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Abstract- The increasing demand for distributed multimedia 
applications makes evident the need for end-to-end quality of 
service (QoS) provisioning. Pmticularly, operating systems, 
despite their location at end systems, switches or routers, 
must guarantee that resources under their control are ade­
quately managed to fulfill the application requirements. This 
work proposes an architecture for adaptive QoS provisioning 
on network operating systems (QoSOS), focusing mainly on 
the packet queuing subsystem. The development of such ar­
chitecture came after an analysis of solutions currently found 
in the literature and the perception of their functional simi­
larities. QoSOS allows the reuse of common functions and 
the definition of an internal organization that is equivalent 
in different systems. In order to demonstrate how QoSOS 
can be applied in a real QoS provisioning scenario, the paper 
describes the modeling and implementation of an adaptable 
Intserv support, focusing on the management of the output 
queues of the Linux operating system. The architecture in­
stantiation is based on few modifications introduced into the 
standard Linux kemel, that adds some desirable features such 
as runtime service adaptation. 

Keywords: QoS, network operating systems, resource reser­
vation, adaptability. frameworks. 

Resumo - A crescente demanda por aplica\=6es multirnidia 
distribuidas toma evidente a necessidade da provisiio de qua­
lidade de servio;o (QoS) de maneira fim-a-fim. Particular­
mente, sistemas operacionais, sejam eles localizados nas 
esta96es finais, comutadores ou roteadores, devem garan­
tir que os recursos sob seu controle sejam gerenciados a­
dequadamente de forma a preencher as necessidades das 
aplicao;oes. Este trabalho prop5e uma arquitetura para pro­
visao de QoS em sistemas operacionais de rede (QoSOS). 
focando principalmente o subsistema de enfileiramento de 
pacotes. A constru\=iio de tal arquitetura foi originada a 
pmtir de an3.lises das solw;::Oes atualmente encontradas na 
literatura e da percepy:iio de suas semelhan\=as funcionais. 
QoSOS permite o reuso de funo;oes comuns e a definio;ao 
de uma organiza9iio interna equivalente em diferentes sis­
temas. A fim de demonstrar como a arquitetura QoSOS 
pode ser aplicada em urn cemirio real de provisao de QoS, 
o artigo descreve a modelagem e implementayiio de urn su­
pmte adapttivel ao modelo Intserv, focando no gerencia­
mento das filas de saida de pacotes do sistema operacional 
Linux. A instanciayiio da arquitetura e baseada em algumas 
modificay:6es introduzidas no kernel padriio do Linux, adicio-

Authors are with the Department of Infonnatics of the Pontifical 
Catholic University of Rio de Janeiro, Rio de Janeiro, RJ. Brazil. 
E-mails: {moreno, csalles. atagomes, colcher,lfgs} @inf.puc-rio.br. 

118 

nando algumas caracteristicas desejiiveis como a adaptay:iio 
de setvi\=os em tempo de execuyiio. 

Palavras-chave: QoS, sistemas operacionais de rede, reserva 
de recursos, adaptabilidade, frameworks. 

1. INTRODUCTION 

In order to provide end-to-end QoS required by disttibuted 
multimedia applications, resource management on the whole 
operation environment is needed. Indeed, QoS provision­
ing requires the implementation of several tasks both in the 
end-systems and in the communication provider, including 
its switches and routers. In the end-systems, resources con­
trolled by the operating system, like CPU, memory and com­
munication buffers. must be adequately managed in order to 
ensure that the coexistence of various applications will not 
cause individual QoS violations. Within the service provider, 
each switch or router operating system must provide the same 
functionalities, besides the management of the communica­
tion channels at their many input/output ports. 

QoS provisioning has become even harder since new re­
quirements, imposed by new application types and new codi­
fication techniques, have emerged. In fact, the rapid and inex­
pensive deployment of services with new quality-of-service 
(QoS) requirements has become essential to telecommuni­
cations operators. As mentioned in [1], services should be 
adapted to new QoS demands through smooth changes in 
their communication and processing infrastructure. 

The specification of a new service can involve the choice 
of scheduling, admission and classification algmithms, as 
well as other configuration parameters such as the tasks that 
will be part of the communication protocol stack or the de­
scription of the system initial state for the QoS provision­
ing (e.g. initial partitioning of resources for each application 
class). For this sake, diverse high-level adaptability abstrac­
tions have been proposed in the literature [:?.] (e.g. reflec­
tion, open signaling, active networks etc). These abstrac­
tions usually rely on switches and end systems that can be 
explicitly programmed during network operation, demand­
ing, therefore, an operating system with sufficient flexibil­
ity. Nonetheless, the variety of available network operating 
systems (NOSs) hampers the deployment of such high-level 
adaptability abstractions. 

One of the key issues of this paper is to discuss and propose 
an adequate support for QoS provisioning and service adapt­
ability that can be built in a general purpose NOS. With this 
goal, we present a generic architecture for QoS provisioning 
on network operating systems, named QoSOS. The develop­
ment of such generic architecture came after an analysis of 
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solutions cun·ently found in the literature and the perception 
of their functional similmities. 

The QoSOS definition and specification came from the 
specialization and extension of an earlier work [3] that de­
fined a set of frameworks for QoS provisioning in generic 
processing and communication environments. Like its prede­
cessor, QoSOS allows the reuse of common functions and the 
definition of an internal organization that is equivalent in dif­
ferent subsystems. As a consequence, resource orchestration 
mechanisms for the whole system, including end-systems and 
the communication provider, are facilitated. [4] refers to 
frameworks as semi-finished architectures that capture design 
decisions common to a particular domain. Usually. various 
parts of a framework cannot be previewed, so they should be 
left incomplete or "subject to variations'". These parts- the 
so-called hot spots - allow the instantiation of frameworks 
to specific needs. In this sense, QoSOS can be thought as 
a framework, or better, a set of frameworks, as will be pre­
sented. 

For its most part, the paper shows how some of the frame­
work hot spots described in [3] can be specialized in order 
to accommodate the QoS provisioning techniques in network 
operating systems. Other hot spots are still left open in order 
to allow the runtime configuration of specific mechanisms 
like resource scheduling and admission control. The paper 
also extends the basic generic frameworks, incorporating a 
model for hot-spot automatic adaptations into QoSOS. The 
adaptation model covers important issues, as adaptation se­
cmity, system integrity and consistence maintenance. 

Although the application of frameworks to model adapta­
tions is not innovative [5, 6], our approach introduces a quite 
different viewpoint. Our frameworks are based on a concep­
tual model - the Service Composition Model (SCM) [7] -
that provides generic adaptability abstractions. SCM features 
a nested organization of basic service elements bringing out 
the definition of recurrent frameworks. This paper shows how 
this characteristic of SCM was used to model adaptable QoS 
mechanisms for NOSs in a rather generic way. 

