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Massive MIMO Systems
Samuel T. Valduga, André L. F. de Almeida, Carlos Filipe M. Silva, Igor M. Guerreiro, and Daniel C. Araújo

Abstract—In this paper, we are interested in the problem
of channel feedback and reconstruction in frequency division
duplexing (FDD)-based massive multiple-input-multiple-output
(MIMO) systems. We propose a general framework that allows
reducing the overhead significantly in the uplink feedback control
channel when assuming massive antenna arrays at both ends of
the wireless link. The fundamental idea of the proposed method
is to explore the low-rank structure of the channel for its accurate
reconstruction at the transmitter side (Tx) with very few uplink
feedback information, using matrix completion techniques. The
proposed framework consists of two stages. First, upon reception
of downlink pilots, the receiver side (Rx) undersamples either the
received pilot data matrix or the estimated channel matrix and
feeds back only a fraction of their entries to the Tx, throwing
away the remaining ones. Then, under the assumption of reduced
scattering propagation, the Tx capitalizes on matrix completion
to recover either the downlink pilots or to directly reconstruct
the downlink channel. We consider two application examples: i)
backhauling communication and ii) a multi-user scenario with
perfect and imperfect instantaneous channel knowledge. Due to
data/channel undersampling, energy consumption at a receiver
can be reduced during the uplink feedback transmission. Simula-
tion results show that, compared to the conventional full-feedback
approach, which requires feedback of the entire data/channel
matrix, the proposed solution can decrease the feedback load
in more than 90% for low-rank channels, while providing good
channel estimation accuracy, bit error rate (BER) and goodput
assuming maximum ratio transmission (MRT) precoding.

Index Terms—5G, quantized feedback, matrix completion,
backhaul, multi-user, FDD, BER, MRT, channel estimation.

I. INTRODUCTION

MASSIVE multiple-input-multiple-output (MIMO) is
considered as one of the key technologies for the fifth

generation (5G) of wireless communication systems due to
its potential to achieve high data rates and its robustness
against interference, fading, hardware imperfections and an-
tenna element failure [1]. In his seminal paper, Marzetta [2]
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it for publication was Prof. José Cândido Silveira Santos Filho.

Samuel T. Valduga is with the Federal University of Santa Maria (UFSM),
Santa Maria, RS, 97105–900, Brazil (e-mail: samuel.valduga@ufsm.br).
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has shown that, when the number of antennas grows very large,
the effect of additive noise diminishes, as well as the required
transmitted energy per bit. Spatial focusing of energy into ever-
smaller regions of space potentially brings huge improvements
in throughput and radiated energy efficiency. Other benefits
also could include the extensive use of inexpensive low-power
components, low latency communication, simplification of
the medium access control (MAC) layer, and robustness to
intentional jamming [1].

To fully utilize the benefits of such a promising technology,
an accurate knowledge of the channel state information (CSI)
at the base station (BS) is essential to apply linear precoders
such as a simple maximum ratio transmission (MRT) or a
zero forcing beamforming (ZFBF). In time division-duplexing
(TDD) operation mode, the CSI can be obtained at the trans-
mitter by exploiting channel reciprocity using uplink pilots.
On the other hand, frequency division duplexing (FDD) is
generally considered to be more effective under symmetric
traffic and delay-sensitive applications due to small latency,
continuous channel estimation, and backward compatibility.
Moreover, FDD is employed in most existing wireless systems.
Consequently, it is important to identify and develop solutions
for potential issues arising on FDD-based massive MIMO
technique.

Henceforth, we focus on FDD operation. In this context,
one well-known problem is that the channel feedback overhead
grows linearly with the number of antennas [3]–[6]. Then, for
practical feedback channels with limited transmission rate, the
overhead to obtain full CSI becomes prohibitively large due
to the massive number of antenna elements. Thus, relying on
CSI to design the downlink transmission is a bottleneck in
FDD systems.

Solutions for reducing the amount of data to be sent via a
limited feedback channel usually resort to compressed sensing
(CS) techniques. These solutions consider that the channel
matrices admit a sparse representation, for instance, because
of the shared and limited local scattering. Therefore, due to
the sparse channel structure, CS techniques can reduce the
training sequence and feedback overheads [7]–[11]. In [7], a
scheme to exploit the hidden joint sparse structure of channel
matrices via CS has been proposed. In [8], an adaptive CS-
based feedback scheme was proposed, where the feedback
structure can be dynamically configured based on channel
conditions, while [9] presents and discusses the use of sparsity-
inspired CSI acquisition techniques for massive MIMO, as
well as the underlying mathematical theory in FDD and TDD
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modes. In [10], based on the spatial correlation and channel
conditions, the authors suggest two compression methods for
channel feedback to reduce the feedback overhead. A hybrid
limited feedback design is proposed for massive MIMO in
[11]. They consider quantized and codebook based feedbacks.

Solutions based on CS, however, rely on an adequate choice
of a basis that provides a sparse representation. If such a
basis fails, it no longer represents the channel and its spatial
characteristics properly [10]. Additionally, a proper basis may
need to be sent to the receiver, which increases the signaling
overhead in this case. Differently, the authors in [12] proposed
a channel estimation algorithm based on matrix completion
(MC) technique, assuming a switch-based mmWave massive
MIMO scenario. In general, MC is a technique that can be used
to complete a matrix with missing elements. Comparing to CS
technique, the authors showed that MC can achieve a near-
optimal spectral efficiency with significantly lower complexity,
since it does not require any proper basis, and it is immune
to array response mismatch, as well.

