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Offline signature authenticity verification through

unambiguously connected skeleton segments
Jugurta Montalvão, Luiz Miranda, and Jânio Canuto

Abstract—A method for offline signature verification is pre-
sented in this paper. It is based on the segmentation of the
signature skeleton (through standard image skeletonization) into
unambiguous sequences of points, or unambiguously connected
skeleton segments corresponding to vectorial representations of
signature portions. These segments are assumed to be the funda-
mental carriers of useful information for authenticity verification,
and are compactly encoded as sets of 9 scalars (4 sampled
coordinates and 1 length measure). Thus signature authenticity is
inferred through Euclidean distance based comparisons between
pairs of such compact representations. The average performance
of this method is evaluated through experiments with pseudo-
offline versions of signatures from the MCYT-100 database,
and true ones from the MCYT-75 database. For comparison
purposes, three other approaches are applied to the same set
of signatures, namely: (1) a straightforward approach based
on Dynamic Time Warping distances between segments, (2) a
published method also based on DTW, and (3) the average (non-
specialist) human performance based on Mean Opinion Scores
(MOS) under equivalent experimental protocol. Best results –
close to (3) – are obtained when signature skeleton details are
discarded through its sub-sampling to 4 points per segment, and
scores from segment shape and length are fused.

Index Terms—Offline signature verification, Skeletonization,
Mean Opinion Score (MOS), Biometrics.

I. INTRODUCTION

H
ANDWRITTEN signature is a form of personal identi-

fication widely accepted, both socially and legally, and

it has been used for centuries to authenticate documents such

as bank checks, letters, contracts and many other that require

proof of authorship. By signing, a person may provide unique

information regarding the way she or he converts gesture

intentions into spontaneous hand movement. Writing speed,

traversed path, pen tilt, pressure applied, all these data are

articulated to result in a static figure on signed documents

[22].

Signature analysis can be divided in two categories: offline

and online. In the offline mode, either signatures are available

through the traditional wet ink method (such as in paper

documents), or they are available in scanned form, through

optical devices, such as scanners and digital cameras. In both

cases, all available data corresponds to static signature images.

In the online mode, a person uses a digitizing device (e.g.

digitizing tablets or touchsceen devices) to directly record

signals from the hand movement. This provides much more

information than a static image, for the digitizing device

typically can record several complementary signals, such as
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the path travelled by the pen tip, as well as its instantaneous

speed, applied pressure and pen tilt. This approach is the one

that dominates research on signature verification now, due to

the worldwide spreading of affordable acquisition devices [25].

However, the offline approach still has some attractive

aspects. For instance, even today, many contracts and credit

card authorization are performed through traditional signatures

on paper. Indeed, in many practical situations, for economical

or practical reasons, wet ink signatures are yet useful biometric

signals. And even in the unlikely scenario of a complete

substitution of wet ink signatures by electronically acquired

ones, at least the task of signature verification from ancient

ink on paper documents should remain a relevant topic, due to

the large amount of old signed documents, whose authenticity

are potentially waiting to be verified [26].

To give some fundamental definitions and jargon, we as-

sume that a signature verification is a process that determines

whether a tested signature was produced by a target individual,

from which at least one genuine signature is available. If

under some chosen criteria the tested signature is similar

to the genuine references, below a pre-established similarity

threshold, it is labelled true, or a genuine signature. Otherwise,

the signature is labelled false, or a forgery. Moreover, Coetzer

et al. [4] classify forgeries as

• Random forgery: The forger does not know the author’s

name neither the original signature. Thus the false signa-

ture is completely random.

• Simple forgery: The forger knows the author’s name, but

she/he does not have access to the original signature.

• Skilled forgery: The forger has access to samples of

genuine signatures, and also knows the name of the

author. It can also be divided into two classes: Amateur

and Professional. The Professional Skilled Forgery is

produced by a person with professional expertise in

handwriting analysis, being able to produce a higher

quality forgery than the Amateur.

