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Estimation of Transfer Entropy between Discrete
and Continuous Random Processes

Juliana M. de Assis, Francisco M. de Assis

Abstract—Transfer entropy is a measure of causality that
has been widely applied and one of its identities is the sum
of mutual information terms. In this article we evaluate two
existing methods of mutual information estimation in the specific
application of detecting causality between a discrete random
process and a continuous random process: binning method and
nearest neighbours method. Simulated examples confirm, in the
overall scenario, that the nearest neighbours method detects
causality more reliably than the binning method.

Index Terms—Transfer entropy, causality, continuous process,
discrete process, estimation, nearest neighbours, binning.

I. INTRODUCTION

Transfer entropy (TE), as well as Granger causality and
directed information, is a measure of causality. Firstly in-
troduced by Schreiber [1], TE has been proposed as an
effective measure of causality in industry [2], in order to
detect where was a disturbance in the industrial process.
TE has also been proposed as a powerful mean to detect
neural connections in neuroscience [3]. Another application
of TE in neuroscience has been to detect reliably the cerebral
hemisphere containing epileptic focus. This was made without
observing actual seizure activity by using TE [4]. There are
many other applications of transfer entropy in the literature,
specially in neuroscience field [5]–[8]. There is also recent
application of TE in medicine [9] and in observational climate
data [10].

The relation between TE and directed information has been
explored recently. Amblard et al. proved that directed infor-
mation rate is the sum of two parts, one of which is equivalent
to a particular mode of transfer entropy, and the other to
the instantaneous information exchange rate, for a stationary
process [11]. Additionally, Liu and Aviyente proved that if
X and Y are two stationary processes, without instantaneous
information exchange and such that the distribution of the
present value of Yn given the whole past of X and Y is equal
to the distribution of Yn given ` past values of X and m
past values of Y, then transfer entropy is the upper bound of
directed information rate [12]. Directed information has also
been applied in diverse fields, such as neuroscience [13]–[15],
and economy [16].

Usually, TE has to be estimated from data. This happens
because in most cases of interest, probability distributions
of the involved time series are not available (we will show
later that TE is an information measure which relies on
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probability distributions of the random processes). TE has
been applied to time series assuming discrete or continuous
values. However, we are not aware of its application to a mixed
case, that is, a case of measuring whether a discrete process
causes a continuous (in amplitude) process, or vice versa. The
purpose of this paper is to evaluate TE estimators for these
mixed cases, which may be of interest for those working with
mixed processes and with a causality measure necessity. For
example, this may be relevant in the context of a Poisson
channel with feedback. The model of a discrete time Poisson
channel involves the use of a continuous random process as
input and a discrete random process as output [17]. Also, it
has already been established that when feedback is present
directed information gives a tighter bound on the capacity of
the channel [18] (directed information is intimately related to
TE, as mentioned before).

Two methods of estimation are explored in this paper for this
case of mixed processes. Both methods stems from an identity
for TE, written as a sum of two mutual information terms.
The first method uses a very popular method of estimation of
mutual information, which is based in adaptive partitioning of
the support of the continuous variable, here called binning.
The second method is based on the estimation of mutual
information based on the distribution of k nearest neighbours
(NN), for a mixed distribution, as proposed by Ross [19].

This paper is organized as follows: Section II establishes
some notation and terminology, Section III defines TE math-
ematically, Section IV brings the development of the TE
estimators for mixed cases, and Section V shows the results of
the estimation with the TE estimators in different situations.
Finally, Section VI concludes the paper.

II. NOTATION AND TERMINOLOGY

In this paper, we denote random variables by uppercase
letters, stochastic processes by uppercase bold letters, and spe-
cific values assumed by them in lowercase letters. Subscripts
denote the outcome’s position in a sequence, for example, Xn

generally indicates the nth outcome of the process X. Super-
scripts on a random variable denote finite length sequences of
this random variable, for example, XN = {X1, X2, . . . , XN },
and X4

2 = {X2, X3, X4}. Throughout this paper, ln is the
logarithm in natural base, E(X) indicates the mean of X .
Shannon entropy of a random variable X is denoted by H(X).
H(X) also stands for differential entropy (when X assumes
continuous values).

III. DEFINITIONS

Firstly, we stress that causality, as used in this paper, is
based in Norbert Wiener’s concept, which states that one
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process causes another if the knowledge of the past of the
first process is useful in predicting the future of the second
process. An interesting observation is that when defined this
way, causality is not equal to the definition of causality we are
normally used to. This happens because Wiener’s causality
does not take into account hidden causes, but is limited to
the considered random processes. Granger causality is also
based in Wiener’s concept. However, Granger causality is
developed assuming that the processes present a particular
model, specifically that they can be described as autoregressive
processes. This does not always hold necessarily.