With regard to QoS provisioning, we have already shown 
[3] that the same basic QoS mechanisms are recurrent on sev­
eral parts of a system, with minor differences related to sub­
system idiosyncrasies. By modeling all these mechanisms 
with the same frameworks and, making explicit annotations 
to identify and specify hot spots, we could homogenize their 
adaptation interfaces, thus providing designers with a sim­
ple end-to-end QoS orchestration model. In this paper, we 
will show that our orchestration model also takes into account 
the relationship between processing and communication re­
sources during QoS provisioning within NOSs. 

A framework can be defined using a programming lan­
guage, a specification modeling language, such as UML [8], 
a fmmal language, or any combination of these languages. 
The QoS provisioning frameworks for generic processing 
and conmmnication environments were first described us­
ing UML. In a recent work we made use of architecture 
description languages (ADLs) to describe the resource or­
chestration meta-services1 of those frameworks, which in-

1 Meta services act upon the main service and its elements. allowing adap· 
tations. Examples of common meta services include the signaling mechn· 

elude QoS negotiation and QoS tuning, which are discussed 
in this paper. ADLs allow the performing of fmmal verifi­
cation tests that proof many system prope1ties, besides the 
definition of precise and ambiguity-free semantics for QoS 
provisioning. However, both the use of UML and ADLs on 
the specification of QoS provisioning architectures may re­
sults in complex specifications. In order to simplify the un­
derstanding of the architectural description by means of QoS 
provisioning-related notations, we have recently proposed a 
domain-specific language (DSL) [9] named LindaQoS [10]. 
Section 3.3 shows how LindaQoS represents the QoS negoti­
ation meta-service in QoSOS architecture. Also, in order to 
present the instantiation of the frameworks for the Linux net­
work subsystem in more detail, the paper will also make use 
of UML in Section 4. 

The Linux operating system was chosen to illustrate a 
QoSOS use case. Although characterized by the common 
drawbacks of general-purpose operating systems regarding 
QoS, Linux can be modified to give supp01t to adaptable QoS 
provisioning mechanisms. Moreover, the Linux system was 
chosen not only because its source availability but also due 
to the high interest of its use (already manifested by the com­
munity) for the development of low cost routers0. 

The focus of our prototype relies on the Linux traffic con­
trol subsystem, which provides basic functionalities to rear­
range packets and flow policing in the output network queues. 
However, it is important to emphasize that the QoSOS instan­
tiation for the management of communication buffers is just 
a part of a complete solution for the problem of QoS in NOS, 
as will be seen in Section 2. 

The paper is organized as follows. Section 2 discusses QoS 
provisioning in network operating systems, showing the rela­
tionship between processing and communication functions. 
Section 3 describes the fi·ameworks that make up QoSOS. 
The framework instantiations for the Linux prototypes are 
presented in Section 4. Section 5 presents some related work, 
while Section 6 is resetved for conclusions and future work. 

2. QoS ISSUES IN NETWORK OPERAT­
ING SYSTEMS 

Setvices with end-to-end QoS suppmt require the manage­
ment of the underlying resources so that the communication 
and processing user requirements can be guaranteed during 
all service operation. Therefore, each involved subsystem 
(computer networks, operating systems and their subsystems) 
will have a pmtion of responsibility on the requested QoS, 
and must have its own mechanisms capable of redistributing 
tills portion among their managed shared resources. This re­
cursive process for QoS responsibility distribution is named 
QoS orchestration. 

QoS orchestration is supposed to occur even inside the OS, 
among its processing and communication mechanisms. We 
can relate the processing and conununication OS subsystems 
to two different kinds of flows that OS must deal with: 

nisms nnd the routing protocols. 
1For example, the Linux Router Project. nvailnble at 

<http://www.linuxrouter.org/> 
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• Dataflow: sequence composed of data packets transmit­
ted among processes or threads. Tills transmission can 
occur among different machines. through network links. 
or inside the same machine, through buffers or function 
call parameters (for example, in the communication be­
tween entities of adjacent protocol stack levels): 

• Instruction jlmv: sequence composed of commands in­
terpreted by microprocessors. They can define an exe­
cuting application or a routine for some system control, 
such as a protocol entity. 3 

These two flows are closely related regarding QoS provi­
sioning. In a service operation environment with QoS sup­
port, it is necessary to guarantee that the data flow will re­
ceive the required QoS all the way from its source to the des­
tination. This includes the path from the application to the 
network link interface within the same machine, in the case 
of an end system. In the case of a router or a switch, the edges 
of the path are the input link interface and the conesponding 
output link intetface. 

In several stages along these paths, data flows and process­
ing demands are strongly related. Typically, instruction flows 
should be processed in order to comply with the QoS require­
ments of the corresponding data flows. In Figure 1 we have 
adopted an extended queuing network modeling notation [II] 
to illustrate this relationship inside an OS. According to the 
model, a running process waits to be scheduled until it is 
granted a quantum of processing time. Provided that the pro­
cess includes a protocol entity and that all the protocol-related 
instructions have already been executed by the time its quan­
tum finishes, some data from this process will have been con­
veyed to other protocol entities. This is represented by the 
token creation that liberates the data packet communication. 
This conveying will be either through communication buffers 
(in the case of a vertical communication between adjacent 
layers) or through a network link. The data transmission time 
(t8 ) between two protocol entities will be either the time for 
buffer copying and/or pointer updating or the link propaga­
tion time. 

In Figure I. we show each protocol entity or application 
running in a separate process that is either dedicated to a spe­
cific data flow or shared by all of them. Nevertheless, we 
can abstract that some processes comprise the execution of 
as many protocol entities and applications as desired. Within 
such processes, there is no need for buffer copying among 
the protocol entities or applications; usually, there is at most 
some kind of pointer updating. For example, in general­
purpose OSs, such as Linux, several protocol entities run to­
oether in the kemel address space as a single process. In this 
a . . 
case, there is buffer copying only between the applical:lOn and 
the kernel and then between the kernel and the network link 
interface. 

In order to provide QoS, the OS must divide (orchestrate) 
the QoS provisioning responsibility between its processing 
and communication subsystems. As usual, the QoS orches­
tration may also recur within the communication OS sub­
system. In fact, many orchestration scenarios are possible, 

3 Although not very usual yet, instruction flows can also be tmnsmitted 
between machines. 
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according to the intemal processing architecture of the OS 
communication subsystem. The frameworks for QoS provi­
sioning must take all these scenarios into account. 