In general, the offline signature verification process can be

divided into four steps [1]: Acquisition, Preprocessing, Feature

Extraction and Comparison. In the Preprocessing step, image

quality is improved and pixels are transformed to reduce the

computational burden of the subsequent steps. Examples of

techniques applied in this step are: thinning, color conversion,

noise reduction, smoothing, morphological operations and re-

sizing. For instance, Shah et al. [28] cropped images to exclude

redundant white regions. The Feature Extraction step is where

most works propose innovations. According to Batista et al.

[2], an ideal feature extraction technique extracts a minimal
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feature set that maximizes interpersonal variability amongst

signature samples from various subjects, whereas it minimizes

intrapersonal variability amongst samples belonging to the

same subject. Lee and Pan [20] divide the features into three

classes: Global Features, Local Features and Geometrical

Features.

Typical features extracted from offline signatures are

marginal projections. Shanker and Rajagopalan [29] extract

vertical projection of bitmaps corresponding to signatures, thus

yielding profiles which are compared through Dynamic Time

Warping (DTW). Likewise, Coetzer et al. [4] pushes a bit fur-

ther the same idea, by using many marginal projections of the

same signature, over different angles, what they call Discrete

Radon Transform, whose behaviour is modelled with a Hidden

Markov Model. Nguyen et al. [23] also use similar projections.

Indeed, they use two techniques for global features extraction:

the first is derived from the total energy a writer uses to create a

signature, whereas the second technique employs information

from the vertical and horizontal projections of a signature,

focusing on the proportion of the distance between key strokes

in the image, and the height/width of the signature.

Although marginal projections are more commonly used in

literature, other approaches to feature extraction may also rely

upon texture-based methods, interest-point-based methods,

learned representations (see [17], [25] and references therein).

Moreover, considering features more closely related to pen

trajectory recovery, a particularly relevant work was done in

[27] and [30], where the full online trajectory is estimated. In

general, regarding trajectory recovery, image skeletonization is

frequently used to map offline signatures into sets of points,

similar to online representations, which is appealing because

online verification techniques may be deployed, such as the

use of DTW to compare segments of points from different

signatures, as it is not the focus of this work to discuss the

effectiveness of skeletonization methods, more on that can

be seen in [8], [9], [10], [11]. Indeed, this straightforward

approach corresponds to the baseline method implemented in

this paper, as explained in Section III.

Also inspired by online approaches, a new method is

proposed, through the compact codification of segments of

skeletonized offline signatures, as explained in Section IV.

These skeletonized segments are the basic aspect of this work,

and they are presented in Section II, and further detailed in

Section IV. Public databases and experimetal protocols used

in this work are explained in Section V.

Experimental results are presented and briefly discussed

in Section VI, including a comparison to human baseline

performance obtained for the same dataset and protocol, in

the spirit of works such as [5] and [21]. Finally, results are

compared to state-of-the-art approaches, in Section VII, before

some concluding remarks presented in Section VIII.

II. UNAMBIGUOUSLY CONNECTED SKELETON SEGMENTS

Raw online signature signals are frequently represented by

two vectors of samples: a sequence of regularly sampled

horizontal positions, xONLINE (n), and another sequence of

corresponding vertical positions, yONLINE (n), where n stands

for sample counter through time. As compared to offline rep-

resentation, signature verification through signals xONLINE (n)

and yONLINE (n) is significantly better.

Although we know that velocity information may not be

completely recovered from offline representations, we address

the offline signature verification problem by first recovering

horizontal and vertical signals, which may be regarded as

pseudo-versions of xONLINE (n) and yONLINE (n). It is known

from works like [12], [13], [14], [16] that skeletons are a

good representation for offline signatures that have ribbon

like shapes, for this reason the recovering process is done

through standard skeletonization, as described in [8], and was

chosen for being simple enough and yet able to satisfactorily

process the ribbon like shapes of offline signatures. Other more

complex methods were also tested in our preliminary studies,

but the results were almost equivalent (for the purpose of this

work) but more time and resources consuming.