Another solution is to exploit spatial correlation informa-
tion. For instance, [13] proposes to design grouping patterns,
taking advantage of the spatial correlation mapping of multiple
antenna elements to a single representative value, using pre-
designed patterns therein referred to as antenna group beam-
forming (AGB). However, full CSI is not available at the trans-
mitter. Instead, the proposed scheme uses the pattern index to
select the antenna group and the codeword index for transmit
beamforming, making such a scheme limited. Another solution
is presented in [14], which consists of a feedback scheme
based on channel vector quantization and beamforming. The
authors propose codebooks and user equipment (UE) selection
for scheduling based on reliability information, channel quality
indicator, channel direction indicator and rate approximation.
However, this solution does not provide CSI to the transmitter.

The idea of applying a completion technique in MIMO
communication appeared in [15] to obtain direction of arrival
(DOA) for colocated MIMO radars. The solution consists of
either performing a matched filtering with a small number of
randomly selected dictionary waveforms or undersampling the
received signal at random sampling instants and forwarding
the results to a fusion center. From the received samples
and the sampling scheme, the fusion center applies a matrix
completion technique to estimate the full matrix. In [16],
the authors proposed a solution to provide the CSI to the
transmitter side (Tx) for FDD massive MIMO systems. The
proposal is to apply an algorithm based on matrix completion
concepts. They consider that all scheduled UEs directly feed
the full received pilots back to the Tx, which applies a low-
rank approximation for CSI recovery. Therein, the authors
formulate an optimization problem to the estimation of the
channel under a low-rank constraint without undersampling.
However, full CSI is conveyed back to the Tx, which can be a
bandwidth consuming process. The approach of [17] estimates
the channel matrix by means of a matrix completion technique.
The method is numerically investigated by considering differ-
ent scattering environments for the MIMO channel model in
an indoor scenario. Therein, the authors do not assume a low-
rank channel model.

To the best of our knowledge, this paper is the first to pro-
pose the use of matrix completion in a general CSI feedback
and reconstruction framework for massive MIMO systems.
This work advances further than [9], [17] by presenting the
problem in detail, while linking it to the massive MIMO
paradigm. We also discuss two relevant application scenarios
where the proposed approach is appealing. In the present
work, upon reception of downlink pilots from Tx, for example
a macro BS, the receiver side (Rx), i.e., a micro-BS or a
UE, undersamples either the received pilot data matrix or the
estimated channel matrix (depending on the chosen scheme),
and feeds only a fraction of their entries back to the Tx.
By capitalizing on matrix completion, the Tx recovers the
downlink pilots for subsequent channel estimation, or directly
reconstructs the downlink channel. Our results show that, when
the channel matrix has a low-rank structure, the proposed feed-
back and reconstruction schemes yield accurate CSI estimation
under a very small feedback overhead, which translates into a
high energy efficiency and low complexity at the Rx, a desired
feature for power-limited uplink transmissions. Thereby, the
transmitter is able to design simple linear precoders [18], [19]
and beamformers that consider a full-channel knowledge.

The contributions of this work can be summarized as
follows:

• We propose a general framework to CSI feedback and
reconstruction which capitalizes on matrix completion at
the BS.

• We show the usefulness of the proposed framework in
two application scenarios: wireless backhauling commu-
nications and multi-UEs uplink scenario. We discuss the
performance in terms of bit error rate (BER) and good-
put considering a minimum mean square error (MMSE)
estimator.

• We formulate two feedback methods based on estimated
channel undersampling (ECU) and direct data undersam-
pling (DDU), which are respectively based on undersam-
pling of the estimated channel and/or the received data
matrix.

A. Organization and Notations

The rest of this paper is organized as follows. In Section II,
we summarize the completion technique. Section III presents
the system model. Section IV describes a general framework
based on two operation modes. Two relevant application sce-
narios are presented in Section V. In Section VI, the simulation
results are shown. Finally, Section VII brings some concluding
remarks and perspectives.

a) Notation: Scalar, vector and matrix are denoted by
lowercase letter, lowercase bold letter and uppercase bold
letter, respectively. Superscripts ‘T ’, and ‘H’ represent the
transpose and the complex conjugate operation respectively.
Nuclear norm of a matrix Y is denoted by ‖Y‖∗ defined as
the sum of its singular values ‖Y‖∗ ,

∑
σ. The Frobenius

or Hilbert-Schmidt norm is denoted by ‖Y‖F . The |〈A,B〉|
is defined as tr

(
AHB

)
.
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II. MATRIX COMPLETION PROBLEM

In this section, we briefly explain the technique based on
matrix completion. The full proofs of the exact and approxi-
mate recovery results to MC theory can be found in [20], [21]
and an overview is found in [22].

The idea behind the MC problem is to recover an unknown
low-rank matrix, exactly or approximately, from undersampled
observations, with or without noise. Under some conditions, a
desired (target) matrix can be recovered from the knowledge
of only a fraction of its entries and by minimizing the nuclear
norm (i.e., a sum of singular values) of the completed matrix
[21].

More specifically, let Y ∈ Cn×n be the desired matrix to be
reconstructed, where n describes the matrix dimensions. We
assume that only a few entries of Y are known. Moreover, let
Ω be a set whose elements are the known entries of Y. For
instance, if a tuple (ij) ∈ Ω, it means that the (ij)-th entry
of Y is known.

