the limited fitting spectrum of 
ON-OFF model [17]. 

2.5 NORROS EB ALLOCATION (NEB) 

In [18], besides introducing modeling of real traffic by 
fractional Brownian motion (FBM), an effective bandwidth 
formula (8) for FBM is also given. 

eb = rn + 
l(H 

K(H)V-2 h1(P1ossl 
* al/(2H) * B-(1-H)/ H * m'/(2H) (8) 

where K(H) = HH (1 - H) 1-H and m, H, Ploss, x and 
a are the mean, Hurst parameter, buffer overflow probability, 
buffer size and coefficient of variation respectively. Param­
eter a, is approximated by the index of dispersion. In fact, 

this is a valid assumption only when the traffic is short range 
dependent. 

The Hurst pm·ameter can be set from a priori measure­
ments. However. to react to unexpected traffic changes. a 
measurement-based on-line algorithm is favored. Difficul­
ties of H estimation methods are analyzed in [I 9], where the 
comparison of several H estimation algorithms indicated that 
the Abry-Veitch estimator (AV estimator) based on Wavelet 
theory is a very effective approach [20]. 

2.6 DRDMW (IMPROVED EMPIRICAL EB AL­
LOCATION) 

This method in [21] is an improved version of empiri­
cal effective bandwidth methods. A unified phenomenologi­
cal framework to estimate overflow probability of both long 
range dependence (LRD) and short-range dependence (SRD) 
is put fmward by including the Hurst parameter in traditional 
analytical effective bandwidth methods. 

P(B < Q) = e-s(C)s'-'H (9) 

Second, the difficulty of measming the effective bandwidth 
of real-time traffic online by using direct estimator [21] is 
alleviated by using an approach based on dual recursive al­
gorithm with double moving windows (DRDMW). which is 
introduced in an empirical calculation of analytical effective 
bandwidth formula instead of using the direct estimator. 

2.7 GAUSSIAN APPROXIMATION ALLOCA­
TION (GA) 

The simplest resource allocation method existing in litera­
ture is the GA method [22], where liak buffer is ignored and 
server capacity is set according to Gaussian arrival rate dis­
tribution: 

C = m + CT * J -2 *In (Floss)- In (2 * rr) (10) 

where m and (J' are the mean and standard deviation of the 
mrival rate distdbution. 

3. COMPARISON OF THE ALGORITHMS 

The first algorithm, namely Direct Effective Bandwidth 
Allocation algorithm, relies on the effective bandwidth for­
mula, and possesses the problem of finding appropriate val­
ues for s and t, which depend on QoS requirements and the 
system parameters. The space parameter is estimated using 
the Large Buffer Assumption. The time parameter estimation 
is left somewhat arbitrary, for the time being. 

The second algorithm uses (3). which is an altemative 
generic effective bandwidth definition in terms of the mean 
rate, index of dispersion, QoS parameter and buffer size. It 
is simpler, but it still doesn't address long range dependent 
traffic. 

The Many Sources Asymptotic Effective Bandwidth algo­
rithm relies on the effective bandwidth formula (I) and en­
counters the problem of estimation of (s, t). This method 
accomplishes it by solving a functional optimization prob­
lem. Although it is a very innovative approach, this may be 
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too slow for our motivational self-sizing scenruio where every 
node takes on-line measurements of every traffic type. 

The ON-OFF Effective Bandwidth formula (7) for the 
fom1h method is obtained by substituting an ON-OFF arrival 
process instead of X(O, t) in the analytical effective formula. 
With regard to a practical usage of such expressions, we en­
countered other problems than estimation of (s, t) parame­
ters, such as model parameter estimation, and goodness of fit 
of the model. 

The Nanos Effective Bandwidth Allocation and Gaussian 
Approximation methods are alte1natives not including ( s, t) 
estimation. They are approximate expressions, which are de­
rived independently of the effective bandwidth formula. The 
Gaussian Approximation algorithm assumes a bufferless link. 
This will overestimate required capacity. Moreover. the gaus­
sian assumption is not valid for traffic formed by small num­
ber of sources. This places a constraint on the source type, 
however our aim is to have an algorithm capable of function­
ing without unreasonable assumptions. 