Unlike true online representations, skeletons from each

signature are sets of unordered points. For instance, as in

Figure 1, most offline signature skeletons can be regarded as

sets of unordered pixels in a bitmap, even though some subsets

of these pixels form segments that are clearly created in an

unambiguous sequential hand gesture.

Comparisons between online signatures are straightforward,

because points (xONLINE, yONLINE ) are ordered through

time. Analogously, the comparison between two offline signa-

tures may also be done through the comparison of sequences

of points (xOFFLINE, yOFFLINE ), representing black pixel

coordinates in skeletons. However, ambiguities concerning the

ordering of points turns this task into a combinatorial optimiza-

tion problem whose computational cost may be prohibitive.

To significantly reduce this cost, both methods proposed

in this paper decompose offline signatures skeletons into

Unambiguously Connected Skeleton Segments (UCSS), as il-

lustrated in Figure 1. To define UCSS, an offline signature

skeleton is regarded as connected graph G(V, E) where the

vertices V are the points of the skeleton and the edges E

are bidirectional connection between neighbouring points (8-

connected neighbourhood). We also consider that the degree

of a vertex V is the number of neighbouring vertices that V is

connected to. Therefore, each UCSS is a sequence of directly

connected vertices found between:

a) two vertices with degrees greater than 2 (internal seg-

ments),

b) an one-degree vertex and a vertex with degree greater

than 2 (extremities), or

c) two one-degree vertices (isolated lines).

In other words, UCSS are specific sets of neighbouring points

in a given skeleton. These points should form as long as

possible connected sequences that unambiguously represent

a single pen tip movement, a single direction, in spite of its

sense. Nevertheless, it is not the purpose of this work to fully

recover the trajectory of the signature, this is a much harder

task that should be addressed in future works.

It should be noticed that, in general, the thinning process is

noisy, what would demand the signature skeleton to be cleaned

to guarantee 8-connected pixels. Fortunately, the thinning

method used in this work is enough to guarantee connectivity
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Fig. 1. (a) Inside the circles one finds the points of the skeleton that delimits
UCSS. (b) Full skeleton as a set of extracted features(UCSS).

for UCSS extraction. In other words, this thinning process

does not break lines, so the connectivity of the signature is

maintained. Moreover, the 8-connected pixels are guaranteed

except for those on image borders, because the image is a

rectangular matrix of pixels.

We assume that each segment, sm,n,k , is a portion of

signature where points are unambiguously ordered, apart from

a single ambiguity in the overall direction of the pen move-

ment (i.e. one does not know in what end of the UCSS

the movement of the pen begins). Thus, the n-th signature

sample, n = 1, 2, . . . , N , from the m-th signer, m = 1, 2, . . . ,M

is represented by a set {sm,n} = {sm,n,1, sm,n,2, . . . , sm,n,K },

where sm,n,k is the k-th UCSS, or a sequence of Lm,n,k pairs

of coordinate points, (xi, yi), 1 < i ≤ Lm,n,k .

Moreover, to take into account the single ambiguity in

the overall direction of the pen movement, each UCSS is

represented twice: first with the sequence of pairs in a given

order, sm,n,k = [(x1, y1), (x2, y2), . . . , (xLm,n,k
, yLm,n,k

)],

and then in reversed order, s∗
m,n,k

=

[(xLm,n,k
, yLm,n,k

), (xLm,n,k−1, yLm,n,k−1), . . . , (x1, y1)].

