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Abstract—This work presents the multi-band multi-resolution
bilateral filter (MMBF) as a novel approach to the multi-
resolution bilateral filter (MBF), which associates the bilateral
filter with wavelet denoising techniques. In addition to embedding
2D-BFs in different wavelet resolutions, it also introduces one-
dimensional bilateral filters (1D-BFs) in the sub-bands corre-
sponding to the horizontal and vertical details. Developments
regarding an in-field calibration method for the MMBF are also
reported in order to assess its full effectiveness. The noise levels
are reduced concomitantly with the preservation of edges and
details, meeting the requirements of image quality. To validate
the proposed method, we present a case study based on phantoms
imaged by a piece of medical X-ray equipment. These images
undergo severe degeneration when obtained under conditions
of low radiation dosage. After both have been calibrated using
the method proposed, the ability of MMBF to preserve image
details while reducing noise surpasses the MBF by quantitative
assessment as well as by visual inspection.

Index Terms—Image Denoising, Image Filtering, Measurement
Calibration, Multiband-Multiresolution Bilateral Filter, X-ray
Detection.

I. INTRODUCTION

IMAGE denoising is an essential area of research in various
fields of image processing, such as segmentation, analysis,

feature extraction, fusion and compression, among others.
In addition to reducing noise levels in images, denoising

techniques must also keep the target associated with the
preservation of edges, texture and contrast, which are essential
details for image analysis. Towards that end, the bilateral
filter (BF) is a spatial filter that brings into account not only
the spatial distance between neighboring pixels, but also the
difference between their grey intensities [1][2], to calculate
the filter weights mask. This structure proves beneficial for
reducing noise while preserving thin details.

In the last years, the awareness of the role that BF plays
in medical image processing and nondestructive testing has
increased [3]. For instance, in [4] it is proposed an iterative
BF for filtering the Rician noise in magnetic resonance images.
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In [5] BF is used to enhance the quality of ultrasound image to
determine the fetal health in the early stages of pregnancy and
in [6] guided trigonometric BFs are used to improve quality of
underwater optical images. Due to its effectiveness in reducing
noise while preserving edges, [3] presented a parallel hardware
implementation of the BF for real-time applications.

Meanwhile, wavelet-based denoising techniques have been
widely applied, usually providing quite reasonable results
regarding edge preservation [7]-[14]. Some works have pro-
posed to embed bi-dimensional bilateral filters (2D-BF) in
wavelet denoising methods - specifically on the LL sub-band
and on the reconstructed image - in order to optimize noise
filtering without compromising the edge preservation. This
new approach is referred to as multiresolution bilateral filter
(MBF) [15][16][17].

In this paper, we present the novel multiband-
multiresolution bilateral filter (MMBF), which is derived
from the MBF but differs from it by introducing new
one-dimensional bilateral filters (1D-BFs) in the sub-bands
corresponding to the horizontal and vertical details. Also,
an in-field calibration scheme for the embedded 2D-BFs
and 1D-BFs is also presented to achieve the maximum
effectiveness of the MMBF.

Although every kind of image can benefit from bilateral
filters and, especially, from MBF and MMBF, as a case study,
they were used to process X-ray imagery of phantoms whose
densities approximate tissues and arteries of the human body,
in an attempt to simulate cerebral and coronary imaging. As
the X-ray technology allows the application of fast, accurate
and noninvasive procedures, since its inception its use in
medical diagnosis has grown in importance when it comes
to detect diseases, fractures, among others.

However, during X-ray examinations, more extended proce-
dures require that imagery is carried out under strict conditions
of X-ray dosage to avoid long-time exposure of the patient.
It obeys the principle “image quality as good as needed”,
placing a greater emphasis on health safety and less on image
quality, as long as it is adequate to enable an accurate diagnosis
[18]. As a consequence, the noise level increases, causing a
significant reduction in image quality. The noise present in
X-ray images can be attributed primarily to the X-ray genera-
tor which has a Probability Mass Function (PMF) equivalent
to a Poisson random variable [19]. Therefore, the concurrent
decrease in the radiation dose and image quality enhancement
have been a great concern. Experimental results revealed that
the calibrated MMBF boosted the effectiveness of MBF in
reducing noise level, concomitantly with the preservation of
image edges and details.
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This paper is organized as follows: Section II is dedicated
to theoretical background. In Section III, the proposal of the
novel MMBF is presented, as well as a complete scheme for
calibrating it. In Section IV, we present X-ray phantom images
as a case study. Final conclusions are presented in Section V.