The self-similarity is addressed only in the NEB and in the 
DRDMW method. Others do not discriminate between sh011 
range dependence and long range dependence. Although the 
index of dispersion in the Courcoubetis fommla of the second 
algorithm stands for burstiness of the source, the fotmula is 
not for long range dependent traffic. Thus the effective band­
width approximation on which the Courcoubetis fommla is 
based, (i.e., exponential decay of buffer overflow probability 
with increasing buffer size) is not valid for self-similar traffic 
(the decay is hyperbolic and slower than exponential). We 
provide a summary of our performance comparisons with re­
spect to various network scenarios in Table 1. 

The Gaussian Approximation algorithm is the easiest to 
implement, and suitable to be used as an algorithm setting an 
upper bound, since it does not consider buffer size. The Cour­
coubetis Effective Bandwidth Allocation is also another easy, 
and promising one, since this one takes into account buffer 
also. But neither of the previous two algorithms is designed 
with long range dependent traffic in mind. Norros effective 
bandwidth and DRDWM algorithms are the only ones incor­
porating the Hurst parameter, therefore addressing to long 
range dependent traffic. Although DRDMW is designed to 
alleviate the numerical overflows in the direct effective band­
width allocation, that problem can not be completely allevi­
ated due to the suucture of (1). Therefore, we picked the 
following three algmithms for further simulation analysis: 

• Gaussian Approximation (GA) 

• Courcoubetis Effective Bandwidth Allocation (CEB) 

• Norros Effective Bandwidth Allocation (NEB) 

4. SIMULATION METHODOLOGY 

The simulation scenario given in Figure 1 is a single setver 
queue simulation where the service rate is changed, in an 
on-line fashion, periodically based on recent traffic measure­
ments. We used the Sup-FRP traffic model [23]. The simula­
tion flow slides packet by packet, emulating a real case sce­
nario as in an Ethernet card passing packets to upper network 
layers. 
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Figure 2 gives a visual representation of how algorithms 
adjust setvice rates, tracking fluctuations in the incoming 
traffic rates, so as not to waste resources. 

60 110 100 '" '" 
timo{G«=) 

Figure 2. A visual example view of dynamic capacity allo­
cation. 

We performed simulations with 5 different tslot values 
(0.01, 0.05, 0.1, 0.5, 1 s) and 5 window sizes (N) values (3, 
6, 30, 60, 300 slots) in every method. Therefore, we had 25 
simulations per method. As a total, we present here results of 
75 simulations. Also note that the measured statistics in this 
paper resulted after 30 simulation replications and confidence 
intervals are insignificant. 

In all of the simulations in this section, we generated traffic 
with the same mean value of 20 Kbytes/s, the same Hurst 
parameter of 0.7 and the same buffer size of 5 Kbytes. We 
set the QoS target packet loss probability to 10-3 , so as to 
have a common ground for the performance comparisons of 
algorithms in the simulation scenario (Figure 1 ). 

Note that the average traffic rate of 20 Kbytes/s is the prod­
uct of an average packet size of 200 bytes and average packet 
arrival rate of 100 packets/s. Therefore, the average time be­
tween two consecutive packets is 0.01 seconds and the tslot 

values chosen in the simulations, which are (0.01, 0.05, 0.1, 
0.5, I s), correspond to cases where 1, 5, 10, 50 and 100 
packet rurivals take place on average in a slot time dura­
tion, respectively. Also note that the choices for tslot and 
1V are made deliberately to have simulations where realloca­
tion takes place in every 3 seconds, but with different mea­
surement resolution in the recent history of the measurement 
data. For example, a simulation with (0.01s, 300 slots) in­
cludes 300 measurements, whereas the one with (Is, 3 slots) 
includes three measurements in the same recent 3 seconds 
history. 