Considering two random processes X and Y, Schreiber [1]
defined TE from X to Y as:

TEn(X → Y ) =
∑

ynn−m,x
n−1
n−`

P(yn, yn−1
n−m, xn−1

n−` )

log
P(yn |yn−1

n−m, xn−1
n−`
)

P(yn |yn−1
n−m)

, (1)

which measures the deviation from the generalized Markov
property:

P(yn |yn−1
n−m, xn−1

n−` ) = P(yn |yn−1
n−m). (2)

We can see from equation (1) that TE is not symmetric,
so it does not constitute a metric (but for a causality measure
it is a desirable property). Equation (1) equals the KL dis-
tance between distributions P(yn |yn−1

n−m, xn−1
n−`
) and P(yn |yn−1

n−m).
Notice that TE measures how easier it is to predict Yn when
we know past values of Xn−1

n−`
and Yn−1

n−m than when we know
only the past values of Yn−1

n−m. The chosen values for past
indexes ` and m are relevant in the evaluation of TE, and, for
computational reasons, a preferable choice for these indexes
is simply ` = m = 1 [1]. Notice also that the definition of
TE is dependent of the time index n, unless X and Y are
jointly stationary processes. Despite the fact that in this paper
we shall not always use stationary processes, we may drop the
term n of the expression TEn(X → Y ) for simplicity. It will be
clear for each example in which time instant n the estimation
is performed. Moreover, one particular case of interest here is
measuring the asymptotic limit of TE, that is

TE∞(X → Y ) = lim
n→∞

TEn(X → Y ). (3)

As mentioned before, here we consider transfer entropy as a
sum of mutual information terms. Mutual information between
two random variables X and Y is a symmetric measure defined
as [20]:

I(X;Y ) =
∑
X,Y

P(x, y) log
P(x, y)

P(x)P(y)
. (4)

Mutual information is also defined when conditioned on the
knowledge of one or more random variables. For example,
mutual information between random variables X and Y when
conditioned on the known random variable W is [20]:

I(X;Y |W) =
∑
X,Y,W

P(x, y,w) log
P(x, y |w)

P(x |w)P(y |w)
. (5)

For the case of interest in this paper, when the random
variable X is discrete and the random variable Y is continuous,
mutual information is defined as:

I(X;Y ) =
∑
X

P(x)
∫

f (y |x) ln
f (y |x)
f (y)

dy. (6)

Now, with the definition of the functional I(.; .), it is
possible to write the following identity for (1):

TEn(X → Y ) = I(Yn; Xn−1
n−` |Y

n−1
n−m)

= I(Yn,Yn−1
n−m; Xn−1

n−` ) −

I(Yn−1
n−m; Xn−1

n−` ), (7)

which will be useful to estimate TE.

IV. ESTIMATORS

Since generally we do not have access to the probability
distributions of the processes whose possible causality rela-
tions are investigated, there are many proposed methods to
estimate TE. For discrete random processes, the most common
alternative to estimate the distribution consists in counting the
frequencies of the observed values, which is called plug-in
estimation. However, for continuous processes, the estimation
is more intricate since each random variable can assume values
in an infinite, uncountable, set. In this paper, we explore
two established methods for estimating mutual information in
mixed cases, in the particular application of TE estimation:
binning method and nearest neighbours method.

A. Binning Method

One direct method to estimate probability densities consists
in discretizing the continuous valued process, which is called
here binning, and then applying the plug-in method. The
observed relative frequencies of the discretized values can be
then applied in the functional of some information measure.
The binning method is applicable when all the involved
processes are continuous or when the involved processes are
mixed. The binning method is an adaptive partitioning method
[21], and it is commonly applied with equipopulated bins.

In the mixed case, let (XN
1 ,Y

N
1 ) be the N samples generated

from an underlying distribution f (x, y) = P(x) f (y |x). The
samples Y N

1 are put in ascending order, and Q equipopulated
intervals (bins) are chosen [22]:

{Ỹ }i=1,2,...,Q = {(−∞,Y(1)], (Y(1),Y(2)], . . . , (Y(Q−1),∞)}, (8)

where Y(i) is the i-th Q-quantile of the samples Y N
1 . The

estimated probability mass function of Ỹi is

P̂(i) =
ni
N
≈

Q
N
, (9)

where ni counts the occurrence of Y ∈ Ỹi in the samples Y N
1 .