To undersample Y, let PΩ : Cn×n → Cn×n denote the
sampling operator defined by

PΩ(Y) =

{
yij , if (ij) ∈ Ω

0, otherwise,
(1)

where yij is the (ij)-th entry of Y. The sampling operator
simply undersamples its input matrix, setting the output matrix
entries corresponding to the unknown elements of Y to zero.

The reconstruction of the full matrix Y can be found by
solving the optimization problem:

Ŷ =argmin
X

rank(X),

s.t. ‖PΩ(X− Y)‖F≤ γ, (2)

where X is the matrix of variables and γ ≥ 0 is a recon-
struction error threshold. However, this is a nondeterministic
polynomial-time (NP) hard-to-solve problem [23]. An alterna-
tive method is proposed to solve the problem using convex
relaxation [24], as follows:

Ŷ =argmin
X

‖X‖∗, (3)

s.t. ‖PΩ(X− Y)‖F≤ γ. (4)

More specifically, despite the fact that nuclear norm min-
imization had long been observed to produce very low-rank
solutions in practice [24], [25], theoretical results have shown
that it produces the minimum rank solution.

Notice that the constraint in (4) makes sure that the entries
of X corresponding to the known entries of Y are as close as
possible. The optimization problem above is convex as both
the objective and constraint are convex. Thus, it can be solved
using general solvers available in the literature, e.g., [26]–[32].

It is worth mentioning that most MC algorithms make
assumptions on the nature of matrix Y. Herein, Y is assumed
to have low-rank. When this assumption does not hold, a low-
rank approximation is applied to Y in order to guarantee such
an assumption. Additionally, the dimensions of the desired
matrix must be large, e.g., in the order of hundreds. Otherwise,
MC algorithms cannot provide a reasonable reconstruction
[21].

Considering the MC theory in [20], [21], [25], [33], some
simple hypotheses about the matrix Y are developed, which
makes it recoverable. Let us describe these hypotheses briefly.

Consider the singular value decomposition (SVD) of Y as:

Y =

r∑
k=1

σkukv
H
k , (5)

where σ are the singular values, where σ1 ≥ σ2 ≥ . . . ≥ σr.
{u1, . . . ,ur} ∈ Cn and {v1, . . . ,vr} ∈ Cn are two sets of
orthogonal vectors. Consider PU and PV as the orthogonal
projections onto the column and row space of Y respectively
(singular vectors):

PU =

r∑
i=1

uiu
H
i , PV =

r∑
i=1

viv
H
i .

We define the matrix E as

E ,
∑

uiv
H
i , (6)

and PUE = E = EPV , EET = PV , ETE = PU .
(7)

To recover the matrix from part of its entries, the vectors
ui and vi need to be “incoherent” in some sense. More
specifically, the assumptions are as follows:

Assumption 1. There exists µ1 > 0 such that for all pairs
(a, a′) ∈ n× n and (b, b′) ∈ n× n,∣∣∣∣〈ea,PUea′〉 −

r

n1
1a=a′

∣∣∣∣ ≤ µ1

√
r

n
(8)∣∣∣∣〈eb,PV eb′〉 −

r

n2
1b=b′

∣∣∣∣ ≤ µ1

√
r

n
, (9)

where e is a canonical vector and 1E the indicator function of
an event E, e.g. 1a=a′ is equal 1 to a = a′ and 0 to a 6= a′.

Assumption 2. There exists µ2 > 0 such that for all (a, b) ∈
n× n

|Eab| ≤ µ2

√
r

n
. (10)

If the above assumption holds, we say that the matrix Y
obeys the strong incoherence property with parameter µ =
max(µ1, µ2).

Based on these hypotheses, [33] proposes the following
theorem:

Theorem 1: Let Y ∈ Cn×n be a fixed matrix of rank-r
obeying the strong incoherence property with parameter µ.
Suppose we observe m entries of Y with locations sampled
uniformly at random. Then, there is a positive numerical
constant C such that if

m ≥ Cµ2nr log10(n)
%, (11)

where % is a positive number, then Y is the unique solution to
(4) with probability at least 1−n−3, i.e., with high probability,
the nuclear-norm minimization recovers all the entries of Y
without error.

More details on the incoherence property discussed in
Assumptions 1 and 2, and its relation to the completion of
the channel matrix are given in the Appendix.
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III. SYSTEM MODEL

Consider a wireless communication system, where a BS
represents the Tx and the Rx can be represented by others BSs
or the UEs. The Tx and Rx are equipped with MT and MR

antennas, respectively. During the downlink training phase, the
BS sends pilot sequences of length NT to the Rx. The received
signal at the Rx can be expressed as:

Y = HST + N ∈ CMR×NT , (12)

where H ∈ CMR×MT is the channel matrix, S ∈ NT ×MT

contains the pilot sequences, and N ∈ CMR×NT the additive
white Gaussian noise term.

The channel model is expressed as a sum of a finite (small)
number of specular paths, as follows:

H =
1√
P

P∑
p=1

αpar(θp)at(δp)
T , (13)

where P defines the number of paths, αp is the fading
amplitude associated with the p-th path, and the steering vector
is defined as [34]:

ar(θp) ,
[
1, e−j2π

d
λ cos(θp), . . . , e−j2π

(MR−1)d

λ cos(θp)
]T
,

(14)

at(δp) ,
[
1, e−j2π

d
λ cos(δp), . . . , e−j2π

(MT−1)d

λ cos(δp)
]T
,

(15)

where d is the inter-element antenna spacing, λ is the wave-
length, θp, δp ∈ [0, π] are the angle of arrival (AoA) and
angle of departure (AoD), respectively, associated with the
p-th path. Furthermore, the channel model described in (13)
is a stochastic multipath channel [35].