We did not implement an on-line H estimation [24]. We 
provided the value of H (i.e., 0.7) to the algorithms before­
hand, so that we can examine the perfonnance of the band­
width allocator, independent from the performance of the H 
estimator. The combined, on-line Hurst parameter and EB es­
timation is beyond the scope of tllis paper and is left as future 
work. 
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II MSAEB I DEB I OOEB I CEB I NEB I DRDMW I GA 

Small Very Poor Poor Poor Good Poor Perfect 
Buffer Good 
Large Very Very Very Very Very Very Poor 
Buffer Good Good Good Good Good Good 
SRD Good Very Good Very Good Very Good 

Traffic Good Good Good 
LRD Good Poor Poor Poor Perfect Poor Poor 

Traffic 
Many Pelfect Very Poor Very Very Very Perfect 

Sources Good Good Good Good 
Single Poor Very Good Very Good Very Poor 
Source Good Good Good 

Computational Poor Poor Poor Very Good Good Perfect 
Complexity Good 

:Memory Good Good Perfect Good Good Perfect Perfect 
Requirement 

Table 1. Performance Comparisons 

5. SIMULATION RESULTS 

In this section, we first present performance and cost plots. 
We demonstrate and observe the impmtance of time scale 
choice in measurement-based algorithms. At the end of this 
section, we provide the processing time plots with respect to 
the window sizes. 

5.1 PERFORMANCE AND COST RESULTS 

Tables 2, 3 and 4 show respectively the performance and 
cost results of the GA, CEB and NEB algorithms. We ob­
serve how the algodthms response against different tslot and 
JV values in the simulation scenario given in Figure 1. 

In Table 2, we observe that the QoS target, which is 10-3 , 

is satisfied in every ( ts/ot, N) combination with the exception 
of (tslot = 1 s, N = 3 slots). Note that GA is used as an up­
per band of resource allocation for comparison purposes. It 
does not consider buffer size. In fact, it assumes there is no 
buffer. This is why, it is expected to be more generous than 
other algmithms. The fact that a violation of QoS took place 
in this method implies trouble for other methods. The aver­
age allocation ratio and the average queue occupancy values 
agree with Pzoss values and show that as islot is increased for 
a constant 1V, the allocation ratio decreases towards 1. We 
also observe that for constant tslot· increasing f.l results in 
a larger capacity allocation. But tills rate of increase in ca­
pacity allocation depends on the tslot value. So, once tslot is 
pmperly chosen, choosing N looses its impm1ance, since the 
change in the ratio values are much smaller. 

Table 3 tells us that the CEB's performance changes sim­
ilar to GA against tslot and JV variations, but Ptoss values 
are relatively about an order of magnitude higher. The QoS 
target is violated for the following (tslot, N) pairs: (0.5 s, 3 
slots), (I s, 3 slots), (0.5 s, 6 slots) and (I s, 6 slots). This 
algorithm, considering the presence of buffer, theoretically 
pennits lesser resource usage than GA. Compared to GA. we 
observe that biggertslot values lead to better allocation ratios 
(i.e., ratios closer to I) and the choice of N has a greater ef­
fect on CEB. With proper choice oft slot and JV, the same per-

formance can be achieved with lesser resource usage. Here, 
similar toGA, we see the impm1ance of choosing tslot prop­
erly. But unlike GA, here choosing N is also important. T11is 
is because the rate of increase of ratio values when JV is in­
creased is much more significant. Choosing a large JV leads 
to serious over-allocation. 

From Table 4, we observe that the loss probability results 
of NEB are between the ones of GA and CEB for N val­
ues of 3 and 6. However, when N is either 30, 60 or 300, 
Pzoss is smaller than other algorithms, which implies an over­
allocation of bandwidth, which is justified by the values of the 
allocation ratio metric. When it comes to the choice of istot. 

as in the previous methods, a bigger tstot resulted in smaller 
resource allocation. This method is the only one which al­
locates more capacity to the traffic possessing higher long­
range dependence. Overall, it can be said that the NEB in­
cludes similar performance and cost changes as the ones of 
CEB, but performance values are around one order of mag­
nitude better, and consequently, cost values are higher. This 
shows that the NEB has a tendency of allocating more re­
sources than the CEB, and results in better QoS constraint 
satisfaction. 