2.1 SERVICE ADAPTATION 

As previously mentioned, services should be adapted to 
new QoS demands through smooth changes in their conunu­
nication and processing infrastructure. Open-source operat­
ing systems allow some adaptations either through modifica­
tions of the kernel code, or by the simple reconfiguration of 
some components. Of course, another way of reconfiguration 
is the kernel update software supplied by a vendor. Generally, 
these actions are followed by the recompilation of the kernel 
or, at least, by the system restart. This kind of design time 
flexibility may be satisfactory when the demand for new ser­
vices is low. Operation time adaptability, on the other hand, 
empowers the system with a greater reconfiguration capabil­
ity since the kernel becomes highly dynamic (this feature is 
very desirable in environments with QoS support). In micro­
kernel architectures, for instance. the majmity of the operat­
ing system functionalities can be implemented as servers that 
are available for operation-time adaptations [12]. Unfortu­
nately, microkernel architectures are not vety popular when 
considering their adoption on end-stations. 

Most operating systems presents some obstacles for ser­
vice adaptabilities and QoS provisioning. This comes mainly 
both due to the weakness of the popular time-sharing schedul­
ing mechanisms and the usual monolithic kernel stmcture. 
Additionally, there are few mechanisms for resource reser­
vation in the kernel and for introducing runtime adaptations. 
Moreover, packet transmission queues are usually shared be­
tween all application flows, leaving no room for the classi­
fication or prioritization of packets. Finally, process sched­
ulers assign priorities in order to ptivilege the execution of 
some processes in detriment to others. QoSOS defines sev­
eral functionalities that overcome these barriers. 

3. ARCHITECTURE DESCRIPTION 

Figure 2 illustrates how the generic frameworks for QoS 
provisioning [3] are specialized into the QoSOS frameworks 
throuoh the fulfillment of some environment-specific hot a 

spots. This section presents not only the resulting QoSOS 
but also shows how its resulting frameworks can be settled for 
different orchestration scenarios and adapted to new QoS de­
mands through the fulfilling of other hot spots. We also pro­
vide an adaptation mechanism that helps designers in setting 
up new resource-sharing policies at tun time. Thus, QoSOS 
defines meta-services for OSs that comprises not only the 
configuration of the resource-sharing mechanisms by the QoS 
negotiation mechanisms, but also their adaptation to new QoS 
requirements. 

In what follows. the QoSOS frameworks will be presented 
in a brief textual format. A complete desctiption can be found 
in [13]. 

' 
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Figure 1. Relationship between data and instruction flows within a network operating system. 

3.1 SERVICE PARAMETERIZATION FRAME­
WORK 

The Service Parameterization framework models the struc­
ture that defines the behavior of user flows (load characteri­
zation parameters), the QoS requested (QoS characterization 
parameters), and information about the intemal state of each 
OS subsystem (like provider petformance, availability, etc.). 

When a service request is issued, the requesting user must 
provide the load and QoS characterization parameters of the 
highest abstraction level of the provided service. Different 
abstraction levels usuaiiy can for different kinds of descrip­
tions and parameters. User parameters usually must be trans­
lated into lower abstraction level characte1ization parameters, 
that may be translated into even lower level parameters and 
so on. For example, a user load specification of a "video with 
TV quality", could be translated into a lower specification of 
30 frames per second with SIF (standard interchange format) 
resolution, which could be translated into an even lower ab­
straction, like one miiiion instructions per second for a CPU 
and a load of 242 Mbps for a conununication channel. The 
QoS negotiation mechanisms, explained later, are responsi­
ble for parameter mappings from a higher abstraction level to 
lower ones, until those that describe resource behaviors. 

Whenever a new flow admission request is performed or 
when the subsystem is a target of some kind of service 
adaptation, each subsystem's intemal state parameters must 
change accordingly. The service provider must take care of 
the maintenance of these parameters. 

The service parameterization framework allows the cre­
ation of abstract parameters that can be hierarchicaiiy spe­
cialized according to particular needs. Parameters can also 
be grouped in sets called Service Categories. The association 
of policies to service categories simplifies QoS provisioning 
mechanisms. 

3.2 RESOURCE SHARING FRAMEWORKS 

In order to facilitate the application of several scheduling 
and admission control algorithms on the same resource and 
thus offer a wide and flexible set of services in a single sys­
tem, resources are arranged in a structure called virtual re­
source tree. Figure 3 illustrates a virtual resource tree ex­
ample. The Resource Shming frameworks allow the creation 
and management of vlltual resources trees. 

A virtual resource tree abstractly denotes the hierarchical 
usage division for one or more resources. Virtual resources 
represent usage portions of either a real resource, or another 
virtual resource, or even a set of resources. The root node 
of a tree is called mot resource scheduler, where the root re­
source may correspond to: i) a vhtual or real resource (e.g. 
bandwidth, CPU, memory, etc); ii) a set of real or virtual 
resources that can be viewed as a single resource: iii) a set 
of real or virtual resources that must be viewed as isolated 
resources. In any case, it is a root resource scheduler's re­
sponsibility to distribute usage portions of the root resource 
among its child nodes. Each node, by its tum, distributes its 
own resource usage portion among its child nodes, and so on, 
up to the leaf nodes, which are named final virtztal resources. 
The inte1mediary nodes of the tree are called virtual resource 
schedulers. 

Each node in the tree, except the leaves, is associated with 
a service categmy (with a set of parameters) and some cor­
responding QoS provisioning policies. The policies include 
strategies for scheduling, admission and user/network param­
eter control, and a virtual resource factory component. In the 
Resource Sharing frameworks, the virtual resource factOJy 
allows the inclusion of a virtual resource in the list of respon­
sibilities of the scheduler and the configuration of the classi­
fying and policing mechanisms. Classifying mechanisms are 
responsible for fmwarding a data or instruction flow to the 
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Figure 2. Hot spot types in the specialization of the generic frameworks. 

appropriate child resource. Policing mechanisms must verify 
if user flows are in accordance with the characterized traffic 
and, based on the user/network parameter control strategies. 
take some actions to limit them (e.g. traffic shaping, packet 
discarding, retransmissions etc). 

Flow admission is done based on information about re­
source usage of the scheduler associated with the requested 
service category. If the admission is possible, the virtual re­
source may be created through the virtual resource factories. 
When the root resource is a single resource or a set of re­
sources viewed as a single one, the admission of new user 
flows is named primitive, because there is no need for negoti­
ation among other mechanisms. In other words, in this case, 
admittance tests can be done directly over the vi11ual resource 
tree. Otherwise, when the set of resources cannot be viewed 
as a single one, the flow admission is recursively delegated to 
virtual resource trees of the lower abstraction levels. The pro­
cess stops when a vi11ual resource with primitive admission 
is achieved. This point will be clruified in the next section. 