III. BASELINE METHOD

Two methods for automatic offline signature verification are

proposed in this paper. The first method is considered as a

baseline, for it is a straightforward application of Dynamic

Time Warping to compute distances between UCSS. In this

method, the standard DTW method under Itakura’s restrictions

[19] is applied to systematically compare every segment sm,n,k

(and its reverse, s∗
m,n,k

) to every segments of a given bag of

segments, extracted from reference signatures. Consider, for

instance, a test signature, {sm,test } with Ktest UCSS, and a

bag of segments, {B}, with KB UCSS (i.e. all segments, from

all references, are merged into the single set {B}). Then, each

UCSS in the test signature is compared to all KB UCSS from

{B}, and the minimum distance is taken. In other words, each

UCSS in a test signature is associated to the single UCSS in

{B} which yields the minimum DTW distance. More precisely,

Cm,test (k, {B}) =
1

Lm,test,k

min
j

DTW(sm,test,k, sB, j ), (1)

and the average distance between sets {sm,test } and {B} is

given by

C̄m,test ({B}) =
1

Ktest

Ktest∑

k=1

Cm,test (k; {B})

where DTW(sm,test,k, sB, j ) stands for Dynamic Time Warping

distance under Itakura’s restriction between sm,test,k and sB, j ,

or its reversed version, s∗
B, j

, depending on which one yields the

lowest distance. Moreover, k ∈ 1, 2, . . . ,Ktest , j ∈ 1, 2, . . . ,KB ,

and test is a pointer to a signature from the test set. Moreover,

Lm,test,k is the length (number of points) of the k-th UCSS,

of the tested signature.

In this work, we assume that N genuine signatures

from a given individual are available as a reference

set, denoted as {sm,ref1},{sm,ref2 },..., {sm,refN }. Therefore,

{B} is the union of all N references, namely: {B} =

{{sm,ref1 }
⋃
{sm,ref2}

⋃
. . .

⋃
{sm,refN }}, and KB is the result-

ing cardinality of {B}.

To provide a better score for tested signatures, we also

define N partial bags of segments, {B}refi , where segments

of the i-th reference signature are excluded from {B}. As a

result, we are able to compute an average distance between

each reference signature, {sm,refi }, and the corresponding

remaining bag of segments, {B}refi , as follows

C̄0({B}) = (1/N)

N∑

i=1

C̄m,refi ({B}refi ).

Finally, the total distance between a tested signature

{sm,test } and a genuine set of references, summarised by the

bag of segments {B}, is defined as:

Jm,ref =
C̄m,test ({B})

C̄0({B})
, (2)

where C̄0({B}) plays the role of a normalization factor.

An important drawback of this baseline method is the

computation of more than KB × Ktest DTW distances in

order to obtain a single score/cost for each tested signature,

where KB is roughly N times the average number of segments

(UCSS) in a genuine signature. As a consequence, this method

has a high computational burden.

IV. PROPOSED METHOD WITH UCSS SUBSAMPLING

To significantly alleviate the computational load of the base-

line method, we encode each UCSS as an eight-dimensional

(8D) vector that roughly represents the shape and the position

of the encode UCSS, plus a scalar corresponding to the UCSS

length (the length is given in terms of number of points in the

UCSS), as illustrated in Figure 2.

This UCSS encoding strategy is the main aspect of the

proposed method. We assume that almost all UCSS are short

enough to prevent strong warping, therefore, one may get rid

of the high DTW computation cost by replacing each UCSS

with 4 subsampled points. In other words, it is assumed that

UCSS comparisons through DTW are almost equivalent to

the much faster Euclidean distance computation between the

corresponding 8D vectors (UCSS length is not taken into
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Fig. 2. Proposed method: illustration of 8D vectors and lengths of two
segments (segments 10 and 17). Each segment (UCSS) is coded with 8+1 = 9

scalars. The last scalar represents the segment length.

account when plain DTW is used). Indeed, a UCSS sm,n,k can

be regarded as a composition of two sampled signals, say xn
and yn, with n = 1, 2, . . . , LUCSS , and the proposed coding

scheme just takes 4 equally spaced subsamples of xn and

yn, thus yielding an 8-dimensional vector um,n,k . For practical

purposes, we then assume that:

DTW(sm,n,i, sm,n, j )

Lm,n,i

≈
D2(um,n,i, um,n, j )

4
,

where D2(um,n,i, um,n, j ) is the accumulated squared Euclidean

distance between the 4 corresponding points in the two

compared UCSS. We highlight that, as for the definition of

function DTW , in Equation 1, D2 is also defined as the

minimum of two distances, where both um,n, j and its reversed

version, u∗
m,n, j

are considered. For the non-reversed um,n, j

only, we obtain D2(um,n,i, um,n, j ) =
8∑

k=1

(um,n,i(k) − um,n, j (k))
2.