On the other hand, the estimated probability mass function
of X is

P̂(x) =
nx

N
, (10)

in which nx counts the occurrences of X = x in the samples
XN

1 .
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Similarly, the joint probability mass function of (X, Ỹi) is

P̂(x, i) =
nx,i

N
, (11)

where nx,i counts the occurrences of (X = x,Y ∈ Ỹi) jointly in
the samples (XN

1 ,Y
N

1 ).
Thus, the mutual information estimation between X and Y

with the binning method is

Î(X;Y ) =
∑
X

Q∑
i=1

P̂(x, i) log
P̂(x, i)

P̂(x)P̂(i)
. (12)

One major issue with the binning method is how to choose
the appropriate number Q of bins. In this paper, we usually
applied the rule proposed by Paluš [23], if we estimate the
mutual information among r random variables, Q ≤ r+1√N ,
where N is the sample size.

B. Nearest Neighbours Method

Recently, the estimation of information measures with the
nearest neighbours method has gained attention. Kraskov et al.
developed a method to estimate mutual information derived
from data, when the random variables present continuous
values [24]. Nearest neighbours estimators for mutual infor-
mation are based in the Kozachenko-Leonenko estimator for
differential entropy [25]. The underlying idea behind these
estimators is to use the distance of the nearest neighbours to
approximate the density of the random variables. Kozachenko
and Leonenko derived the following formula to estimate
H(Y ) = −E ln f (y) for a continuous random variable Y :

Ĥ(Y ) = −ψ(k) + ψ(N) + ln cd +
d
N

N∑
n=1

ln(δn), (13)

where ψ is the digamma function, k is a parameter that
indicates the number of neighbours considered, N is the
sample size, d is the dimension of Y , and cd is the volume of
the d-dimensional unit ball. The term δn corresponds to twice
the distance from yn to its k th neighbour. In this derivation,
f (y) is approximated as a uniform distribution over the entire
δn-ball centered in yn. Since this assumption does not always
hold, it constitutes the main reason for bias in Kozachenko-
Leonenko estimators.

The essential idea of Kraskov et al. to estimate mutual
information was to use a different parameter k to estimate
the marginal entropies (H(X) and H(Y )) and the joint entropy
(H(X,Y )) with Kozachenko-Leonenko estimators. With those
estimates, it is possible to use the identity [20]

I(X;Y ) = H(X) + H(Y ) − H(X,Y ) (14)

and estimate mutual information. It would also be possible
to estimate mutual information considering the same k for
marginal entropies and joint entropy estimates. However, bias
is reduced by considering the same neighbour for one of the
marginal entropies estimator and for joint entropy estimator
(which means considering a different k for estimation in
marginal and joint spaces). With this procedure, the last term
of equation (13) will be partially cancelled, when subtracted
in identity (14).

Inspired in the work of Kraskov et al., Ross developed a
similar method to estimate mutual information for a mixed
case, that is, to estimate mutual information between discrete
and continuous random variables [19]. Ross estimator has been
indicated as more efficient than popular binning estimator,
even when binning is applied with bias correction [26]. In
order to understand Ross estimator, consider the identity [20]

I(X;Y ) = H(Y ) − H(Y |X). (15)

Ross estimator essentially applies Kozachenko-Leonenko es-
timator twice, first to H(Y ) and then to H(Y |X). In order
to cancel bias in the subtraction, Ross estimator chooses a
different parameter k for each entropy estimate, such that
both entropy estimates consider the same neighbour (similarly
to Kraskov estimator). Ross estimator chooses, among those
points that had the same outcome of the discrete variable
Xn = x, the fixed k th closest neighbour. This neighbour will
be at a distance δn. Then, Ross estimator counts the number
of all jn neighbours that are in a distance δn of point Yn. In
mathematical terms, we write, for each realization n of the
pair (X,Y ):

În = ψ(N) − ψ(NXn ) + ψ(k) − ψ( jn), (16)

where NXn is the number of points whose discrete random
variable is the particular value assumed by Xn. Mutual infor-
mation estimate is obtained by the sample mean of În:

Î =
1
N

N∑
n=1

În. (17)

Fig. 1 illustrates the application of Ross estimator.

V. RESULTS

The contribution of this paper is to investigate the ap-
plication of both binning method and nearest neighbours
method described above for mutual information, in equation
(7), to estimate TE between discrete and continuous random
processes, and detect causality. This has not been done yet in
the reviewed literature.