5.2 COMPLEXITY 

Figure 3 shows the processing times of the algorithms as 
a function of window size values. The processing time is 
the time required for the algorithm to re-calculate capacity. 
The processing time is seen to be related to JI.,T for CEB and 
NEB, with a complexity of O(JV2 ). This result is in parallel 
with our expectations. CEB and NEB calculate autocorrela­
tions of measurements falling into the measurement window 
of size JV, and this requires a processing time propmtional 
to 1V2 . Whereas, GA uses only the mean and variance of 
the measurements, whose calculations are fully on-line. As 
a result, GA has a complexity of 0(1) and regardless of N, 
its execution time remains much smaller compared to other 
algorithms. 
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i Window isiot t.~tot islot i.slot isiot 

Size (Nl 0.01 s 0.05 s 0.1 s 0.5 s 1 s 
Ratio 4.2160 2.5588 2.1108 1.4898 1.3416 

3 slots Queue 89 183 254 568 764 

Plosf! 0 0 0.0001 0.0008 0.0015 
Ratio 5.0263 2.8748 2.3148 1.5783 1.4044 

6 slots Queue 68 126 180 405 566 
Ploss 0 0 0 0.0001 0.0004 
Ratio 5.8932 3.1018 2.4610 1.6431 1.4557 

30 slot-; Queue 45 99 142 322 459 
P1os,5 0 0 0 0 0.0001 
Ratio 6.2305 3.1541 2.4843 1.6537 1.4673 

60 slots Queue 43 97 139 316 447 
Ptoss 0 0 0 0 0.0001 
Ratio 9.2851 3.5462 2.6659 1.7013 1.5080 

300 slots Queue 43 96 135 302 416 
Plmn; 0 0 0 0 0.0001 

Table 2. Results for GA 

Window islot islot is[ot islot fslot 

Size (NJ 0.01 s 0.05 s 0.1 s 0.5 s 1 s 
Ratio 4.8650 1.9259 1.4730 1.0930 1.0453 

3 slots Queue 79 354 635 1685 1988 

17.oss 0 0 0.0005 0.0098 0.0134 
Ratio 8.4596 2.7438 1.8578 1.1658 1.0814 

6 slots Queue 38 167 349 1278 1697 
F'fot~H 0 0 0.0002 0.0049 0.0087 
Ratio 30.67 7.13 3.9855 1.5826 1.2927 

30 slots Queue 7 35 72 380 741 

floss 0 0 0 0.0001 0.0008 
Ratio 58.25 12.17 6.3863 2.0612 1.5456 

60 slots Queue 3 18 38 199 394 

Pi ass 0 0 0 0 0.0001 
Ratio 540.14 66.78 29.78 6.4247 3.8839 

300 slots Queue 1 3 7 37 70 
Ploss 0 0 0 0 0.0001 

Table 3. Results for CEB 

Window islot isiot istot islot istot 

Size (N) 0.01 s 0.05 s 0.1 s 0.5 s 1 s 
Ratio 2.3612 1.8967 1.7369 1.4664 1.3797 

3 slots Queue 175 345 435 705 820 

Ploss 0 0 0.0002 0.0018 0.0022 
Ratio 3.1974 2.4621 2.1945 1.7531 1.6156 

6 slots Queue 140 189 231 356 427 

Ploss 0 0 0 0.0002 0.0003 
Ratio 6.6640 4.7717 4.0782 2.9392 2.6033 

30 slots Queue 41 57 68 108 131 

Ptoss 0 0 0 0 0 
Ratio 9.9601 6.8413 5.7430 3.9993 3.5108 

60 slots Queue 26 36 43 69 82 

PLoss 0 0 0 0 0 
Ratio 39.21 21.04 16.50 10.61 9.2576 

300 slots Queue 9 12 14 21 25 
Plass 0 0 0 0 0 

Table 4. Results for NEB 

6. DYNAMIC VS. STATIC TIME SCALE depending on the time scale choice. 

Section 5.1 shows how drastically the performances of the 

measurement-based capacity allocation algorithms change 
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Mainly, we observed that increasing the measurement slot, 
tslot. results in a decrease in the capacity allocation and con­
sequently an increase in Pzoss in all of the algorithms. This 
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Figure 3. Processing times of algorithms vs. window size. 