3.3 RESOURCE ORCHESTRATION FRAME­
WORKS 

Orchestration is the process by which a provider, in this 
case the operating system, divides the QoS provisioning re­
sponsibility among its virtual resources. As the set of re­
sources of an operating system cannot be viewed as a sin­
gle one, the flow admission is recursively delegated to virtual 
resource trees of the lower abstraction levels, as afore men­
tioned. In QoSOS, resource orchestration is done by the spe­
cialization of two different frameworks: the QoS Negotiation 
framework and the QoS Tuning framework. 

The QoS Negotiation framework runs before the service 
starts, dming the service establishment phase. The QoS Tun­
ing framework works during the service provisioning, in the 
service maintenance phase. 

In the QoS Negotiation framework, upon receiving a new 
service request, the admission controller verifies the feasibil-
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ity of its admittance, taking into account the current resource 
utilization and the proposed load associated with the new re­
quest. Then, as mentioned in Section 3.2, the admission con­
troller starts the OS negotiation agent, which must identify 
all possible resources that would be involved in the service 
provisioning. The negotiation agent then establishes portions 
of the QoS responsibility for each identified resource. 

After assigning portions of responsibilities to each re­
source, the mapping mechanisms are launched to translate the 
requested service category (and its associated parameters) to 
service categories (and parameters) directly related to the op­
eration capacity of each assigned resource. Then, the admis­
sion control mechanisms linked to each resource are called. 
The admission process repeats recurrently in each resource 
until the primitive admission controllers are reached, when 
the test of admittance is directly executed over the resource 
(of course, primitive admission controller has no negotiation 
agent). In any abstraction level, if all involved admission con­
trollers return an affirmative answer to the negotiation agent, 
it passes this answer to the higher-level admission controller. 
If all involved admission controllers return an affirmative an­
swer, virtual resource factories are executed, creating new 
vhtual resources, and the service request is accepted. In any 
other case, the request is immediately denied or a new negoti­
ation process is started, with a new redistribution of portions 
of QoS responsibilities or with more relaxed QoS pmameters. 

Dming the service operation, however, some system ad­
justments can be necessary in order to honor the QoS specifi­
cations of admitted flows. The QoS Tuning framework works 
during this phase. The monitoring of resources drives the 
identification of operational malfunctions, which might be 
either user faults (traffic flows violations) or system faults 
(e.g.: resource hardware errors or inaccurate computations 
for reservation). Monitors must issue alerts to the tuning 
mechanism when disturbs are detected. The tuning actions 
may vary from small parameter adjustments in some sched­
ulers to the request of a complete QoS renegotiation in a man­
ner similar to the establishment phase. 
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Figure 3. Virtual resource tree example, for a communication channel in the OS network subsystem. 

3.3.1 MODELING THE RESOURCE ORCHESTRA­
TION FRAMEWORKS WITH LINDAQOS 

The specification of a system or a family of systems that 
follows the orchestration frameworks can become very hard 
and time-consuming as the number of resources and the nest­
ing of involved abstraction levels grow. In order to smooth 
this task, we have developed a Domain-Specific Language 
(DSL), named LindaQoS [10]. The language is small, sim­
ple, concise and easy to learn. 

LindaQoS specifications can be automatically translated 
into a software architecture description or to a programming 
language, using two different developed compilers. At the 
architectural level, styles are used to describe the Resource 
Orchestration frameworks, cmrently using Wright ADL [14 ]. 
Tltis architectural desctiption can be used as a formal tool to 
verify prope1ties (using Wtight analysis tools). At the imple­
mentation level, the compiler can be used to translate Lin­
daQoS specifications to a specialization of the generic frame­
works for QoS provisioning [3] (currently in JAVA). Tltis spe­
cialization provides the basis for the Resource Orchestration 
frameworks instantiation. 

A complete LindaQoS description of the QoS Negotia­
tion framework is composed of some System sections and 
just one Hierarchy section. A System section describes the 
components instantiation of a particulm· level of abstraction 
(Instances subsection) and the bindings between components 
of that level (Attachments subsection). The hierarchy sec­
tion, by its tum, describes all relations among the different 
systems. There are three basic types of components in Lin­
daQoS, used in the Instances subsection: the AdmCtrl (ad­
ntission controller): the QoSNeg (QoS negotiator) and the 
QoSMap (QoS mapper). 

The compiler verifies when an attaclunent is invalid, ex­
hibiting error messages. Each hierm·chy clause must attach 
two components of different systems (a QoSNeg and an Adm­
Ctrl). These attaclm1ents clauses must associate each AdrnC­
trl component to a unique QoSNeg component. Moreover 
these clauses must also associate QoSNeg components to one 
or more QoSMap components. 

Figure 4 shows the LindaQoS specification for the QoSOS 
Negotiation framework. It describes the QoSOS, CPU and 
LinkQueue systems. The first one receives service requests 
from the user. The AdmissionController redirects these re-

quests to the Negotiator, who centralizes the negotiation 
mechanism and disnibutes portions of responsibility among 
the CPU and LinkQueue subsystems. Negotiator uses the 
CPUMapper to translate higher-level QoS parameters to 
CPU subsystem related parameters. In a sintilar way, the 
QueueMapper translates those parameters to the LinkQueue 
subsystem related parameters. Both the AdmissionController 
in the CPU subsystem and the AdmissionController in the 
LinkQueue subsystem are primitive admission controllers. 
The Hierarchy section binds the Negotiator component to the 
AdmissionController component of the CPU subsystem and 
to the AdmissionController component of the Queue subsys­
tem. 

A complete LindaQoS specification of the QoS Tuning 
framework can be found in [10]. 

I system QoSOS 
:Instances 

AdmissionController : AdmCtrl(); 
Negotiator: QoSNeg{); 
CPUMapper : QoSMap ( ) ; 
QueueHapper : QoSMap ( ) ; 

Attachments 
Admissionconotroller ,~, Negotiator; 
Negotiator ~ CPUHapper; 
Negotiator :::- QueueMapper; 

EndSystem. 

System CPU 
:Instances 

AdmissionController AdmCtrl(); 
I Attachments 
~EndSystem 

System LinkQueue 
:Instances 

AdmissionController: AdmCtrl(); 
Attachments 

IEndSystem 

!Hierarchy QoSOSNegFrame\'Tork 
' QoSOS .Negotiator ~ CPU .Admissioncontroller; 

QoSOS .Negotiator :::- LinkQueue .AdmissionController; 
Hierarchy 

Figure 4. QoSOS negotiation framework in LindaQoS. 