In order to evaluate the performance of these methods,
we have developed some examples involving causality in
mixed cases. We assume ergodicity of the processes when
evaluating TE estimates. In all simulations, when using the
nearest neighbours method, we set the number of neighbours
as k = 3, as recommended in the literature [19], [24]. Besides,
when using the binning method, we set the number of bins as

Q = max
{
2,

⌊
m+`+1√N

⌋}
, (18)

since the dimensions of vectors in equation (7) are equal to
the past indexes of processes X and Y, ` and m, respectively.
Thus, the minimum value for Q is limited at 2.

A. First Example: TE from Discrete to Continuous

In the first example, we have a discrete random process X
that is causally influencing a continuous random process Y. X
is a Markov chain whose state diagram is given in Fig. 2.
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Fig. 1: Illustration of Ross estimator. In panel (a), sketch of three conditioned probability density functions f (Y |X), represented
by blue, red and green curves. In panel (b), on the superior axis, pairs of data Z = (X,Y ), where the values of Y are represented
by the dots position on the y axis and the three possible values of X are represented by the color of the dots (blue, red or
green). In panel (b), Zn is indicated by a vertical arrow. Dashed lines indicate the distance δn from Zn to its 2nd neighbour
with X “red”, parameter k = 2. The 2nd neighbour of Zn on the lower axis is the 4th ( jn = 4) neighbour on the superior axis,
which considers all values of X . In this example, N = 10, k = 2, NXn = 4 and jn = 4 (including the neighbour at a distance
δn).

10
q
p

1 − q

1 − p

Fig. 2: State diagram for process X.

On the other hand, process Y is given by the following
relation:

Yn = αYn−1 + γXn−1 + εηn, (19)

where α, γ and ε are fixed parameters and ηn is a stan-
dard Gaussian random variable. In our simulations, we set
parameters p = 1/2 and q = 3/4 (P(Xn = 0) = 0.6 and
P(Xn = 1) = 0.4 in steady state). The parameter γ varied in
the range of [−0.5, 0.5], in a step of 0.1. For each value set
for γ, we simulated 50 trials of these random processes with
duration N = 1000. We fixed α = 0.5 and ε = 0.1.

For each γ value, we may evaluate theoretical bounds for
TE∞(X → Y ), considering m = ` = 1, as follows. Firstly,
consider the identity for TE [27]:

TEn(X → Y ) = H(Yn |Yn−1) − H(Yn |Yn−1Xn−1)

TE∞(X → Y ) = lim
n→∞
[H(Yn |Yn−1) − H(Yn |Yn−1Xn−1)].

(20)

The second term of the right side of equation (20) is

lim
n→∞

H(Yn |Yn−1Xn−1) =

= limn→∞ H(Yn − αYn−1 − γXn−1 |Yn−1Xn−1)

= limn→∞ H(εηn)

=
1
2

ln(2πeε2).

There are bounds to the first term of the right side of
equation (20). As an upper bound, we write:

lim
n→∞

H(Yn |Yn−1) = lim
n→∞

H(γXn−1 + εηn |Yn−1)

≤ lim
n→∞

H(γXn−1 + εηn), (21)

because conditioning does not increase entropy (notice also
that Xn−1 and Yn−1 are not independent, since both depend on
Xn−2).

As n → ∞, X reaches its steady state, so the underlying
distribution of U = γXn−1 + εηn in (21) is:

fU (u) = p(X = 0)g0(u) + p(X = 1)g1(u), (22)
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where

g0(u) =
1

√
2πε2

e−u
2/(2ε2), and

g1(u) =
1

√
2πε2

e−(u−γ)
2/(2ε2),

(23)

because η is standard Gaussian. Thus, fU (u) is a Gaussian
mixture.

The entropy of a Gaussian mixture does not have an analyt-
ical solution [28]. In order to find a numerical approximation
for the bound

lim
n→∞

H(Yn |Yn−1) ≤ H(U),

we use the trapezoidal rule:∫ b

a

f (x)dx ≈ (b − a)
f (b) − f (a)

2
. (24)

In this case, we desire an approximation for the integral

H(U) = −
∫ ∞

−∞

fU (u) ln fU (u)du. (25)

Fig. 3 is the graphic of − fU (u) ln fU (u), with γ = 0.5. We
observed that fU (u) is approximately 0 for u outside the range
[−1.5, 1.5]. Thus, we summed the approximation of (24) in
intervals of (b − a) = ∆u = 0.001, from u = −1.5 to u = 1.5,
and we found

H(U) ≈ −0.2275 nats.

u

-3 -2 -1 0 1 2 3

−
f
U
(u
)
ln
f
U
(u
)

-2.5

-2

-1.5

-1

-0.5

0

0.5

Fig. 3: Graphic for numerical integration of − fU (u) ln fU (u).