can be explained intuitively from the stmcture of the formu­
las used in the capacity allocation algorithms. To illustrate, 
consider the Gaussian Approximation Algorithm's fotmula 
(10), where m and u are the mean and standard deviation 
of the most recent JV measurements, [.X1 , X 2 , ... ,~YN]- Each 
.. Xi represents incoming traffic load in consecutive tslot dura­
tions. By the law of large numbers, as tslot increases, say 
tstot --+ A, where A is a time parameter, which is large 
(dependent on the traffic charactetistic), then xi approaches 
m * A for all i. This causes u in (I 0) to go to zero, and the 
capacity value, eb to approach to the mean rate, nt. A sim­
ilar reasoning can be given for other methods, in which not 
only standard deviation, but also autoconelations of measure­
ments, [.X1 , .X2 , ••• , XN] are used. 

On the other hand, we also observe that taking tslot arbi­
trarily small leads to over-allocation of resources. As tslot 

decreases, the measurement history (tslot * 1V) decreases 
too. This decreases the confidence and increases the ran­
domness in the formula parameter estimations, yielding over­
allocations. 

We could obtain empirical istot values from the perfor­
mance and cost metrics plots, so that the QoS is satisfied 
with minimum resource allocation. However this particular 
istot value would be useful only for the traffic that we used 
in our simulations. Consider using a traffic whose mean is 
m * J( (that is J{ times bigger). This time, on average A­
times more traffic load will fall on average into the slots. Rel­
atively, tills is the same experiment as using ]( times bigger 
tslot measurement slots, with mean traffic rate m. In other 
words, the measurement time scale is relative to the traffic 
characte1istics. A static tslot may conespond to cases where 
we described previously as small or large, depending on the 
incoming traffic. 

As a result, we believe that the measurement time scale 
istot should also change dynantically based on measurements 
[XJ,X2, ... ,XN], in order to keep the algorithms always 
working close to their best. 

In [25], the Maximum Time-Scale (MaxTS = t') is used 
as the time scale of interest for queueing systems feed by a 

fractal Brownian motion (fBm) process: 

t* = 
lwH 

(C -m) 
(II) 

where k = J -2 *In (Floss), m is the mean traffic rate, u is 
the standard deviation of the traffic rate and Cis the capacity 
of the server. 

The value of C is de1ived from (12), where A.H(t) is 
the probabilistic envelope process of the fBm cumulative ar­
~val process AH(t) (AH(O) = 0), such that P(AH(I) > 
A.H(t)) "'Ploss: 

dA.H(f') = C 
dt 

(12) 

_On the basis of the law of large numbers, as t ~ oo, 
dAu(tl I . I 4- (I) . -d-,- converges to t 1e mean an1va rate. . H mcreases 
with a decreasing rate after t*. Tills means that the proba­
bility that the average arrival rate exceeds the link capacity 
decreases for t > t'. 

In the remaining of the paper, we test using a dynamic time 
scale by estimating t* using the recent 1V measurements and 
taking tstot = t* as the measurement slot duration for the 
next 1V measurements. In other words, besides effective ca­
pacity, tslot is also recalculated after every 1V measurements. 

Instead of the ( C- m) te1m in (II), we used L * m, where 
Lis taken as a constant L = (A.llocationRatio) - 1. The 
reason is that we allocate capacity dynamically and do not 
have a constant C 1 .Table 5 shows the improvement of using 
a dynamic tslot = t* against static tstot choices (GA is used 
as the capacity allocation algorithm, and the ?toss target is 
set to 10-3 as in the previous simulations). As the mean rate 
increases, the performance of the static tslot cases changes 
(the ratio decreases and Ptoss increases), whereas the per­
formance of the dynamic tstot = t* case remains the same. 
This shows that on-line measurement-based algorithms with 
constant measurement intervals are heavily dependent on the 
incoming traffic's mean rate, whereas the ones with dynamic 
measurement intervals are more robust 2 . 