II. THEORETICAL BACKGROUND

The theoretical background is intended to provide a basis for
the filtering process of the MMBF, as well as to characterize
quantum noise in X-ray images, presented as a case study.

A. The Bilateral Filter and its Calibration

The bilateral filter was firstly proposed by [1], consisting
of the association of a domain filter and a range filter. This
type of filter replaces the intensity of each pixel with a
weighted average of intensity values from nearby pixels. For
one-dimensional domain, it is given by

I f (k) =

N∑
n=−N

Wd(n)Wr (k, n)I(k − n)

N∑
n=−N

Wd(n)Wr (k, n)

, (1)

in which I f is the filtered image, the weight Wd is the spatial
domain kernel for smoothing differences in coordinates and
Wr is the range kernel for smoothing differences in intensities.
The original input image is I, k are the coordinates of the
current pixel to be filtered, n is the spatial distance between
the central pixel and a nearby one, −N ≤ n ≤ N and the length
of the kernel centered in I(k) is 2N + 1. The normalization
term, in the denominator, ensures that the weights for all the
pixels add up to one.

A simple and important case of BF applied to images
uses weights based on shift-invariant one-dimensional Gaus-
sian distributions [1], where Wd(n) and Wr (k, n) depend,
respectively, on Euclidean distance of the pixels and on their
radiometric distances. They are determined by

Wd(n) = exp
(
−n2

2σd2

)
, (2)

Wr (k, n) = exp
(
−[I(k) − I(k − n)]2

2σr2

)
, (3)

in which σd and σr are the setting parameters of the decay
curves.

As a result, BF replaces a bright pixel at the center of the
kernel by an average of the bright pixels in its vicinity and
mostly ignores the neighbor dark pixels. Conversely, when the
kernel is centered on a dark pixel, the bright pixels under the
kernel are ignored instead. Thus, proper filtering behavior is
achieved at the boundaries (because of the domain component
of the filter), and crisp edges are preserved at the same time
(because of the range component).

The calibration of the BF consists in finding optimum values
for σd and σr , which becomes a cost-benefit analysis for
reducing noise and preserving edges, which are competing
goals.

In [2], aiming at results regarding image quality, tuning
the range filter to the noise level was thought more effective
than dealing with the fine tuning of the spatial filter. Based
on this argument, a noise-adaptive adjustment of the filter
focusing mainly on the parameter σr was introduced and
associated with the nonlinear range component. The work
suggests that the value σd is calculated so that weights Wd(n)
in the Gaussian function, for n = ±[N+1] (that is, out of range
of the mask), is forced to less than 10−3. The goal is making
the domain filter similar in performance to an ideal low-pass
filter.

Meanwhile, the parameter σr should be calculated con-
cerning the image noise level with σr = Rσnoise, where
σnoise is the standard deviation of noise and R is a factor
determined in order to maximize some performance metric,
such as Peak Signal to Noise Ratio (PSNR) or Mean Structural
Similarity (MSSIM) [21]. The metric MSSIM varies in the
range from 0 to 1 (best results reflect on values close to 1) and
intends to be close in the effectiveness of human visual system
concerning the visual perception. Such approach evaluates
quantitatively how the output image approximates a reference
image regarding intensity, structure and contrast.