In order to find a lower bound, we write

lim
n→∞

H(Yn |Yn−1) = lim
n→∞

H(γXn−1 + εηn |Yn−1)

≥ lim
n→∞

H(γXn−1 + εηn |Xn−2), (26)

because the sum γXn−1 + εηn depends directly on Xn−2 (and
noise ηn is i.i.d.).

The underlying density fU |Xn−2 (γxn−1 + εηn |xn−2) is given
by:

fU |Xn−2 (u|xn−2) = fU |Xn−2 (γxn−1 + εηn |xn−2)

=
∑
xn−1

fU,Xn−1 |Xn−2 (γxn−1 + εηn, xn−1 |xn−2)

= fU,Xn−1 |Xn−2 (εηn, Xn−1 = 0|xn−2) +

+ fU,Xn−1 |Xn−2 (γ + εηn, Xn−1 = 1|xn−2)

= fU |Xn−1
n−2
(εηn |Xn−2 = xn−2, Xn−1 = 0)P(Xn−1 = 0|xn−2) +

+ fU |Xn−1
n−2
(εηn + γ |Xn−2 = xn−2, Xn−1 = 1)P(Xn−1 = 1|xn−2)

= g0(u)P(Xn−1 = 0|xn−2) + g1(u)P(Xn−1 = 1|xn−2).

(27)

Thus, when Xn−2 = 0,

fU |Xn−2 (u|Xn−2 = 0) = g0(u)(1 − p) + g1(u)p. (28)

Analogously, when Xn−2 = 1,

fU |Xn−2 (u|Xn−2 = 1) = g0(u)q + g1(u)(1 − q), (29)

and the lower bound may be evaluated through

lim
n→∞

H(U |Xn−2) =

lim
n→∞
−

∑
xn−2

P(xn−2)

∫ ∞

−∞

fU |Xn−2 (u|xn−2) ln fU |Xn−2 (u|xn−2)du,

which, as done to find the upper bound, may be evaluated by
numerical integration, with the trapezoidal rule, for each γ.

Fig. (4) shows the estimates T̂EN (X → Y ) medians, with
the approximate theoretical bounds.

γ

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

T̂
E
(X

→
Y
)
(n
at
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

Theoretical
NN
Bin

Fig. 4: Medians of TE estimates as a function of the causality
coupling parameter γ. Dashed blue curve indicates medians of
NN estimates, dotted black curve indicates medians of binning
estimates, and red solid curves indicate theoretical bounds,
for each γ. Statistics evaluated over 50 trials, each trial with
duration of N = 1000.

We can see from Fig. 4 that the binning method overes-
timates TE when the coupling parameter absolute value was
low (|γ | = {0, 0.1, 0.2}), while NN estimates are mainly within
theoretical bounds. Both methods are within theoretical bounds
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for larger |γ | values. We also estimated T̂E(X → Y ) with the
fixed coupling parameter γ = 0.5, for different duration of the
processes (N = {50, 100, 500, 1000, 5000}). Fig. 5 shows that
the estimates converge to the same value as N increases, and
that value is within the theoretical bounds.

N

102 103

T̂
E
(X

→
Y
)
(n
at
s)

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Theoretical
NN
Bin

Fig. 5: Medians of TE estimates as a function of the process
duration N . Dashed blue curve indicates median values of
NN estimates, dotted black curve indicates binning estimates,
for each duration N , and red solid lines indicate theoretical
bounds. Statistics evaluated over 50 trials, parameter γ = 0.5.

Fig. 6 illustrates the performance of the estimators according
to sample variance of the estimates, for the case of γ = 0.5,
varying duration N . Binning estimates present smaller variance
in all cases, showing improved performance over NN method
in this criterion. However, we see in both cases that variance
diminishes as N increases.

N × 10
3

0.05 0.1 0.5 1 5

×10
−3

0

1

2

3

4

5

Binning

N × 10
3

0.05 0.1 0.5 1 5

×10
−3

0

1

2

3

4

5

NN

Fig. 6: Sample variances of TE estimates as a function of
the process duration N . Statistics evaluated over 50 trials,
parameter γ = 0.5.