Many discussions about the channel have been raised over
the last years. This paper relies on the assumption of a
finite scattering environment, i.e., the number of multipaths is
smaller compared to the number of antennas. Finite scattering
models are usually adopted for millimeter-wave (mmWave)
scenarios [36]. For example, in 60 GHz with massive MIMO,
the high path loss will lead the propagation to be only the
line-of-sight (LOS) or the first and second order reflections,
such that the number of incoming signal paths is limited [37],
[38]. Other scenarios also present a small number of scatterers,
e.g., when a BS is equipped with a large number of antennas
located in an elevated position with few scatterers around
(e.g., on the top of a high building, a dedicated tower, or a
unmanned aerial vehicle platform), and the channel is mainly
characterized by rich local scatterers around the UE (e.g.,
the classical one-ring model [39], [40]). Moreover, the use of
antennas that are highly directive further reduces the number
of surrounding scatterers. Hence, the angular spread seen by
the BS is small, and the number of incoming signal paths is
limited. Also, several related works assume similar insights
[7], [35], [41]–[47]. Thereby, for the considered scenarios in
this work, the channel matrix is assumed to have low-rank.

On the other hand, a generalization of the standard low-
rank matrix completion problem in which the matrix rank can
be quite high or full-rank was made in [48]. It is true only

under some mild conditions, which are beyond the scope of
this work.

IV. FRAMEWORK AND OPERATION MODES

A. General Problem

In this section, we are interested in solving a general
feedback problem. More specifically, to fully utilize the array
gains of massive MIMO, the CSI must be available at the
transmitter side. Let us focus on communication systems based
on FDD that require some form of channel feedback. This
type of system faces a feedback overhead problem when
assuming a massive number of antennas, since CSI feedback
overhead scales linearly with the number of antennas. Hence,
the success of FDD-based massive MIMO systems implies low
complexity feedback schemes that are bandwidth-efficient.

To illustrate this problem, consider a conventional feedback
scheme in a MIMO system, where the full channel matrix is
conveyed from the Rx back to the Tx. The number of bits to be
feed back is given by ν = γ log2(MRMT ), where γ depends
on the accuracy of channel information at the Rx. Assuming
MT =MR = 100 and γ = 3, the Rx needs ν = 39.8631 bits
to convey the full CSI to the Tx.

In this context, we resort to MC techniques to solve the
feedback overhead problem, by exploiting the low-rank nature
of the MIMO channel. The framework of the underlying idea
is shown in Fig. 1.

Forward data 

Feedback data 

CSI

Undersampling

Pre-

processing

Post- 

processing

Tx Rx

Q

Completion

^ Q

Fig. 1. Framework structure.

The process is initialized with the Tx sending a forward
data to Rx and, after a pre-processing, Rx sends a reduced
feedback data to Tx assuming an undersampling factor m.
The parameter m defines the fraction of entries in the matrix
Q that is sent back to the Tx via a feedback channel. For
example, when considering m = 0.1, we are sending 10% of
total entries of Q. Furthermore, if the technique to obtain the
CSI is based on pilot symbols, the forward data is a training
sequence and the pre-processing block is the channel estimator.

After receiving forward data sent by Tx, Rx may first
pre-process such forward data. The result is the matrix Q.
Then, Rx undersamples Q and the undersampled data are sent
through the feedback channel1. Tx receives the data and then

1We assume that the uplink channel is error-free.
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applies MC to this matrix. At the end of this step, the matrix Q
is in turn reconstructed as Q̂. Finally, after a post-processing
(channel estimation), the CSI is made available at Tx.

B. Operation Modes
Herein, two types of feedback data are visualized: (a) the

received signal matrix Y, or (b) the estimated channel matrix
Ĥ. Based on this, we define two operation modes:
• DDU: in this mode, a fraction of the received signal

Y is the feedback data, which means that Q = Y.
Therefore, there is no pre-processing step. Consequently,
Rx operates as a simple sampling device. Tx applies the
completion algorithm to reconstruct Y. Due to the noise,
the matrix Y is actually full-rank. Eventually, Tx obtains
a filtered version of Y, from which the channel matrix
Ĥ is estimated as a post-processing step.

• ECU: in this mode, a fraction of the estimated channel
Ĥ is the feedback data, which means that Q = Ĥ.
Therefore, the pre-processing is a channel estimation step
performed by the Rx taking into account the received
signal Y. At Tx side, there is no post-processing step.

Training sequence Tx Preamble

Tx Rx

Rx Preamble
Undersampled received 

signal and indexes

Preamble 

processing 

and

mode

 selection

Matrix 

completion

Channel

Estimator

DDU-Message exchange

Fig. 2. Message exchange and processing between Tx and Rx. In the DDU
mode, a fraction of the received signal is sent by the receiver via a limited
feedback channel.

Training sequence Tx Preamble

Tx Rx

Rx Preamble
Undersampled estimated 

channel and indexes

Preamble 

processing 

and

mode

 selection

Matrix 

completion

ECU-Message exchange

Channel

Estimator

Fig. 3. Message exchange and processing between Tx and Rx. In the ECU
mode, a fraction of the estimated channel is sent by the receiver via a limited
feedback channel.

The main steps of the systematic message exchange between
Tx and Rx are illustrated in Fig. 2 and Fig. 3 for the DDU

and ECU operating modes, respectively, and are summarized
below:

• Tx sends the training sequence to Rx with a Tx preamble;
• Rx reads the Tx preamble. Then, Rx selects the mode

and the undersampling factor. The extracted samples and
index set are fed back to Tx along the with Rx preamble;

• Tx reads the Rx preamble. Then, Tx recovers the full data
by using a matrix completion algorithm.