Table 5. Performance Metrics vs. Time Scale 

Mean istot islot islot istot 
(Kb)lclJ;) 0.08s 0.4s 2s t' 

4 Ratio 4.751 2.657 1.745 1.915 
Ptoss 0 0 0.000003 0.000391 

20 Ratio 2.952 1.739 1.353 1.914 
F'toss 0 0.000009 0.000382 0.000696 

100 Ratio 1.742 1.334 1.183 1.913 
Ploss 0.000010 0.000332 0.002649 0.000910 

To illustrate the benefits visually, we generated a traffic 
trace of 1000 s, where the mean rate of traffic between 200 

1 We tried using the avernge capacity allocation instead of C. but this 
caused a multiplicative effect, such that. when capacity allocation increases, 
C - m term in (11) decreases. But decreasing tslot results in increased 
capacity allocation measurement in the next window. and this loop ends up 
having t* ::::::: 0. 

2The particular performnnce figures for dynamic tslot case in Table 5 
are dependent on the value of L (we used L = 1.5). However, note that the 
choice of L does not affect the robusmess of the algorithm. 
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and hLi. -, ncan rate at the remaining inter-
vals. Figure 4 i>i.H._;< ,,,,--namic capacity allocations. Note 
that the allocation ratios m the static istot cases change in the 
region of traffic with high mean rate. But the allocation ra­
tio remains roughly the same in the dynamic time scale case. 
Tills is achieved by adjusting islot as shown in Figure 6. 

The number of packets dropped increases when the mean is 
increased gradually in Figure 5 (fort slot = 0.01 s, no loss oc­
cmTed, due to over-allocation). The t"' case peiforms again in 
between the static islot cases. But note that when islot = t*, 
the algmithm can self-adjust and perfom1 similarly against 
traffic mean changes. whereas the petfonnance of an algo­
rithm with static tslot is dependent on the traffic. To illustrate, 
a method with static tslot = 0.01 s case will over-allocate 
significantly when the mean rate decreases much below of 4 
Kbytes/s, and a method with static tstot = 2 s case will suffer 
significant degradation of the QoS tm·get when the mean rate 
increases much above I 00 Kbytes/s. 

7. SUMMARY AND CONCLUSIONS 

In this paper, we presented and compared measurement­
based on-line capacity allocation algorithms and proposed a 
way to improve their robustness. 

We distinguished such algmithms fi·om MBAC and traffic 
predictors due to their smaller time scales and QoS-oriented 
use. We observed that their performance is directly depen­
dent on the involved measurement time scales. Mainly, we 
saw that when the time slot length is increased while the win­
dow size is kept constant, due to increasing aggregation of 
packets in the slot interval, the variations between the mea­
surements in the measurement window decrease and the allo­
cated capacity approaches the mean traffic rate. This causes 
the loss probability to increase. 

Since the measurement time scale is directly related to 
the measured traffic, the result of a measurement-based al­
gorithm using constant time scale is open to the performance 
degradations due to the changes in traffic trends. However, 
our goal was to obtain an algorithm which does not require 
any a priori traffic knowledge, and which is based fully on 
the measurements. Therefore we incorporated the Maxi­
mum Time-Scale (MaxTS) parameter and tested successfully 
adapting the measurement time scales based on measure­
ments themselves. 

To sum up, in this paper, we 

• identified on-line measurement-based capacity alloca­
tion algorithms, 

• compared their performances analytically, 

• simulated promising ones, 

• observed significant affects of the choice of measure­
ment time scale, 

• proposed to vary measurement time scale adaptively, 

• through an example, showed the perfonnance robust-

The outcomes of this study can be used for choosing al­
gorithms to be implemented in real switches, taking into ac­
count trade-offs of complexity, accuracy and robustness. 

Dyrwmic Colpaclly Alloe<~tloo~ 

Figure 4. Capacity allocations vs. traffic mean rate. 
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Figure 5. Cumulative Number of Dropped Packets vs. time. 
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ness of measurement-based algorithms, in which mea- Figure 6. The Plot of Dynamic Time Scale Parameter t* vs. 
surement time scale is adaptive {measurement-based). time. 
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