B. Second Example: TE from Continuous to Discrete

This example illustrates that it is also possible to estimate
TE from a continuous process to a discrete process.

Consider X an i.i.d. process such that each Xn is uniformly
distributed in the range [α, β] (Xn ∼ U(α, β), 0 < α < β).
Consider the process Y which is causally influenced by X as
follows:

P(Yn = y |Xn−1 = x) =
(x)ye−x

y!
. (30)

Analogously to the example of the last subsection, we may
evaluate TE for this example, considering ` = m = 1, and
using identity (20). P(Yn = y) can be evaluated as:

P(Yn = y) =

∫ β

α
P(Yn = y |Xn−1) fXn−1 (x)dx

=

∫ β

α

xye−x

y!
1

β − α
dx

=
1

y!(β − α)

∫ β

α
xye−xdx. (31)

Therefore,

P(Yn = y) =


−e−x |βα = e−α − e−β, if y = 0,
(−x − 1)e−x |βα, if y = 1,
−xye−x |βα + y

∫ β
α

xy−1e−xdx, if y > 1.
(32)

When y > 1, it is possible to evaluate P(Yn = y) recursively
through (32). Fig. 7 illustrates P(Yn = y), with α = 25 and
β = 55 (the choice of these values for those parameters
will be explained later). Notice that for Yn ≥ 100, P(Yn) is
negligible, in the order of 10−9 or less. Thus, it is possible
to approximate entropy H(Yn |Yn−1) = H(Yn), because Yn and
Yn−1 are independent, for every n. The approximation of H(Yn)
was found by considering only the integers from 0 to 100
(0 ≤ Yn ≤ 100).

y

10 20 30 40 50 60 70 80 90 100

P
(y
)

0

0.005

0.01

0.015

0.02

0.025

0.03

Fig. 7: Probability mass function of Yn.

In order to find entropy H(Yn |Yn−1Xn−1) = H(Yn |Xn−1),
consider the fact that Yn has a Poisson distribution when
conditioned to the value of Xn−1, with rate Xn−1 = x,



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 33, NO.1, 2018. 7

x > 0. There are available approximations for the entropy
of a Poisson distribution, when its rate is x > 10 [29]:

H(Yn |Xn−1 = x) ≈
1
2

ln(2πex) −
1

12x
+O(x−2). (33)

Neglecting the term O(x−2), it is possible to reach an
approximate value for H(Yn |Xn−1):

H(Yn |Xn−1) =

∫ β

α

1
β − α

H(Yn |Xn−1 = x)dx

≈

∫ β

α

1
β − α

(
1
2

ln(2πex) −
1

12x

)
dx

=
1

2(β − α)

(
x ln(2πex) − x −

1
12

ln(x)
) ���β
α

(34)

By selecting the values for α = 25 and β = 55, for
instance, which guarantee the condition x > 10 used in the
approximation (34), we find

TE∞(X → Y ) ≈ 0.589 nats.

The estimates for this example are presented in Fig. 8, which
shows that the NN method converges to the approximation of
the theoretical value as N → ∞, while the binning method
diverges. We observe some negative estimates for TE with
the NN method, particularly for smaller duration N . This is
an undesirable result, since TE is a KL distance. However,
negative estimates for mutual information using NN method
are reported in reference [24], due to systematic errors (mutual
information is also a KL distance). Since we use the identity
of a sum of mutual information estimates to evaluate TE, these
negative results may be obtained.

N

102 103 104

T̂
E
(X

→
Y
)
(n
at
s)

-1

-0.5

0

0.5

1

1.5

2

Bin
NN
Theoretical

Fig. 8: Medians of TE estimates of a continuous process to
a discrete process with the binning method (Bin) and the NN
method (NN), as a function of N , in 50 trials. Approximation
of theoretical value in continuous red line.

The sample variances obtained in this example are indicated
in Fig. 9. Again, the binning method has improved perfor-
mance over the NN method in the criterion of presenting
reduced variances.

N(×103)
0.05 0.1 0.5 1 5 10

va
r(
T̂
E
(X

→
Y
))

0.005

0.01

0.015

0.02

Bin

N(×103)
0.05 0.1 0.5 1 5 10

0.005

0.01

0.015

0.02

NN

Fig. 9: Sample variances of the TE estimates from a continuous
process to a discrete process with the binning and the NN
method, as a function of the duration N of the processes, in
50 trials.