Basically, the preambles contain information about the pre-
defined mode selection and undersampling factor, as described
in Table I. In Tx preamble a sequence of bits A = [A1, A2, A3]
is used to choose between the DDU and ECU modes. A third
mode, namely, full mode, is also covered, which coincides
with the standard feedback scheme. The Rx preamble contains
a sequence of bits B = [B1, B2, B3] to inform Tx what mode
is in use. The bits A1 and B1 are reserved for extra modes
and possible future implementations.

Note that the main difference between DDU and ECU
modes is associated with the type of feedback data in Fig.
4. Parameter T means the forward data time, Tf means the
feedback data time, Tus is the time needed to begin the
undersampling, τ is the total transmission interval, TDDU and
TECU stand for the data transmission time in DDU and ECU
modes, respectively. In the DDU mode, the feedback data is
the training sequence. Note that in the DDU mode the Rx does
not need to wait the reception of the entire incoming signal.
On the other hand, in the ECU mode, the feedback data is the
estimated channel. Thus, the Rx needs to wait the reception of
the entire incoming signal to estimate the channel. Therefore,
TDDU ≥ TECU.

TABLE I
DESCRIPTION OF THE TX PREAMBLE.

Bits Downlink
A1 A2 A3 Tx preamble

0 0 Full Mode - Defines that either DDU, ECU or full-
CSI feedback (baseline) can be chosen, Rx selects
the mode of operation.

0 1 DDU mode - Direct data undersampling;
1 0 ECU mode - Estimated channel undersampling.

Bits Uplink
B1 B2 B3 Rx preamble

0 0 Full Mode
0 1 DDU mode
1 0 ECU mode

The DDU mode has low computational complexity, low
latency, and low energy consumption (Rx) compared to the
ECU mode, since it does not estimate the channel. If a full-
duplex capability is available, which is more likely to be
beneficial in the wireless backhaul scenario [49], Rx can
feedback data to Tx while it is still receiving the signal Y.
Thus, Tx can obtain CSI more quickly and possibly use the
time resources more efficiently by transmitting more data in
the same data transmission interval, as illustrated in Fig. 4.
Besides, the computational burden associated with channel
estimation is moved to the Tx side, which means that Rx saves
energy as it does not need to estimate the channel H. On the
other hand, according to (12), Y contains an additive white
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Feedback

Data

Feedback

DataData

Tf

Training Data

Feedback

Training Data

Feedback

Fig. 4. Difference between DDU and ECU in the time domain.

noise term, which turns it a full-rank matrix. Even after a low-
rank approximation within the matrix completion procedure,
the reconstructed matrix Ŷ is still corrupted by the additive
noise in the DDU, which is adverse for channel estimation. In
other words, while the ECU estimates the channel directly
from Y and reconstructs Ĥ, which is already a low-rank
matrix, the DDU makes use of low-rank approximations of
Y to estimate the channel from a corrupted version of Y.

The advantages and disadvantages of the two data feedback
modes lead us to think of a tradeoff between DDU and ECU.
If some estimation error is acceptable, DDU can be preferable
as it provides energy saving on the Rx side. Conversely, if CSI
must be accurate on the Tx side, ECU might be preferable2.
Interestingly, in a scenario with very high signal-to-noise ratio
(SNR), DDU is no longer affected by noise and it would
perform as good as ECU. On the other hand, if a full-duplex
capability is not available, DDU mode can no longer efficiently
use the time resources.

To better exemplify the proposed framework structure, in
what follows we illustrate the framework with two application
examples: wireless backhauling and a clustered multi-UE
scenario.

V. APPLICATION SCENARIOS

In this section, we apply the proposed framework in two
relevant scenarios. The first is a new problem imposed in mas-
sive MIMO systems with heterogeneous networks supporting
a macro-cell layer with additional small cells, where wireless
backhauling communications take place between the macro-
BS and a micro-BS. The second one is related to multi-user

2The simulation results in Section VI confirm this claim.

channel estimation in a clustered multi-UE massive MIMO
system.

A. Application Scenario 1: Wireless backhauling

In dense cell deployments, wired backhaul becomes expen-
sive or even infeasible due to the large number of network
nodes to be connected. As an alternative to overcome this
limitation, millimeter-wave wireless backhaul, e.g., in 60 GHz,
can be adopted [50]–[52].

Here we assume a wireless backhaul system in which Tx
and Rx are represented by a macro-BS and micro-BS, respec-
tively. The Tx and Rx are equipped with a massive MIMO
array and operate in FDD. Figure 5 illustrates an application of
the proposed framework to the wireless backhauling scenario.
In addition, we assume a small number of dominant scatterers
and local scattering is limited. By the superposition of a few
reflected signals, the channel matrix has low-rank and follows
the model expressed in (13). This is a typical assumption for
channels in millimeter-wave bands [53], i.e., there is a LOS
path and only a few number of multipaths.

B. Application Scenario 2: Multi-UEs

Consider a multi-UEs scenario where the UEs are spread
across Cl spatial regions or clusters. We define a cluster as the
association of the channel matrix with a spatial subspace. That
is, UEs inside a cluster have approximately the same spatial
channel. It worth mentioning that such clustered multi-UEs
scenario can be exploited by scheduling and linear precoding
schemes [41], [54], [55].