Therefore, the comparison between two signatures is signifi-

cantly simplified through the use of the following distance, as

compared to that in Equation 1:

Cm,test (k, {U}) =
1

4
min
j

D2(um,test,k, uU, j), (3)

where {U} is the set of all 4-points segments from the

reference signatures. Analogously, every subset {B}refi is

replaced with {U}refi , and the final score/cost for a given

signature can be computed as in Equation 2.

To obtain a single score/cost for each tested signature, the

baseline method depends on the computation of about KB ×

Ktest DTW distances, whose individual costs are quadratic

with the average length of the UCSS. By contrast, the proposed

method depends on the computation of the same amount (KB×

Ktest ) of Euclidian distances between 4-D vectors instead. For

instance, if KB = 150 and Ktest = 30, and if UCSS are 58

points long on average (that is the actual average length for

the databases used in this work) for a given signature, then the

baseline method would demand about 150× 30× 582 relevant

floating point operations, to be compared with only 150×30×4

for the proposed method.

V. DATABASES AND EXPERIMENTAL PROTOCOL

Experiments were first done with pseudo-offline versions

of the MCYT-100 online signatures database, with 100 signa-

tures, for which error rates (for online verification task) can

be abundantly found in literature [6], [28], [17]. Afterwords,

experiments we done again with the actual offline samples

from the MCYT-75 database. These databases are subcorpus

of the multimodal MCYT database [24]. For the MCYT-100

online, each writer provided 25 genuine signatures, whereas 5

different volunteers provided 25 skilled forgeries per signature.

All signatures were acquired with a WACOM Intuos A6 USB

Tablet at constant sampling rate of 100 Hz. By contrast, for

For the MCYT-75 offline, signatures were scanned and each

writer provided 15 genuine samples. For each target subject,

15 skilled forgeries were provided.

Once features are available, signature authenticity verifica-

tion can be performed. To simulate actual verification, most

academic works randomly select a small number of genuine

signature samples from each user (typically from 5 to 15) to

play the role of a set of enrolled signatures. Then, samples

from the remaining dataset of false and genuine signatures are

randomly taken to simulate verification attempts. These test

samples are compared to the enrolled samples, and a decision

is made. If a genuine signature is rejected, it is called a false

rejection error. By contrast, if a forgery is accepted, it is called

a false acceptance error. Thus False Acceptance Rate (FAR)

and False Rejection Rate (FRR), along with the operational

point where FAR equals FRR, the Equal Error Rate (EER), are

used in this work to compare method performances through

four sets of experiments, namely:

E1: The MCYT-100 online database was converted into a

pseudo-offline database, and methods for biometric verification

were compared in terms of FAR, FRR and EER. To simu-

late an actual biometric system, N genuine signatures were

randomly chosen from the database to play the role of an

enrolment card. Afterwards, N other genuine signatures plus

N skilled forgeries of the same user were randomly sampled

and compared with those into the enrolment card. Given a

decision threshold, the proportion of true signatures whose

costs were above this threshold (thus wrongly rejected as not

genuine) was the estimated FRR, whereas the proportion of

false signatures whose distances were below the threshold was

the estimated FAR. In all experiments, N was set to 5 genuine

references, and the threshold was modified at small steps to

yield Receiver Operating Characteristic (ROC) curves for each

method.

To obtain the offline signatures from the MCYT-100 online

database, we first convert each MCYT online sample into

an image where only horizontal (xONLINE ) and vertical

(yONLINE ) pen tip positions through time were considered,

as follows:

(i) Points in each online signature were interpolated using

splines to allow for oversampling of the otherwise sparse

representation (due to the relatively low sampling rate of

100 samples per second).
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(ii) The oversampled set of points were numerically rounded

to integer values, and

(iii) they were also dilated until segments were approximately

four pixels wide.