In [2], a database composed by fifty 8-bit images was
used. Pictures were corrupted with additive zero-mean Gaus-
sian noise with σnoise varying from 1 to 64, in steps of 4
(σnoise = 1 : 4 : 64) and the noisy images were processed by
BF, setting values of R in the range of 0.5 to 16, in steps of
0.5 (R = 0.5 : 0.5 : 16). Following, PSNR and MSSIM were
calculated separately for each image, for each tuple (σnoise, R).
In the end, the metrics for each tuple were averaged along the
images. The characteristic PSNR, referred to as PSNRch , is
given by

PSNRch(σnoise, R) =

∑X
i=1 10 log

(
2552

MSEx

)
X

, (4)

where PSNRch is the characteristic PSNR of a set of X images,
σnoise is the noise standard deviation and R is the calibration
parameter of the range filter. The Mean Square Error between
each xth filtered image (x = 1, . . . , X) and the reference image
is MSEx , defined as

MSEx =

∑Q
q

∑P
p

[
Ix
f
(p, q) − Ire f (p, q)

]2

PQ
, (5)

in which Ix
f

is the xth filtered image, Ire f is the reference
image, Q and P are the number of rows and columns of the
image. The characteristic MSSIM, referred to as MMSIMch ,
averages the same way as 4 for each tuple (σnoise, R).

The proposed method for setting σr consisted of searching
the value of R that maximizes either PSNRch or MSSIMch

for a specific value of σnoise, which is assumed to be known.
In order to provide a visual determination of R, the values of
PSNRch(σnoise, R) were normalized for each specific σnoise

using

PSNRn(σnoise, R) =
(
1 −

PSNRch(σnoise, R)
maxR(PSNRch(σnoise, R))

)2
, (6)
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where PSNRn is the normalized PSNRch in relation to the
maximum value of this metric occuring for σnoise. With the
proposed normalization, the highest value of PSNRch for a
specific σnoise is mapped to 0 at PSNRn(σnoise, R), while a
null value in the first is mapped to 1 in the second.

The optimization procedure proposed in [2] was used to
find the value of R for which the normalized metric is null, at
each specific σnoise. The same normalization procedure can
be carried out for the metric MSSIM.

B. Wavelet Denoising and The Multiresolution Bilateral Filter

Another approach addressed to edge-preservation concomi-
tantly with the reduction of noise level is the wavelet denois-
ing. It consists of three primary stages: (1) decomposition
of the image into sub-bands LL (approximation sub-band),
LH (horizontal edges sub-band), HL (vertical edges sub-band)
and HH (diagonal details sub-band), (2) thresholding and
(3) reconstruction. In the first and third stages, the Discrete
Wavelet Transform (DWT) and the Inverse Discrete Wavelet
Transform (IDWT), respectively, are performed according to
established multiresolution level wavelet basis function. The
second stage, in turn, is divided into two steps: (a) calculation
of the threshold λ and (b) submitting the wavelet coefficients
of the noisy image to λ, aiming to estimate those of the
supposedly noise-free image. The calculation of λ is what most
influences the image quality.

The Neighsrink Stein’s Unbiased Risk Estimate (SURE)
denoising method [7] is among the most efficient methods
of wavelet denoising reported in the literature. It derived
from Neighsrink, which assumes the correlation between
coefficients to determine the threshold λ. The neighboring
coefficients around a noisy coefficient are used to do an
estimate of the noise-free coefficient as

θ̂i, j = θi, j

©«
1 −

λ2∑
k=(i−B,...,i,...,i+B)
l=(j−B,..., j,..., j+B)

(θ2
k,l
)

ª®®®®®®¬
, (7)

where θ̂i, j is the estimate of the noise-free coefficient, θi, j
is the current coefficient to be denoised and θk,l are the
neighboring coefficients in a square window of dimensions
(2B+1)×(2B+1) around θi, j . The parameter λ is the universal
threshold, calculated as

λ = σnoise

√
2log(P), (8)

where P is the amount of pixels in the image.
In Neighsrink, not only is the size of the window (2B

+ 1) invariant throughout the whole process, but also λ
is kept the same for all sub-bands, which is a substantial
disadvantage according to [7]. As a proposal to overcome
these limitations, the Neighsrink SURE method [9] aimed at
determining optimal values for λ and B at each sub-band. The
expectation was to minimize the MSE between the noise-free
wavelet coefficients and their estimates.