More specifically, let Tx be a massive BS equipped with
MT antennas, and let Rx denote K UEs equipped with MR

antennas each. Figure 6 shows the systemic view on how
the proposed feedback and reconstruction framework can be
applied in the multi-UEs scenario. We assume a poor scattering
scenario with P specular multipaths which P � MT . Also,
we assume that a cluster of UEs is formed when those UEs
share the same set/cluster of scatterers. The UEs are spatially
close to one another in a dense hot-spot area, and, thus, are
grouped in a cluster.

Different from the wireless backhauling scenario, in the
multi-UEs scenario the feedback data are spread over UE
clusters. Thus, in order to apply MC, the BS folds all the
received feedback data as a global matrix3. For building the
global channel matrix, we follow the channel model described
in (13) so that

HT = [HT
1 ,H

T
2 , . . . ,H

T
ClK

]T ∈ CClKMR×MT . (16)

The global received signal matrix is then given by

Y = [YT
1 ,Y

T
2 , . . . ,Y

T
ClK

]T ∈ CClKMR×NT (17)

which concatenates the contributions from all UEs.
We consider that each cluster of UEs is far from the BS as

showed in Fig. 6, while the scatterer is near to UEs. Thereby,

3We consider that the BS can separate each UE perfectly (i.e. no intra-cell
interference).
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Fig. 5. This figure presents an scenario of application in the wireless backhauling scenario. Two types of feedback data for the framework are presented. Tx
is the macro-BS and Rx can be one or more micro-BSs equipped with a massive array.

the following model is adopted to describe the k−th UE
channel matrix:

Hk =
1√
P

P∑
p=1

αpar(θp + γk)at(δp)
T , (18)

where γk represents the k-th UE angular deviation from the
mean angle θp and is modeled as a zero-mean Gaussian
random variable with variance σ2

a for each UE. The UEs
resultant channels in each cluster are correlated, implying a
low-rank global channel matrix [7], [41], [56].

VI. SIMULATIONS RESULTS

In this section, we divide our simulations according to the
two application examples discussed in the previous section.
The reconstruction error of the full data matrix (DDU) is evalu-
ated at a given Monte Carlo run, by computing the normalized
mean square error (NMSE) defined as ‖Y − Ŷ‖2F /‖Y‖2F ,
where Ŷ is an estimate of the full data matrix. The NMSE
measure for the ECU is similarly defined. The NMSE results
represent an average over 100 runs, and are plotted as a
function of the factor m.

In this simulation, we assume the Tx is equipped with a
uniform linear array (ULA). A very accurate reconstruction is
assumed when the NMSE is around 10−4 [57]. Furthermore,
the ECU scheme considers a MMSE channel estimator [58].
The transmitted symbols are mapped into the binary phase
shift keying (BPSK) constellation and NT = MT . The
estimated channel NMSE is calculated as: ‖H− Ĥ‖2F /‖H‖2F ,
in which Ĥ is given by the MMSE estimator.

In the reconstruction problem described in Fig. 1, we use
the two algorithms proposed in [32]. The first is based on
non-convex algorithm (NCon) while the second is the fast
numerical soft threshold algorithm (FST). We tested other
algorithms based on singular value thresholding (SVT) [27],

subspace evolution transfer (SET) [28], low-rank matrix fitting
(LMaFit)[59], iteratively reweighted least squares recovery for
matrix completion (IRLS-M) [31], and another one based on
grassman rank-one update subspace estimation (Grouse) [30],
[57]. However, since the focus of our proposal is on the
channel feedback and reconstruction framework, we selected
the ones in [32] which have demonstrated to be the preferable
solutions under the NMSE criterion.

A. Wireless backhauling scenario

Consider a system with MT = MR , where the Rx is
equipped with a ULA. Figure 7 describes a street scenario
(e.g., wireless backhauling between a macro-BS and a micro-
BS). We consider the street with 10 meters width and 100
meters length. We assume P = 5, which means that the
channel matrix rank equals 5. The fading amplitude αp in
(13) is calculated using the path loss (PL) model adopted in
[53] (c.f. Table 1). More specifically, it can be calculated as
PL= 16π2(Rλ )

n
for a given range distance R, wavelength λ,

and PL exponent n. We assume a Tx-Rx distance equal to
R = 100 meters, a carrier frequency of 60 GHz, and PL
exponent n = 2.5, representing a LOS scenario. The channel
is composed by the sum of a LOS path and four non-LOS
paths with one and two reflections according to Fig. 7.

In Fig. 8 the NMSE is plotted by varying the number of
antennas. We compare the ECU and DDU modes with SNR
equals 30 dB in order to measure the reconstruction error
using the NCon algorithm and MMSE estimator. At m = 0.1,
even under high number of antennas, the minimal error is
around 10−3. At m = 0.2, the NMSE has linear decrease
with the number of antennas. Note that, in this scenario,
using 64 Tx/Rx antennas is enough to find a very accurate
channel reconstruction (i.e., NMSE=10−4). When m = 0.3,
the NMSE decreases fastly, and around 48 antennas is enough
for achieving a very good channel reconstruction.
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Fig. 6. This figure presents an application scenario in the multi-UEs scenario where each UE has a single (but not limited to) antenna. UEs are assumed to
be close to one another (clustered UEs).

Fig. 7. Wireless backhaul scenario.