We also built a similar example of a continuous process
causally influencing a discrete process, but such that X is an
autoregressive process given by:

Xn = αXn−1 + ηn, (35)

where ηn is a standard Gaussian random variable. Analogously
to the first example of this subsection, Y is a discrete random
process. For each time index n, the probability distribution of
the random variable Yn is given by

P(Yn = y |Xn−1 = x) =
|x |y

y!
e−|x |, (36)

which is a Poisson distribution whose rate is given by a past
value of the process X.

In our simulations of this example, we set α = 0.5.
In each of 50 trials of the experiment, we evaluated four
TE estimations: two of them were T̂E(X → Y ) with both
binning and NN methods. The other two were T̂E(X → Ytest )
estimates built without any dependency or causality relation
between X and Ytest , with both estimation methods. More
specifically, Ytest was generated by an i.i.d. Gaussian process
Z, Zn ∼ N(0, 1), in the same manner as in equation (36),
by substituting xn−1 by zn−1. The idea was to compare the
estimation methods in a scenario where there was causality
with a scenario where causality was absolutely absent (but
with processes with similar statistics). Fig. 10 shows the
results.
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Bin Bin - test NN NN - test

T̂
E
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→
Y
)
(n
at
s)

-0.05

0
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0.15

0.2

0.25

0.3

0.35

Fig. 10: TE estimates boxplots with the binning method (Bin)
over data, with the binning method over processes without
causality (Bin - test), with the NN method and with the NN
method over processes without causality (NN - test). Statistics
evaluated over 50 trials, duration of processes N = 500.

It is clear from Fig. 10 that there is a significant difference
among estimates from original processes and estimates from
processes with no causality, which was guaranteed with a t-
test (level of confidence set in 5%). This means that, despite
not converging to same median value, both estimation methods
indicate faithfully a difference when there was a causality re-
lation. Moreover, Fig. 11 indicates that the estimates converge
as the duration of the processes increases (N →∞).

N
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E
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)
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0.2

0.3

0.4

0.5
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Fig. 11: TE estimates with the binning method and NN method
as a function of N .

Interestingly, in the first example of this subsection, the
binning method does not converge to the approximation of the
theoretical value, while the NN method converges. However, in
the second example of this subsection, both methods converge
to the same value as N increases. This fact may happen
because, in the first example, the rate Xn−1 = x of the Poisson
process varies in a large interval. Thus, the values assumed by
Y in this example vary in a larger interval than in the second
example. Even though the alphabet of Y in both examples is
(countably) infinite theoretically, in practice, the realizations of
Y in the second example present a reduced alphabet than the
realizations of Y in the first example. Notice that the binning
method uses the plug-in method. Moreover, the bias of mutual
information for the plug-in method can be approximated as
a function of the alphabet of Y [30], [31]. This may be
the reason for the poor performance of the binning method
in the first example of this subsection. Fig. 12 illustrates
histograms of X and Y, from the first and the second examples
of this subsection, in one trial of the processes with duration
N = 10000.
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Fig. 12: Histograms of the values assumed by processes X
and Y of this subsection, according to the example where
X is uniformly distributed and the example where X is
autoregressive. Duration of the processes N = 10000.

C. Third example: Different Coupling Time
In this section we consider the effect of a different coupling

time of processes X and Y in the proposed estimation methods.
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In order to do so, we generated X as the Markov process in
reference [32], whose state diagram is shown in Fig. 13. The
transition probabilities in the state diagram are θ1 = P(Xn =

1|Xn−1 = 1), θ10 = P(Xn = 1|Xn−1
n−2 = 10) and θ00 = P(Xn =

1|Xn−1
n−2 = 00).

110

00

1 − θ1

θ10

θ001 − θ10

θ1

1 − θ00

Fig. 13: State diagram for process X in the example that
considers different coupling time.

For each state of process X, which are 1, 10 or 00, we
associate another discrete random process Z, such that

Zn =


1, if Xn−1 = 1,
0, if Xn−1

n−2 = 10,
−1, if Xn−1

n−2 = 00.
(37)

Then, we defined the process Y as follows:

Yn = αYn−m + γZn + εηn. (38)

In this example, we evaluated TE estimates of

TEn(X → Y ) = H(Yn |Yn−1
n−m) − H(Yn |Yn−1

n−mXn−1
n−2 )

considering the past index ` = 2 and varying past index m. The
past index m used for TE estimation was the same coupling
time m used for simulating process Y, in equation (38). Also,
we set the parameters α = 0.5, γ = 0.5, ε = 0.1, and the
conditioned transition probabilities θ1 = 0.1, θ10 = 0.3 and
θ00 = 0.5.