3.4 SERVICE ADAPTATION FRAMEWORKS 

The generic frameworks for QoS provisioning provide 
service-specific hot spots that can be used by designers to 
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model adaptable systems. However, these hot spots may 
present implicit-dependent relationships that can make the 
system consistency difficult to be maintained face to adap­
tation actions. In this context, the implementation of "meta­
mechanisms", which automate the system adaptation to new 
services or new QoS provisioning policies, is highly desir­
able. In doing so, consistence and security are responsibilities 
of these meta-mechanisms. The sen'ice adaptation frame­
work was built to fulfill this lack, in an operating systems 
specific approach. 

Adaptation actions are requested by system administrators 
or external meta-mechanisms (e.g.: an open signaling pro­
tocol or management mechanism) and should be controlled 
by an adaptation manager. This manager is responsible for 
handling incoming requests, verifying adaptations feasibility 
and consistency, and inserting or replacing old components 
by new ones (which will pe1form the new functions or adapt 
the old ones). The new components ru·e supplied by an adapt­
ing agent that is a member of the meta-service environment. 
In order to create a complete new service, all components that 
represent QoS provisioning policies must be supplied to the 
manager, together with the precise location of the new service 
category in the service category hierarchy. 

Some of the refened tests fall into the secmity verifica­
tion that is made at the component inse1tion delegated by the 
adaptation manager to a specific agent, named security man­
ager. The security manager must analyze the following basic 
aspects in a new component: 

• Authentication: the component supplier must be reli­
able; 

• Context restriction: the insuuctions described within the 
component must be restricted to the context in which it 
will be applied: 

• Isolation: the component actions, if logically wrong, 
cannot interfere in the quality offered by other service 
categories or in the operation of other subsystems. 

If these verifications are successful, the adaptation man­
ager submits the component implementation to the cone­
spondent adaptation port. Adaptation ports m·e structures 
present in the operating system that make component imple­
mentations available to external clients. An example of adap­
tation port is the Linux kemel module subsystem (although 
it was not built for this purpose- see section 4). Finally, the 
adaptation manager updates all stmctures that maintain any 
reference to the original components, like a scheduler does to 
a component for resource creation or a scheduling strategy. 

When removing a component, besides the security tests, 
consistence verification must be executed. The consistence 
test for removal will verify if the elimination of a component 
does not cause other component failure. 

Note that the adaptation mechanisms can be applied not 
only on the QoS provisioning infrastructure, but also on other 
parts of the operating system, like the network subsystem 
(protocol stack), driver management, file system and others. 
Obviously, the kemel must support this functionality, defin­
ing adaptation ports in these subsystems. This paper presents 
in Section 4 adaptation mechanisms for introducing schedul-
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ing and admission strategies to the communication buffers in 
the Linux system. 

4. QoS PROVISIONING IN THE LINUX 
NETWORK SUBSYSTEM 

In order to demonstrate how some QoSOS mechanisms can 
be applied in a real QoS provisioning scenmio (see Figure 2), 
this section describes the modeling and implementation of an 
adaptable service support to the Linux network output queues 
(link layer queues). The goal is to provide Linux with Intserv 
[15] service categories. In order to be able to introduce QoS 
suppmt and also to allow runtime adaptations for admission 
and scheduling strategies, some modifications to the system 
kernel were needed. Details about kernel code changes can 
be found in [13]. From now on, we will name the framework 
instantiation as QoSOS Linux. 

Intserv was chosen in order to complement our prior in­
stantiation for QoS provisioning on the Internet [ 16]. This 
previous work also demonstrated how the Diffserv [ 17] ru·­
chitecture should be modeled using the genetic frameworks 
for QoS. In the operating system context, the Diffserv ser­
vice categories must have adequate treatment with different 
QoS policies from those of Intserv model. For tlus sake, 
the design-time QoSOS flexibility and the QoSOSLinux mn­
time adaptability allow the modeling and deploying of vari­
ous QoS architectures, which can have totally different reser­
vation needs. 

As mentioned in Section 2, one of the main QoS charac­
teiistics in network operating systems is the interdependency 
between data and instruction flows. This fact implies in an 
OS architecture that implements QoS support in both pro­
cessing and communication subsystems. QoSOS Linux is a 
work in progress, a project that aims the inclusion of QoS ca­
pabilities in the Linux operating system for a better suppo1t to 
distributed multimedia applications. In the present paper we 
will discuss only the simple QoS resource orchestration that 
just embraces the communication link queue management. 

This section is organized as follows. Section 4.1 presents 
a brief discussion on the Linux packet queuing subsystem, 
called LinuxTC (our instantiation target), showing its mech­
anisms for packet scheduling management on network out­
put intelfaces. Section 4.2 describes two application program 
interfaces (APis) built for QoS service request and for adap­
tation request. The sequence of tasks performed after API 
method invocations are also presented, in a btief textual for­
mat Section 4.3 uses UML as a tool to model the instantia­
tion of the frameworks that were discussed on Sections 3.1, 
3.2, 3.3 and 3.4. 

4.1 THE LINUX TRAFFIC CONTROL (LIN­
UXTC) 

Recent versions of the Linux kernel offer a large set of 
functions for network traffic control [18], handling mech­
anisms that support packet scheduling for the lntserv and 
Diffserv architectures. The following conceptual compo­
nents are defined: queuing disciplines, classes and classifi­
cation/policing filters. Each network intelface has an associ-
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ated queuing discipline, which governs the queuing policies 
for the device. A queuing discipline can be as simple as a 
single FIFO, or it can use complex structures such as filters 
that classify packets into different classes for further differ­
entiated processing (Figure 5 ). 

With LinuxTC, it is possible to configure the way packets 
will be queued and when they must be discarded (in a con­
gestion situation, for example). LinuxTC allows users to de­
fine the order for packet dispatching through the assignment 
of pdorities to the flows and to insert delay between packets 
of a flow (which can be used to limit the output data rate). 
With this toolbox, many types of policies for packet schedul­
ing may be configured. In particular, a hierarchical structure 
can be used, in which each class of a queuing discipline can 
be linked to another discipline that will be responsible for the 
scheduling of packets belonging to that class. The virtual re­
source tree concept, introduced in section 3.2 is sufficiently 
generic to embrace this Linux traffic control in our proposed 
QoSOS instantiation. 

LinuxTC provides a rich but non-dynamic method for the 
configuration of its components through a command line pro­
gram called "tc". It is a non-dynamic method in the sense that 
there is no native programming interface that allows appli­
cations or protocols to configure the petformance character­
istics of network communications. Nevettheless, the "IBM 
developerWorks..J." contributors have recently created an in­
ternational open source project called TCAPI [ 19] in order 
to fulfill this lacuna. TCAPI version 1.2 was initially used 
to configure LinuxTC in tllis paper proposed scenario. How­
ever, it was noted that several LinuxTC functionalities were 
not supported and also some bugs were found. Thanks to the 
easy access to the TCAPI code, we could make various mod­
ifications until an acceptable version with the required and 
new functions was achieved. We have submitted these mod­
ifications to the TCAPI project coordinator and now, after 
approval, they became a part of the original software 5 . 