In Fig. 9, we present the NMSE results by applying the
matrix completion framework. The MMSE curve is the esti-
mation error before the undersampling procedure. This result
provides a lower bound, since this curve represents the case
of a conventional feedback (without reconstruction errors).
We assume that the CSI is recovered with an undersampling
factor m ∈ {0.05, 0.15, 0.35, 0.55, 0.65} for DDU and
ECU. Note that, the performance of ECU is equal to, or
better than DDU in most simulations, since Y contains an
additive white noise term for DDU. The ECU achieves the an
almost-perfect reconstruction with an SNR equals 35 dB with
m = 0.15, i.e., only 15% of samples are enough to recover
the channel, thus saving 85% compared to the conventional
full channel feedback. For m ∈ {0.35, 0.55, 0.65}, the
ECU achieves its maximal performance, which is similar
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Fig. 8. NMSE performance for different antennas number with m ∈
{0.1, 0.2, 0.3} for ECU and DDU.

to that of conventional full channel feedback (MMSE). The
DDU obtains an almost-perfect reconstruction with an SNR
equals 28 dB with m = 0.35. The DDU has performance
losses around 3 dB compared to conventional full channel
feedback, in the range of SNR between 10 and 30 dB for
m ∈ {0.55, 0.65}. Note that, in Fig. 9, the performance of
proposal is limited by the MMSE estimator error.
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B. Multi-UEs scenario

In this section, we evaluate the performance of the proposed
schemes, considering the Tx as BS equipped with MT = 100
and the Rx as K multi-UEs with the same number of MR

antennas. For instance, assuming Cl = 2, Fig. 6 means that
we are considering two independent clusters of multi-UEs. We
assume P = 1, and the angular deviation γk of each UE has
a variance σ2

a = 5.
In the first, second and third simulation experiments, we

consider the channel is perfectly estimated. Figure 10 con-
siders an example that arises in millimeter-wave commu-
nications, where both BS and UE have a large number of
antennas. In this case, we generate the correlated channel with
K = Cl = 1, i.e., the channel has rank-one. Figure 10 shows
the performance of the ECU to MR = MT = 100. Note
that the ECU converges with less than m = 0.075 to perfect
recovery, saving more than 92.5% of the feedback information.
In this case, the NCon has a better performance for m = 0.1.

In Fig. 11, we consider a scenario with K = 5, MR =
10 and Cl = 2 (rank=2). The performance results show that
the ECU can recover the channel matrix with very accurate
reconstruction in m = 0.125, i.e., less of 15% using NCon.
Note that compared to Fig. 10, the performance is worse than
that with m = 0.1 for both algorithms because rank equals 2.
However, the NCon achieves an almost perfect reconstruction.
The FST can achieve an almost perfect reconstruction with
m = 0.175. Henceforth, we use NCon to solve the ECU in
all simulations.

In Fig. 12, we compare the performances of ECU and
DDU. In this case, we limit the results to FST, because it
showed a better performance compared to NCon for DDU.
Observe that DDU has a reasonable recovery (NMSE=10−3)
requiring at least SNR ≥ 20 dB and m = 0.3. Specifically,
it achieves a very accurate reconstruction with SNR = 40 dB
and m = 0.35. In fact, as shown in Fig. 12 and in Fig. 9, the
MC performance is limited by noise [33], [57], explaining the
worst performance of DDU compared to ECU.
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Fig. 10. Performance for the channel recovery with the ECU for UE with
MR = 100.
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Fig. 11. Performance for the channel recovery with the ECU, K = 5, MR =
10, and Cl = 2 (rank=2).

In order to evaluate the performance and robustness of the
proposed framework under a practical scenario, we consider a
controlled error in the CSI and the MRT precoder [18]. The
imperfect CSI is modeled as Ĥ = H+E, where E ≈ N (0, σe)
and σe ∈ {0.1, 0.05, 0.01}. Firstly, let us show the results for
the imperfect CSI in Fig. 13. Under a lower level of estimated
channel error (σe = 0.01), the performance is the same of
the perfect channel. Under σe ∈ {0.05, 0.1}, the performance
losses when BER equals 10−2 is 2 dB and 5 dB, respectively.

In Fig. 14, we show the BER performance of MRT applying
the ECU with K = 10, MR = 1 and Cl = 10 (rank=10). We
provide simulation results to m ∈ {0.1, 0.2, 0.3, 1}. The
performance of the algorithm to very accurate reconstruction
is achieved with m = 0.3 which is when the performance of
the proposal with MRT is the same as that of an accurate CSI.
When m ∈ {0.1, 0.2} the performance loss compared to the



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 33, NO.1, 2018. 87

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
M

S
E

DDU - SNR=0

DDU - SNR=20

DDU - SNR=40

ECU

Fig. 12. Performance for the recovery with DDU and ECU using FST, K =
20, MR = 1, and Cl = 5 (rank=5).

0 2 4 6 8 10

SNR (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

B
E

R

σ
e
=0

σ
e
=0.01

σ
e
=0.05

σ
e
=0.1

Fig. 13. Average performance for the MRT precoding with estimated channel
error, 10 UEs, MR = 1, and Cl = 10 (rank=10).

full channel feedback is equal to 2.5 dB and 17.5 dB for a
BER of 10−3, respectively.

In Fig. 15, we show the goodput based on the block error
rate (BLER) [60], [61] for different undersampling factors.
The goodput is given by S(1 − BLER). Assuming that there
is no channel coding at the transmitter, the channel is constant
during a transmission block, and the Gaussian white noise, the
BLER can be expressed as a function of the BER of Fig. 14
following the formulation in [62] (c.f. Chapter 3):

BLER = 1− (1− BER)S ,

where S is the number of transmitted symbols. The symbols
are mapped into a BPSK constellation, and S = 100 symbols
per frame are assumed. At m = 0.1, the goodput is almost
zero due to high BLER. At m = 0.2, we can achieve full
goodput only with SNR=10 dB. Furthermore, when m = 0.3,
the performance results are as that of full feedback channel
m = 1.