A variant of wavelet denoising is the multiresolution bilat-
eral filter (MBF). It is based on the grounds of [11], which
suggests that a two-dimensional bilateral filter (2D-BF) can
operate on the LL sub-band aiming at reducing the noise level
on the low-frequency coefficients. Instead, the other sub-bands
(HL, LH, and HH) are subject to universal hard thresholding
(UHT). In the end, the reconstructed image is filtered by
another 2D-BF. The block diagram of the MBF is depicted in
Fig. 1, in which decimation and analysis filters are included in
the calculation of DWT, as well as interpolation and synthesis
filters are included in the IDWT.

Figure 1. Block Diagram of the MBF.

III. THE MULTIBAND-MULTIRESOLUTION BILATERAL
FILTER AND ITS CALIBRATION SCHEME

A. The Multiband-Multiresolution Bilateral Filter

Although wavelet-based methods are efficient in image
denoising, they are prone to producing artifacts such as low-
frequency noise and edge ringing which relate to the structure
of the underlying wavelet [20].

For this reason, this work proposes to investigate the appli-
cation of one-dimensional bilateral filters (1D-BFs) on the LH
and HL sub-bands, corresponding to horizontal and vertical
detail coefficients, instead of subjecting them to UHT, such
as in [7][9]. This proposal was based on the assumption that
the two-dimensional bilateral filter (2D-BF) performs well
when applied to the LL sub-band [11], at which the frequency
components are low in both spatial directions. On the same
assumption, horizontal and vertical edges must be aligned with
the direction in which the spatial frequency components are
low. Thus, by hypothesis, it is believed that in the sub-bands
LH and HL the application of 1D-BFs toward the horizontal
edges (sub-band LH) and vertical edges (sub-band HL) can
reduce the noise level, whereas wavelet-based methods would
cause low-frequency noise according to [20]. In turn, since
the HH sub-band presents high-frequency components in both
directions, it does not apply to bilateral filters. For it, the use
of UHT wavelet denoising remains.

Despite the fact that nothing prevents different 1D-BFs
from being calibrated for the HL and LH sub-bands, this is
usually unnecessary, since noise characterization is direction-
independent [19]. Besides that, performing different 1D-BFs
would require an additional step in the calibration process
to be presented in sub-section III-B, which would be more
computationally costly.

Fig.2 depicts the block diagram of MMBF. It can be faced
with Fig. 1 to highlight the differences between the existing
MBF and this novel approach, the MMBF.
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Figure 2. Block Diagram of the novel MMBF

B. Bilateral Filter Calibration: The VAS Scheme

First, it is proposed an in-field calibration method for the
classical BF to be used instead of the one presented in [2]. It is
based on a Visual Analysis of Sensitivity to filter’s parameters
and, for that reason, referred to as VAS Calibration Scheme.
It is performed just once for a set of images corrupted by
noise with standard deviation σnoise. Differently from [2],
which does not tune the spatial filter to the noise level, the
proposed method is based on the brute-force visual analysis
of the sensitivity of a particular performance metric (generally
PSNR or MSSIM) to the parameters σd and R, making, in the
end, σr = Rσnoise.

The VAS requires that a reference image, presumably noise-
free, is available for the calculation of σnoisy as well as
of PSNR or MSSIM (in fact, any other measuring can be
used). The average metric is evaluated both for the noisy (e.g.,
PSNRnoisy) and the filtered images (e.g., PSNRch).

The VAS method is implemented in the following steps,
exemplified in the case of using the PSNR as the chosen
metric.

1) Normalize the pixels of the reference and noisy images
from 0 to 1 to make the calibration procedure indepen-
dent from bit-depth. This has not been identified as a
concern in [2].

2) Estimate σnoise from the average error histogram be-
tween the noisy frames and the reference image.

3) Calculate PSNRnoisy , the average PSNR for the noisy
images relatively to the reference image.