4.2 THE QoSOS LINUX API'S 

Two distinct AP!s for the QoSOS Linux environment were 
developed. One that allows users to make their requests to 
specific services with a specific QoS, and other that allows 
the dynamic configuration or adaptation of QoS mechanisms. 
The first API is the one to be used by service negotiation 
agents (whether they are located in routers or end-systems) 
or end-users (from now on, both will be referenced as users). 
Functions like admission control and virtual resource creation 
are included in the tasks provided by the API. The second 
API provides methods for service adaptations to be used by 
system administrators or any management mechanism (both 
will be called managers)6 Operations like component inser­
tion, removal or replacement are included specifically for the 
admission and scheduling strategies related with the QoSOS 
Linux service categories. 

4DeveloperWorks. the ffiM's resource for developers, hosts a variety of 
open source projects. See <http://www.ibm.com/developerworks/oss/>. 

5TCAPI is available at <http://www.ibm.com/developerworks/projects/ 
tcapil>. 

6Users and managers are roles that can be assumed by the same agents. 

Kernel Space 

input queue 

LilwxTC 
Filters 

I • I Intoofooo "y" T output queue 

Figure 5. LinuxTC subsystem overview. 

Figure 6 gives a general view of QoSOS Linux, illustrating 
which mechanisms will be triggered when requests are made 
to each of the AP!s, and how these mechanisms interact to 
adapt the LinuxTC structure. As we can see, the QoSOS Ad­
mission Controller and the QoSOS Adaptation Manager are 
the front -end mechanisms that provide the service and adap­
tation request AP!s, respectively. 

4.2.1 QoSOS LINUX SERVICE REQUEST PRO­
CESS 

The services request API is the interface between users and 
the negotiation mechanisms that provides methods to accom­
plish the following tasks: 

• Service admission (or request), which starts the QoS ne­
gotiation process, including the admission tests; 

• Service commitment (or confirmation), which starts the 
effective resource reservation process, according to the 
portions of responsibility defined in the negotiation pro­
cess: 

• Service release, which struts the resource releasing pro­
cess. 

Figure 6 illustrates (in dashed lines) the interaction be­
tween the service request mechanisms. The QoS negotiation 
process begins when the QoSOS Admission Controller re­
ceives a service request that specifies the desired service cat­
egory, the associated pm·ameters and infonnation about the 
data flow (source and target addresses, ports, protocol etc). 
The QoSOS Admission Controller delegates to the QoSOS 
Negotiator the responsibility of identifying the virtual re­
sources that will participate in the service provisioning. Since 
we are only dealing with the QoS provision in output packet 
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queues, the QoS negotiator just submits the same information 
to the Link Queue Admission Contro/ler7 • Tills component is 
able to velify if the requested QoS level (expressed by the in­
formed service parameters) can be reserved in the LinuxTC 
resource tree. If the corresponding admission strategy con­
cludes that there are sufficient available resources, the Link 
Queue Admission Controller pelforms a "'fake reservation" 
(or pre-reservation) of the required resources and returns a 
positive answer to the negotiator. While a pre-reservation is 
valid, resources are not definitively reserved although they 
will be considered as so to other admission requests per­
formed during this period. If the admission strategy con­
cludes that the available resources are not sufficient, the pre­
reservation is not pe1fmmed and a negative answer is retumed 
to the negotiator. In both cases, the negotiator will redirect 
returned answer to the QoSOS Admission Controller. which 
adequately informs the user. 

The concrete resource reservation begins when the QoSOS 
Admission Controller receives from the user a se11'ice 
commitment request with a reference to a previous pre­
reservation. This reference is passed to the QoSOS nego­
tiator and then to the Link Queue Admission Controller that 
will veiify the current pre-reservation status (if it has ex­
pired or not). If the pre-reservation is still valid. the Link 
Queue Admission Controller invokes the Link Queue Fac­
tmy, which configures the LinuxTC resource tree based on 
the pre-reservation infmmation. At this point, the service 
agreement is established. 

The releasing process begins when the QoSOS Admission 
Controller receives a service release request from the user 
with a reference to a reservation. This reference follows the 
same path down to the Link Queue Admission Controller, 
which will ask the Link Queue Factory to release the corre­
sponding resources. 

4.2.2 THE QOSOS LINUX ADAPTATION RE­
QUEST PROCESS 

The adaptation request API is the interface between man­
agers and the adaptation mechanisms, providing methods to 
accomplish the following tasks: 

• Component inse1tion, which is useful when creating 
new service categories: 

When the QoSOS Adaptation Manager receives a request 
for a component insertion, it attaches the component into the 
kernel, which in turn registers the new function names as 
kernel symbols making all necessary reference updates (as 
those maintained by the resource schedulers). When remov­
ing a component, the kernel deregisters the names and nulli­
fies existing references. Finally, component replacement can 
be viewed as a component removal followed by a component 
inse1tion. The implementation of security and consistency is­
sues discussed in Section 3.4 needs fmther investigation, so 
they are left as future work. 

4.3 OoSOS ARCHITECTURE INSTANTIATION 

As mentioned before, the QoSOS instantiation descdp­
tion will use UML diagrams. The classes with admnments 
like "<<X>>·· indicate that they represent the specializa­
tion of a particular mechanism "X"", in the QoS frameworks, 
by the fulfillment of some environment-specific hot spots. 
The classes in gray represent hot spots that can be fulfilled 
(tlu·ough class derivations) to account for new QoS require­
ments being offered to users. In the textual description, the 
abstracts classes and methods are notated in italic. 

4.3.1 SERVICE PARAMETERIZATION FRAME­
WORK 

Figure 7 illustrates the instantiation of the Service Param­
eterization framework, discussed in Section 3.1. The guar­
anteed and controlled load service categories, defined by the 
Intserv model, are represented by the classes GuarService­
Category e CLServiceCategory, respectively. 

The Rspec parameter (reservation specification) must be 
associated only to objects of class GuarServiceCategory 
to denote QoS requirements that will be granted by the sys­
tem. The TSpec parameter (traffic specification) is used by 
both service categories and desc1ibes the user-generated traf­
fic characterization. R, s, r, b, p, m e M have equivalent defi­
nitions from the same name parameters of Intserv model. 

There is no need for the definition of any other parameters 
that may be directly related to the resource being allocated, as 
the LinuxTC elements used in the instantiation can be char­
actelized by the same parameters desclibed by (or. at least, 
by parameters that have the same meaning of) the Rspec and 

• Component removal, which is useful when removing Tspec structures. 
service categories~ 

• Component replacement, which is useful for service 
adaptations. 