Fig. 14 and Fig. 15 reveal the influence of m in TE estimates
(Fig. 14 indicates the results through medians of the estimates
and Fig. 15 indicates the results through boxplots). We also
generated a process Ytest which was not causally influenced
by X, in order to compare the results (just like in the second
example of subsection V-B). More specifically, process Ytest

for testing was generated with the same equation (38), but
with Z as an i.i.d. process, discrete and uniformly distributed
in alphabet {−1, 0, 1}.
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Fig. 14: Estimates T̂E(X → Y ) medians as a function of cou-
pling time/past index m. Continuous blue curve indicate NN
estimates medians, dashed blue curves indicate NN estimates
medians over data with no causal relation, continuous black
curve indicates binning estimates medians and dotted black
curve indicates binning estimates medians over data with no
causal relation. Statistics evaluated over 50 trials, duration of
processes N = 500.
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Fig. 15: Boxplots of the estimates T̂E(X → Y ), in nats, as
a function of coupling time/past index m, with the binning
method (Bin), with the binning method over processes without
causality (Bin - Test), with the NN method and with NN
method over processes without causality (NN - Test). Statistics
evaluated over 50 trials, duration of processes N = 500.

We can see from Fig. 14 and Fig. 15 that the NN method
detected no causality in the tested case of absent causality.
NN estimates for T̂E(X → Ytest ) were mainly null. However,
binning estimates for T̂E(X → Ytest ) are always greater than
zero, indicating a spurious causality detection. Moreover, there
is a more pronounced difference between T̂E(X → Y ) and
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T̂E(X → Ytest ) with the NN method than with the binning
method, especially for m ≥ 6. Thus, NN method presented a
more distinct difference to the tested case of absent causality.
However, when executing a t-test, both methods presented
a significant difference between estimates T̂E(X → Y ) and
T̂E(X → Ytest ), for each m used (level of confidence set
in 5%). Additionally, we can see that with both methods, as
m increases, it becomes more difficult to notice the causal
influence of X over Y (the estimates diminish, even though
there is still an underlying causal relation). This happens
because the dimension of the variable Yn−1

n−m in the estimation
also increases, while keeping the same sample size (duration
of processes, N = 500).

D. Speed Performance

We registered the estimation time for TE between the
processes of the first example (subsection V-A) as a function
of the duration N of the processes. The time with the binning
method was always less than 0.1s. Fig. 16 indicates median
time took by NN method normalized by median time took
by the binning method, in 50 realizations of the processes.
It is clear that the NN method is more time consuming, as
mentioned in reference [19].
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Fig. 16: Estimation median time of NN method normalized
by the estimation median time of the binning method, in 50
realizations of the processes of subsection V-A, as a function
of the duration N of the processes.

VI. CONCLUSION

In this paper we investigated the use of two estimators
of transfer entropy in mixed cases, that is, in cases when
one process is continuous and the other is discrete. The two
estimators use the identity of transfer entropies as a sum of two
mutual information terms, assuming ergodicity of the analysed
processes.

We evaluated estimates in situations with TE approximate
tight bounds, or even with an approximation of the theoretical
TE value. In those situations, the binning method yielded
positively biased results when there was actually no causality.
This method was within theoretical bounds for TE when there
was actually a causal relation and the alphabet size of the
discrete random process is small (for instance, alphabet size
equals 2) with a relatively small duration of the processes
(N = 500). However, when the size of the alphabet of the
discrete process is large (for example, alphabet size equals 40)
we observed that the binning method did not converge to the
theoretical value for TE, for a large duration of the processes
(N = 10000). On the other hand, the NN method yields results
that converge to (or are within) the theoretical approximation
(or bounds) in the those situations.

We also evaluated estimates in situations without approxi-
mate TE bounds or approximate theoretical TE value. In those
situations, we compared the results with test cases of processes
with no underlying causality (but with similar statistics). A
t-test could detect a difference between the estimates from
processes with an underlying causal relation and estimates
from processes without this underlying causality, with both
methods. This difference was also detected when we increased
the coupling time among the analysed processes (and the
past index of TE). However, in this case there was a more
pronounced difference with the NN method.

Thus, we conclude in this paper that, in the overall scenario,
NN method estimates TE more reliably than the binning
method, in this particular application of detecting causality
between a discrete random process and a continuous random
process. In other words, NN method detects less false positives
than the binning method. The binning method presents the
advantage of faster performance, though. Therefore, the NN
method achieves an improved performance over the binning
method, at the expense of a higher complexity.
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