4) Vary σd and R at 200 different tuples (σd, R), with
σd = 0.5 : 0.5 : 5 and R = 0.5 : 0.5 : 10 and for each
tuple calculate PSNRch(σd, R) as in (4) for the images
filtered with BF.

5) Calculate and plot the gain obtained from the use of BF,
referred to as G(σd, R), according to (9). From this plot,
choose a σd that results in the largest gains.

6) Calculate and plot the normalized metric PSNRn as in
(6) to visualize the optimum R for a chosen σd .

G(σd, R) = PSNRch(σd, R) − PSNRnoisy (dB) (9)

C. The VAS Calibration Scheme for the MMBF

This work presents a proposal to adjust the parameters of
the MMBF so that each embedded bilateral filter (two 2D-BFs
and two 1D-BFs) is calibrated using the VAS method. After
choosing a specific metric (usually, PSNR or MSSIM), the
complete calibration of the MMBF is accomplished in four

steps described in the following, taking the metric PSNR as
an example.

1) Estimate σnoise and PSNRnoisy .
2) Calibrate the first 2D-BF (applied to LL sub-band) using

VAS, by performing the secondary stages:
a) Perform the DWT to obtain LL, HL, LH and HH

sub-bands;
b) For every tuple (σd, R), do:

i) Use a 2D-BF to operate the LL coefficients;
ii) Synthesize the denoised image with the IDWT;

iii) Calculate PSNRch of the filtered images;
iv) Calculate and plot G(σd, R) in order to choose

the σd that results in the largest gains of the
2D-BF;

v) Calculate and plot PSNRn in order to visualize
the optimum R for the chosen σd .

c) Keep the chosen tuple (σd, R) for the 2D-BF
applied to LL sub-band unchanged in steps 3 and 4.

3) Calibrate the two equal 1D-BFs (applied to both HL and
LH sub-bands) using VAS, by performing the secondary
stages:

a) Perform the DWT to obtain LL, HL, LH and HH
sub-bands;

b) Process LL coefficients with the 2D-BF calibrated
in step 2;

c) For every tuple (σd, R), do:
i) Use the 1D-BFs to operate both HL and LH

coefficients;
ii) Synthesize the processed image with the IDWT;

iii) Calculate PSNRch of the filtered images;
iv) Calculate and plot G(σd, R) in order to choose

the σd that results in the largest gains of the
1D-BFs.

v) Calculate and plot PSNRn in order to visualize
the optimum R for the chosen σd .

vi) Keep the chosen tuple (σd, R) for the two
1D-BFs unchanged in step 4.

4) Calibrate the second 2D-BF (applied to the reconstructed
image) using VAS, by performing the secondary stages:

a) Perform the DWT to obtain LL, HL, LH and HH
sub-bands;

b) Process LL coefficients with the 2D-BF calibrated
in step 2;

c) Process HL and LH coefficients with the 1D-BFs
calibrated in step 3;

d) Treat the HH coefficients by the UHT method;
e) Synthesize the denoised image with the IDWT;
f) For every tuple (σd, R), do:

i) Use the 2D-BF to operate the synthesized im-
age;

ii) Calculate PSNRch of the filtered images;
iii) Calculate and plot G(σd, R) to choose the σd

that results in the highest gains of the 2D-BF
applied to the reconstructed image;

iv) Calculate and plot PSNRn to visualize the
optimum R for this second 2D-BF.
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Finally, the tuples (σd, R) obtained at steps 2, 3 and 4 are
the setting parameters of the MMBF.

IV. CASE STUDY: MMBF APPLIED TO X-RAY IMAGES

Since it is always interesting to count on image quality
regarding sharpness, contrast, noise reduction and lower delay
in the preview, the fluoroscopic images described in Section I
must be filtered by assuring the preservation of their edge
profile [18]. According to [22], it is of paramount importance
that any methodology used to improve quality and safety takes
into account the dynamic nature and multiplicity of factors
affecting them. However, as far as we know, the literature
lacks procedures to perform in-field calibrations of the systems
used to enhance quality of low-dose X-ray images, which are
corrupted with Poisson noise [19]. These images are affected
by individual attributes, technology, clinical context, and exam
type, according to [22][23].