The adaptation request mechanisms interactions are illus­
trated by dotted lines in Figure 6. In QoSOS Linux. com­
ponent insertion, removal and replacement are done directly 
into Linux kernel modules subsystem in a rather simple fash­
ion. The components that can be adapted are the admission 
and schedulers strategies. The only security test made is the 
one provided by the subsystem, which requires the manager 
to have sufficient rights to do kernel module operations. 

7The need for the QoS negotiator is justified by the fact that the system 
is already prepared to orchestrate other resources like the CPU. 
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4.3.2 RESOURCE SHARING FRAMEWORKS 

The Resource shming frameworks introduced in Section 
3.2 comprises the Resource Scheduling and Resource Alloca­
tion frameworks. The Resource Scheduling framework repre­
sents the scheduling mechanisms of the vhtual resource tree. 
An initial tree for the proposed scenario may be similar to 
that presented in Figure 3. 

Figure 8 illustrates the instantiation of the Resource 
Scheduling framework. It just shows how the LinuxTC 
mechanisms can be represented with QoSOS components. 
The framework elements and methods follow naming con­
vention internally used in LinuxTC, exactly as described in 
[18]. 

. 
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Figure 6. QoSOS Linux overview. 

The class DeviceQueuingDiscipline represents the root 
scheduler of the network interface, or in our model, the root 
of the virtual resource tree. The method wakeup() starts the 
packet scheduling sequence, which is, in fact, a sequence of 
dequeue() function calls (in each involved scheduler). The 
other disciplines (virtual resource schedulers) of the same 
intelface complete the virtual resource tree. These inner 
schedulers are modeled by the class lnnerQueuingDisci­
pline, which also uses the dequeue() function to continue 
the scheduling process. 

When the OS network protocol stack finishes the output 
processing of a packet, it signals the root scheduler associated 
with the output interface selected by the forwarding func­
tion. Then, this root scheduler must conduct the packet to 
the classifier filters, modeled by the class LinkQueueFilter, 
which identifies the service categmy that the packet belongs 
to. The root scheduler invokes the enqueue() method of the 
virtual resource scheduler that corresponds to the identified 
service category. The classes CBQSchedStrategy and FI­
FOSchedStrategy represent the scheduling strategies sup­
plied by LinuxTC used in our Intserv scenario for guaranteed 
and controlled load packets, respectively. 

Figure 9 shows the instantiation of the Resource Alloca­
tion framework. As LinuxTC does not provide virtual re­
source factories, their implementations were made in user 
space. Two factory components were instantiated, each 
one corresponding to a specific service category with differ­
ent reservation requirements (classes GauranteedLQFac­
tory and ControlledloadLOFactory). 

The method createGuarlink() of the GuaranteedLQ­
Factory performs the resource allocation for guaranteed ser-

vice categmy flows. This operation can be viewed as two 
steps: the creation of classification and policing filters: and 
the effective reservation of the requested bandwidth. A single 
LinuxTC filter may execute both packet classification (based 
on some header infonnation) and flow policing (according to 
some traffic profile mles). Therefore, the factory component 
for the guaranteed service category must request the creation 
of a filter (using TCAP!), calling the method change() of a 
LinkQueueFilter object. The bandwidth reservation is done 
setting up a new LinuxTC class into the discipline that is han­
dling the guaranteed service flows. This is done (also through 
TCAPI) by another change() function, now pertaining to the 
class LinkOueueScheduler. 

The factory associated with the controlled load service cat­
egmy, by its tum, may just request the creation of the classify­
ing/policing filter, since Intserv does not force the bandwidth 
reservation for flows belonging to this category. 

4.3.3 RESOURCE ORCHESTRATION FRAME· 
WORKS 

Figure 10 shows the instantiation of the QoS Negotiation 
framework (described in Section 3.3). The LindaQoS com­
piler, presented in Section 3, was used to generate (automat­
ically) the QoSOS Resource Orchestration frameworks. Par­
ticularly, this compilation produced the abstract classes rep­
resented in Figure 10 w1itten in Java. 

The QoS negotiation process starts with a service request 
by the user through the admit() primitive. Then the oper­
ating system admission controller (class QoSOSLinuxAd­
missionController) passes the supplied parameters to the 
QoSOS negotiator (class QoSOSLinuxNegotiator). The ne-
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Figure 7. Instantiation of Service Parameteiization framework. 
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Figure 8. Instantiation of the Resource Scheduling framework. 

gotiator will conclude that only the network queues will par­
ticipate of the resource orchestration. Then, it invokes the 
admit() method of the link queue admission controller (class 
LinkQueueAdmissionController) with the same parameters 
from the request. There is no need for QoS mapping, since 
the virtual resources on LinuxTC can be created in tenns of 
the Intserv QoS and traffic characterization parameters. 

The link queue admission controller invokes the check() 
method of the correspondent admission strategy (class 
LinkQueueAdmissionStrategy), according to the re­
quested service category. This method analyses the current 
performance parameters of the resources and compares them 
to the requested QoS. If the request is feasible. the adnrission 
controller is informed and generates a pre-reservation identi­
fier, later used at service confirmation time. The link queue 
admission controller returns the identifier to the QoSOS ne­
gotiator, winch then returns it to the QoSOS admission con­
troller. If we had more than one admission controller in the 
service orchestration, the QoSOS negotiator should maintain 
a table for identifier mappings. 

The initially available admission strategies correspond 
to the classes GuaranteedAdmStrategy and Controlled­
LoadAdmStrategy. To approve the admission of a guaran­
teed service flow, the data rate (R) must be available at the 
virtual resource scheduler. This strategy is called simple sum, 
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and corresponds to the strategy A in the virtual resource tree 
on Figure 3. The controlled load admission strategy is the 
strategy B in the same figure. It consists of the following test: 
the sum of the r parameters of the current admitted controlled 
load flows with the r parameter informed in the traffic char­
acterization of the solicitant cannot exceed the pre-allocated 
bandwidth for the controlled load service category. This strat­
egy is equivalent to the simple sum, but takes in account the 
traffic characte1ization parameters. 

When users want to confim1 the service request, the com­
mit() method of the QoSOS admission controller must be 
called, infonning the pre-reservation identifier, which will 
be passed to the QoSOS negotiator and then to the link 
queue admission controller. If it is a valid identifier, the pre­
reservation data are recovered and the appropriate virtual re­
source factory (a specialization of class LinkQueueFactory) 
is invoked, as mentioned in the resource allocation frame­
work. This calling sequence is also illustrated in Figure 6. 