-5 0 5 10 15 20

SNR (dB)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

B
E

R

m=0.1

m=0.2

m=0.3

m=1 - full

Fig. 14. Average BER performance for the channel recovery with the ECU,
K = 10, MR = 1, and Cl = 10 (rank=10).

As we can see in Fig. 14, m = 0.3 is enough to achieve full
performance. Thus, since Fig. 14 is related to the goodput of
Fig. 15, we conclude that in this scenario, the proposed CSI
reconstruction method achieves the ideal goodput performance
with only m = 0.3, which is a remarkable result.
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Fig. 15. Comparison for the goodput, 10 UEs, MR = 1, and Cl = 10
(rank=10).

Considering the Fig. 13 and Fig. 14, we evaluate the
proposed framework with ECU, under imperfect CSI, applying
MRT with m ∈ {0.1, 0.2, 0.3, 0.4}. The results are shown
in Fig. 16 and compared to the perfect CSI (σe = 0). With
m = 0.3, the BER performance is the same as the estimated
channel error σe = 0.01. Thereby, even under imperfect
CSI, 70% of feedback data is saved, and it ensures full
BER performance. When σe = 0.05, the estimation error
is increased, and thereby, the performance loss is about 2 dB.
For m = 0.4, the loss of performance is around 1 dB.

For m = 0.2, the average BER performance has the same
loss as in Fig. 13 until σe = 0.01. When the error of estimation
is increased to σe = 0.05, the loss of performance is around
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3 dB. Thereby, m = 0.2 is enough to the average BER
performance be close to the case on full-feedback as showed
the Fig. 13.
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Fig. 16. Average performance for the BER with estimated channel error,
K = 10, MR = 1, and Cl = 10 (rank=10).

VII. CONCLUSION

We have provided results suggesting that matrix completion
arises as an efficient solution to channel feedback and recon-
struction in FDD-based massive MIMO systems to reduce the
amount of feedback information to be sent to the BS whenever
the MIMO modeled as a low-rank matrix. Our numerical
results have shown that matrix completion achieves an accurate
recovery of the downlink channel with a small feedback over-
head. Consequently, the proposed scheme copes with limited-
capacity uplink feedback channels. Due to undersampling at
the UEs, energy consumption can be reduced to lower levels
compared with the conventional full feedback. These benefits
are possible thanks to the low-rank nature of the channel which
happens in a massive MIMO scenario characterized by finite
scattering propagation.

As a future work, we intend to evaluate our proposal with
high order structures using a tensor model [63], [64]. For
instance, assuming a multi-carrier modulation, the subcarrier
channels can be concatenated to form a third-order tensor
structure [65]. In this case, a tensor completion algorithm [66]
can be applied to reconstruct the channel tensor.

APPENDIX
INCOHERENCE PROPERTY OF MASSIVE MIMO CHANNEL

The Assumptions 1 and 2 on the incoherence property of
H when r = P = 1, can be measured by the singular vector.
Comparing (13) with the SVD of H =

∑P
i=1 σiuiv

H
i , the

u1 = ar(θ) and v1 = at(δ) are the singular vectors. Thus,

all entries of PU have the same modulus 1/MR and those of
PV have the same modulus 1/MT . When a = a′ and b = b′,

〈ea,PUea′〉 = [PU ]a,a′ =
1

MR
, (19)∣∣∣∣〈ea,PUea′〉 −

1

MR

∣∣∣∣ = 0, (20)

〈eb,PV eb′〉 = [PV ]b,b′ =
1

MT
(21)∣∣∣∣〈eb,PV eb′〉 −

1

MT

∣∣∣∣ = 0. (22)

When a 6= a′ and b 6= b′,

|〈ea,PUea′〉| = |[PU ]a,a| =
1

MR
, (23)

|〈eb,PV eb′〉| = |[PV ]b,b| =
1

MT
. (24)

Thus, the Assumptions 1 and 2 with µ = 1 are satisfied.
For r = P ≥ 2, and a sufficiently large number of antennas,

the singular vectors of the channel H converge to the steering
vectors [12] (see [67] for a detailed proof). Thereby, all entries
of the left and right singular vectors have the same modulus
1/
√
MR and 1/

√
MT , respectively. Hence, a = a′ and b = b′

〈ea,PUea′〉 = [PU ]a,a =
P

MR
, (25)

〈eb,PV eb′〉 = [PU ]b,b =
P

MT
, (26)

and, for a 6= a′ and b 6= b′,

|〈ea,PUea′〉| = [PU ]a,a′ =

∣∣∣∣∣
P∑
i=1

ui,au
∗
i,a′

∣∣∣∣∣ (27)

≤
P∑
i=1

|ui,a||u∗i,a′ | =
P

MR
, (28)

|〈eb,PV eb′〉| = [PV ]b,b′ =

∣∣∣∣∣
P∑
i=1

vi,bv
∗
i,b′

∣∣∣∣∣ (29)

≤
P∑
i=1

|vi,b||v∗i,b′ | =
P

MT
. (30)

Thus, the equality µ =
√
P satisfies the Assumptions 1 and

2 when MT ,MR are very large. This means that when H is
large, it obeys the strong incoherence property with µ ≈

√
P ,

and can be recovered with a small number of samples.
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