The subsection IV-A presents the VAS calibrating approach
presented in III-B to tune a BF applied to noisy X-ray phantom
images, shown as a case study. Following, IV-B presents the
parameters resulting from the VAS calibration of the BFs
embedded in MBF and MMBF. At last, IV-C presents the
quantitative and qualitative assessment of MBF and MMBF
applied to the X-ray image of a testing phantom.

The MATLAB files for calibration and filtering and the
phantom images used in the experiments can be accessed in
[24].

A. The VAS Calibration of BF applied to X-ray images

The VAS calibration method for BF applied to images of
a phantom acquired with actual X-ray doses in fluoroscopy
leads to σnoise = 0.027. The phantom presents density
characteristics that simulate different tissues of the human
body, such as blood vessels, bones and calcifications, as well
as other standard structures present in medical procedures,
such as catheters and prostheses. Fig. 3 depicts the calibration
phantom image generated with the equipment AngiX III FD
– GE Healthcare.

The reference image necessary to accomplish the VAS
calibration can be obtained with high doses of X-ray. How-
ever, if it is not practical, the reference image Ire f can be
estimated by averaging M consecutive X-ray noisy images of
a calibration phantom. The calibration is performed just once
for a specific X-ray dosage, which determines σnoise. Then,
all the medical procedures undertaken at equivalent doses can
be held without any updates of σd and R.

Figure 3. A noisy image of the calibration phantom.

Graphs shown in Figures 4 and 5 assume the chosen metric
is either PSNR (sub-figures a) or MSSIM (sub-figures b).
Fig. 4 shows a visual analysis of the gain G(σd, R) obtained by
BF, showing that the best performance of the filter is obtained
with σd greater than 2. In this case study, this parameter was
set to 3.

(a)

(b)

Figure 4. G(σd, R) obtained by BF when processing calibration phantom:
(a) Gains of PSNR(σd, R) (dB); (b) Gains of MSSIM(σd, R)
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Fig. 5 shows the normalized metrics obtained from the
calibration phantom. They aim to demonstrate the value of
R that optimizes the filter performance for a given amount of
σd , as it is assigned a zero value in the z-axis.

It can be verified in Fig. 5 that the lower σd , the larger
the expected value of R in order to optimize performance.
However, for values of σd greater than 2.5, the optimum R
keeps invariant and equal to 2.

It is worth noticing that a typical box filter would be
equivalent to BF with the highest values of σd and R, since all
the neighbor pixels inside the mask have to be weighed with
the same amount, no matter their distances from the central
pixel of the mask or their intensities. As it can be visualized
in Fig. 5a and Fig. 5b, the box filter corresponds to the worst
performance of BF.

(a)

(b)

Figure 5. Normalized metrics at the calibration phantom: (a) PSNRn(σd, R)
(dB); (b) MSSIMb (σd, R)

It is concluded from the calibration based on VAS that
reasonable values for the setting parameters of BF when σnoise

is 0.027 can be σd = 3 and R = 2, using a 7x1 mask. These
values can optimize both PSNR and MSSIM.

B. The VAS Calibration of MMBF Applied to X-ray Images

In the following, the complete calibration scheme for the
MMBF presented in subsection III-C was performed using the

same calibration phantom. The final values for σd and R are
shown in Table I for five different noise standard deviations.
The first one, σnoise = 0.027, approximates the noise level
in images acquired with actual X-ray dose in fluoroscopy.
The larger ones were added for the sole purpose of analysing
the behaviour of the filter performance. The values of σd

were chosen using either PSNRch or MSSIMch to calculate
G(σd, R). The values of R, in turn, were determined from the
normalized graphs of the chosen metric (PSNRn or MSSIMn)
assuming the chosen σd .