These three steps were enough to convert the entire online data

into offline signatures. Indeed, the resulting images were used

in the Mean Opinion Score experiment detailed in Experiment

E2.

E2: To quantify the human performance for the same task,

we also prepared 239 cards, each one corresponding to a

genuine source of signatures – a genuine signer – in the

MCYT-100. These cards contained five genuine signatures

on its left side, and ten signatures randomly chosen in its

right side. Only 5 out of the 10 signatures on the right

side were genuines, the other 5 were skilled forgeries, but

volunteers taking part in the experiment were not informed

of the proportion of true and skilled forgeries in the card.

An example of these cards can be seen in Figure 3. These

cards were presented to different students and lecturers in

our university (willing volunteers), and these volunteers were

carefully instructed to study the genuine signatures presented

on the left part of the page, and then to label all signatures on

the right part, by writing in the boxes next to each signature

a T, for true (genuine), or a F, for false. No further a priori

was provided (the volunteers did not know the proportions of

true and false signatures in each card).

Fig. 3. (a) Reference panel with five randomly chosen genuine signatures (b)
Panel with five randomly chosen forgeries and five randomly chosen genuine
signatures.

E3: Each proposed method was repeated 50 times, under

independent selection of genuine signatures and skilled forg-

eries. For each independent trial, the threshold decision was

adjusted to yield the average EER for each method.

E4: The use of artificially obtained offline versions of

online signatures, or pseudo-offline signatures, allows some

interesting performance comparisons. However, the conversion

of online signals into offline (bitmaps) can introduce relevant

distortions. Thus, to test the consistency of results, further

experiments were done with the true offline samples from the

MCYT-75 database, under the same validation protocol.

In all experiments, either pseudo-offline signatures or actual

offline ones were converted into pseudo-online representations,

through the following steps:

(i) The standard skeletonization method described in [8] was

applied to each signature image.

(ii) Resulting skeletons, or sets of 2D points from each

signature sample were centered at the origin, whereas

their variance in both vertical and horizontal directions

were scaled to one.

Fig. 4. (a) Online signature. (b) Oversampled online signature. (c) Dilated
image – approximately four pixels wide lines. (d) Skeleton of the signature.

From the resulting pseudo-online versions of signatures,

represented by a set of coordinate pairs, UCSS were extracted.

It is noteworthy that the order in which these pairs are

presented no longer stands for a discrete time counter, as

in true online representation, for it now represents a mere

skeleton point counter, whose correspondence to time ordering

is unknown.

VI. RESULTS

To provide a comparison scenario for the proposed methods

based on UCSS, we included in E1 the method published

in [29], which extracts projections of bitmaps corresponding

to signatures, and compare them through a modified DTW,

where so called stability measures are included to improve

performances. We reproduced the best implementation of their

method (as explained in their paper), and we applied it to the

the same offline signatures we used to test our methods, under

the same experimental protocol, with 5 genuine references,

instead of 10, as in [29].

We also compared the computational burden of the two

proposed methods to process and compare one enrolment card,

with 5 genuine samples per signature, and to compute scores

for all 20+25 = 45 remaining signature samples per reference

(respectively, 10 + 15 = 25 remaining signature samples per

reference in the MCYT-75 offline). The processing time for

the baseline method was thousands times greater than that for

the proposed method with UCSS subsampling. Surprisingly,

the lighter method yielded a significantly better performance,

as presented in Figure 5.

An interesting by-product of both methods is that after two

UCSS are associated (according either to Equation 1 or to

Equation 3), instead of comparing their shapes, one may just

compare their lengths, thus yielding a new score corresponding
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TABLE I
RESULTS FOR EACH METHOD AFTER 50 INDEPENDENT RUNS WITH THE

MCYT-100 ONLINE DATASET. EACH RUN CORRESPONDS TO A RANDOM

PARTITION OF 5 REFERENCE AND 10 TEST SIGNATURES (5 GENUINE

ONES).