4.3.4 SERVICE ADAPTATION FRAMEWORK 

The Linux monolitlric kernel has a subsystem for kernel 
modules management, including functions for module inser­
tion, removal and probing. This subsystem was initially de­
signed for adding device drivers. Nevertheless, several works 
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Figure 10. Instantiation of the QoS Negotiation framework. 

use this functionality to provide configuration of kernel in­
ternal parts, like process scheduling [20]. Many modifica­
tions must be performed into the kernel, however, for run­
time adaptability, since this was not previewed in the original 
Linux design philosophy. These modifications are listed in 
details in [ 13]. 

Figure II illustrates the instantiation of the Service Adap­
tation framework, discussed in Section 3.4. The class Lin­
uxQoSAdaptationManager represents the adaptation man­
ager, implemented in user-space. Its functionality is restricted 
to the insertion and replacement of modules that implement 
packet scheduling and admission strategies. The kernel mod­
ules (adaptable components) are represented 
by the classes AdmissionStrategyComponent, Schedul­
ingStrategyComponent, KerneiModulePort and Object­
File. Since it becomes possible to adapt scheduling strategies, 
the system administrators are not limited to the LinuxTC sup­
plied algorithms anymore. 

When the system administrator (or any other authorized 
management mechanism) requests the insertion or replace­
ment (se!Component{)) of a component, the adaptation 
manager knows that the adaptation port is the kernel module 
subsystem. Upon receiving the component implementation 
(ins_mod{)), the kernel module subsystem makes a simple 
security ve1ification, modeled by the class LinuxAdaptation­
SecurityManager. This class checks (through the capable() 

function) if the solicitant capabilities grant module manage­
ment rights. 

5. RELATED WORK 

Current research related to the QoS provisioning in op­
erating systems vary from simple extensions to completely 
new operating system designs, both targeting the mechanisms 
for resource management. Extensions are focused on fix­
ing some of the OSs drawbacks for QoS provisioning, like 
the unfair priority-based scheduling, the intenuption-guided 
network subsystem (that may cause some scheduling anoma­
lies), the impossibility to assign priorities to packets in shared 
buffers, scarce resource reservation mechanisms and poor 
adaptability support. 

References [21], [22] and [23] propose new structures to 
CPU hierarchical partitioning in order to provide fair sup­
port to different application needs. Tlus is mainly achieved 
through the utilization of different process schedulers. The 
proposed architectures also allow scheduler code adaptations 
during runtime. In our framework, the hierarchical schedul­
ing structure is extended to handle several other operating 
system resources, besides the CPU. System resources are 
generalized through the virtual resource tree concept, dis­
cussed in Section 3. 
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. Q SAd L!nux 0 aptationManager LinuxComponentProbe 

«AdaptationSecurityManager>> 

setComponent( ... ) : ... LinuxAdaptationSecurityManager 
probe( ... ) : boolean ----

getComponent( ... ) : ... 
capable( ... ) : boolean removeComponent( ... ): ... 

>> ·Adaptation Port > PortPcinlmeter 
I r~rLde,criptor: String ; ·. >. pafa.m.:_diiscripto_r-:''String 

•AdaptableComoonent ·.· · . 9:etP'6rtp~~~-m-(Cj -:_--P~rtl;liu~~_ete~ ·.· 

c'OnlPf_~e~t.:.d9'scriptor: strin_9 __ - -_-- £( L'r 9Bt.A.daPtPort{;.-;)·: -Ad0Ptati6~P~rt --
KerneiModulePort ObjectFile 

tr port_descriptor- "kemelmod" 
filename : string 

getFileName( •.. ): string 

AdmissionStrategyComponent SchedulingStrategyComponent 
component_ descriptor- "admstrat" component_descriptor- "schedstrat" 

Figure 11. Instantiation of the Service Adaptation framework. 

In the context of adaptation. the LDS (load dependent 
scheduler) [24] algorithm introduced a great contribution. It 
allows the emulation of several scheduling algorithms sim­
ply through an adequate filling of its operation parameters. 
Hence, the insertion of a new scheduler can be done without 
any further programming or any need for kernel recompila­
tion. The drawback in the LDS algorithm is its incapacity to 
emulate real time scheduling algorithms based on deadlines. 
QoSOS can easily model the adaptation through parameter 
setting. 

Operating systems like Sumo [12] and Nemesis [25] are 
microkemel-based and propose a better support for dis­
tributed multimedia applications. One of their common fea­
tures is the network stack protocol definition in the user 
space. Each application must have its own instantiation of 
the stack, with dedicated buffers for its flows. On the other 
hand, the LRP architecture (lazy receiver processing) [26] is 
an extension to the BSD network standard, with the aim of 
purging software intenuptions during the kernel stack pro­
cessing. In this paper, we discussed the behavior of several 
communication architectures regarding to the orchestration 
of processing and communication resources. QoSOS design 
takes into account, and thus use, all these approaches. 

6. CONCLUSIONS AND FUTURE WORK 

This paper presents a family of frameworks for adapt­
able QoS provisioning in network operating systems, called 
QoSOS. The proposed architecture allows the definition of 
recurrent structures, the homogenization of the QoS mecha­
nism representation and service interfaces, and the specifica­
tion of a simple QoS orchestration among OS subsystems. 

In order to illustrate how a general-purpose operating sys­
tem can provide adaptable QoS mechanisms, despite all well­
known deficiencies of these systems to provide this kind of 
service, a prototype using a Linux system was implemented 
based on QoSOS. The implementation effort resulted in im­
portant contribution to the TCAPI initiative [19], an open 
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source implementation for the traffic control API in Linux 
systems. The extension of the Linux system to provide QoS 
is one of our goals in a project to build an infrastmcture to 
suppmt interactive TV applications. 

This work opens many questions and leaves space for fur­
ther investigation and research activities such as: 

Inclusion of other relevant resources on the resource or­
chestration, like memory, memory paging, secondary mem­
ory, etc. 

Implementation of QoS mechanisms in the Linux process 
scheduling. These mechanisms are already modeled for the 
next instantiation of the architecture, including the utilization 
of the LDS algorithm. With the CPU QoS management, a 
system performance evaluation will be interesting to validate 
our orchestration model. 

Service adaptation framework refinement, including pro­
cedures to verify the security consistence issues in the com­
ponent inclusion and removal. 

Translation of the negotiation and tuning framework spec­
ification to Wright ADL using the LindaQoS Compiler [ 10]. 
As a consequence, consistency verification using Wright 
analysis tools will be able to be carried out (e.g. deadlock­
free tests, style constraints). 

Extension of LindaQoS to describe other QoS provision­
ing service, and not only the resource orchestration meta­
services. 
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