Method EER std. dev.

I-Baseline 32.2 % 1.4 %

II- Method by [29] 36.7 % 0.6 %

III-Length based 25.1 % 1.2 %

IV- Shape based (proposed) 19.4 % 1.3 %

V-Fusion (mean) of scores
from III and IV 18.7 % 1.0 %

to the absolute difference of associated lengths. This can be

regarded as a third method, here referred to as the length based

one, in Figure 5 and Tables I and II.

Fig. 5. ROC curves for all tested methods with the MCYT-100 online
database. In this set of experiments, we use 5 randomly chosen reference
signatures to simulate enrolment, and a pool of 20 remaining genuine
signatures, along with 25 false ones to test the simulated system. A black
dot also indicates the MOS performance for a subjective decision threshold
that cannot be handled to yield a ROC.

Experiment E2 yielded a Mean Opinion Score (MOS) from

239 cards filled by 103 volunteers, and after comparing all

provided labels to the true hidden labels, the estimated MOS

was:

• 25.6% of False Rejection Rate and

• 11.0% of False Acceptance Rate.

This results corresponds to the dot in Figure 5, which allows

the visual comparison between the rates FAR and FRR from

MOS (to which the decision threshold cannot be known or

handled) and the ROC curves from the automatic methods,

for a range of possible decision thresholds.

Experiment E3 yield results presented in Table I, in terms

of average EER and its standard deviation over 50 independent

trials.

In all sets of experiments, scores of the methods III and

IV are also fused through simple arithmetic mean, yielding an

improved performance, as shown in Figure 5 and Tables I.

TABLE II
AVERAGE RESULTS FOR 50 INDEPENDENT RUNS WITH THE MCYT-75

OFFLINE DATASET. EACH RUN CORRESPONDS TO A RANDOM PARTITION

OF 5 REFERENCE AND 10 TEST SIGNATURES (5 GENUINE ONES).

Method EER std. dev.

I-Baseline 33.4 % 1.3 %

II- Method by [29] 36.6 % 0.8 %

III-Length based 25.7 % 1.6 %

IV- Shape based (proposed) 20.9 % 1.3 %

V-Fusion (mean) of scores
from III and IV 20.1 % 1.2 %

Results from Experiment E4 are presented in Table II.

By comparing results in tables I and II, we observe that

the pseudo-offline dataset from the MCYT-100 database have

slightly better results than the true offline samples from the

MCYT-75 database. This is expected because during the

preprocessing steps the offline signatures are damaged in some

areas, as can be seen in the small loops of the original signature

in Figure 6. However, the similarities between the results,

arising from the fact that the two bases are composed of

exactly the same signatures extracted by different methods,

make the pseudo-offline dataset, for the purpose of UCSS

extraction, acceptable surrogates to the true samples from the

MCYT-75 database.

Fig. 6. a) Original signature from the MCYT-75 database. b) Its preprocessed
counterpart. c) Its pseudo-offline counterpart.

VII. DISCUSSION

Results presented in tables I and II are consistent with

human performances under the same protocol. Indeed, levels

of accuracy reported in this work are not far from similar

experiments with human presented in [21] and [5], for distinct

datasets. However, state-of-the-art results for the MCYT-75 are

significantly better, as presented in [32] and [18].

A common aspect found in these stete-of-the-art approaches

is the use of genuine samples from other subjects enrolled in

the system as negative examples (or random forgeries). This

allows a kind of normalization score that significantly lower

error rates. In [15], for instance, we can infer from Figure 4 (in

[15]) that an EER of about 17 % is obtained with the MCYT-

75 and 5 genuine signatures of reference, without negative



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 33, NO.1, 2018. 337

examples. By contrast, it drops to about 10 % when negative

examples are taken into account.

Besides, a significant innovation found in [18] is that feature

extraction is done automatically by a deep neural network

(DNN). This approach is aligned to the new trend in pattern

recognition, according to which hand-crafted feature extractors

are replaced with automatic (learned by machines) ones.

Impressive performances, far beyond what has been found in

literature even for human benchmarks, seem to corroborate the

effectiveness of this DNN based approach.

Indeed, by taking into account the human performance

for MCYT-75, which is close to the results reported in this

manuscript, but far worst than results reported in [18] for the

same database, we may conjecture that volunteers were not

attentive to signature details. This conjecture may explain why

human performance, at least in our experiment, is close to what

we obtained by discarding UCSS details.

On the other hand, a forensic specialist attentive to small

ink deposition details would prefer a fine analysis of raw

image patches, which is also retained by the parsimonious

coding scheme proposed in [32], or by the convolutive patch

processing of [18]. On the other hand, CNN based approaches,

such as the one used in [18], face the challenge of explain-

ability, which may be critical in sensitive applications such as

forensics. Indeed, the parsimonious coding of patches found

in [32] seems to be more prone to advances in explainability.

Similarly, and keeping the explainability issue in mind, we

believe that it is possible to test, with the UCSS proposed in

this work, if representing details is indeed a key aspect for

attaining state-of-the-art performances. It can be done by the

splitting of UCSS into smaller segments. But to also study the

correspondence between human and machine performances,

these new steps would be coupled with new MOS experiments,

similar to E2, but with forensics specialists as volunteers.

Clearly, it is a matter for future work.

Regarding the by-product method based on UCSS length, it

is noteworthy that the use of either DTW or Euclidean distance

to match UCSS is a necessary step. In other words, behind the

apparent simplicity of this method, one should be aware that

the matching of UCSS is a not so simple step of it, which also

rises interesting questions. For instance, the superiority of the

joint approach – where UCSS shape and length are combined

– may have a connection to the lost signal of pen tip velocity,

which in turn is the main signal for biometric verification in

[3]. Indeed, UCSS shape (straightness) and length are expected

to be somehow dependent on pen tip velocity, either through

two-thirds power law, or through isochrony [31], and this

dependency is also an attractive subject for further works. For

now, we just conjecture that the fusion of length and shape

based scores is somehow related to inferred velocity signal,

given a signature image, which may explain its relatively good

performance.

VIII. CONCLUSION

This brief work was inspired by the empirically observed su-

periority of online signature verification methods, as compared

to most offline ones. Therefore all methods proposed here are

based on skeletonization, possibly the most straightforward

method to obtain pseudo-online signature representations from

images. The baseline method cross-compares all unambigu-

ously connected sequences of points from skeletons, where the

conception of a Unambiguously Connected Skeleton Segment

plays a pivotal role. By assuming that UCSS shapes and

position are relevant information for biometric verification,

we should expect that the systematic cross-comparison of

UCSS, through DTW, would yield good performance, at a

high computational cost.

However, it was noticed instead that the alternative method

initially proposed to alleviate the high computational burden of

the baseline method – by considering only 4 points per UCSS

– yielded a significantly better performance, as compared to

the baseline method. Moreover, even the very simple by-

product method based on the comparison between UCSS

lengths performed better than the baseline method. Indeed, the

baseline method only outperformed the method by [29], which

uses an improved DTW, but relies upon marginal projections

of signatures instead of segments like the UCSS proposed in

this work.

From these results, we are tempted to conjecture that, on

average, UCSS is a good segmentation option. Moreover, by

taking into account our MOS experiment results, it also could

be conjectured that UCSS shape details are not relevant for

mimicking humans in biometric verification tasks, for results

were improved when UCSS were down-sampled to 4 points

only, approaching MOS based (non-expert) human perfor-

mance. However, it contradicts the common sense that line

quality details are important features for forensic experts in

determining if a signature is a skilled forgery. We believe that

this point is an interesting matter for future work, including

MOS based experiments with forensic specialists.
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