Table I
σd AND R VALUES AT DIFFERENT NOISE LEVELS FOR MMBF

Parameters σd R
σnoise = 0.027
2D-BF applied to LL 3 2.5
1D-BF applied to the LH and HL 3 3
2D-BF applied to reconstructed images 3 0.5
σnoise = 0.045
2D-BF applied to LL 3 2
1D-BF applied to the LH and HL 3 8.5
2D-BF applied to reconstructed images 3 0.5
σnoise = 0.077
2D-BF applied to LL 3 2.5
1D-BF applied to the LH and HL 5 15
2D-BF applied to reconstructed images 3 1
σnoise = 0.092
2D-BF applied to LL 5 2
1D-BF applied to the LH and HL 7.5 13
2D-BF applied to reconstructed images 2.5 1
σnoise = 0.122
2D-BF applied to LL 5 2
1D-BF applied to the LH and HL 5.5 22.5
2D-BF applied to reconstructed images 2 1.5

The greater the noise, the smaller is the difference between
the R-values of the two bilateral filters (2D-BFs) applied at
different resolution levels (LL sub-band against reconstructed
image). Comparing different sub-bands at the same level (LL
against LH and HL sub-bands), the R-values are closer for a
smaller noise content (σnoise = 0.027), but their difference
increases as the noise reaches greater values. As more evident
the noise becomes, more the R-value in the one-dimensional
bilateral filters (1D-BFs) increases. It means that a wider
range of intensity have to be used at the range filter, according
to (2), in an attempt to find more pixels in the neighborhood
aiming to attenuate the noise and calculate the pixel value
of the processed image. This will obviously have a negative
impact on the preservation of image edges.

C. Filtering X-Ray Image with MBF and MMBF
With the purpose of comparing the two approaches, MBF

and MMBF, both were calibrated using the VAS method.
The calibration of the 2D-BF applied to the approximation
coefficients (LL sub-band) yields values for σd and R which
are the same for either MMBF or MBF. The calibration of
the second 2D-BF, applied to the reconstructed images, led to
different values for the parameters in MMBF and MBF, for
σnoise equal or higher than 0.077. The parameters found for
this filter in MBF are listed in Table II.
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Table II
σd AND R VALUES AT DIFFERENT NOISE LEVELS FOR THE 2D-BF

APPLIED TO THE RECONSTRUCTED IMAGES AT MBF

σnoise σd R
0.027 3 0.5
0.045 3 0.5
0.077 3 0.5
0.092 1.5 0.5
0.122 1.5 0.5

Then, they were used to reduce the noise level at X-ray
images of a test phantom acquired by AngiX III FD. The
PSNR and MSSIM values of a noisy image of the testing
phantom and its corresponding reconstructed image after being
filtered with MBF or MMBF are presented on Table III for five
different values of σnoise, corresponding to the usual X-ray
dose in fluoroscopy (σnoise = 0.027) and four larger ones,
with the sole purpose of analysing the behaviour of the filter
performance. The best values of PSNR and MSSIM obtained
are highlighted in bold.

For larger values of σnoise, the gains of the MMBF de-
crease, becoming smaller than the gains of the MBF for images
with higher noise level. But with σnoise equal to 0.027, the
focus of our analysis, MMBF provided gains of approximately
1.2 dB in PSNR when compared to MBF, while the increment
in MSSIM was 7%, rising from 0.84 to 0.90.

Table III
PSNR AND MSSIM USING AN IMAGE FROM THE TEST PHANTOM

Filter PSNR(dB) MSSIM
σnoise = 0.027
(no filter) 30.97 0.75
MBF 33.83 0.84
MMBF 35.22 0.90
σnoise = 0.045
(no filter) 26.69 0.52
MBF 32.60 0.80
MMBF 33.49 0.85
σnoise = 0.077
(no filter) 22.10 0.29
MBF 30.18 0.69
MMBF 30.06 0.69
σnoise = 0.092
(no filter) 20.48 0.23
MBF 30.01 0.71
MMBF 29.36 0.66
σnoise = 0.122
(no filter) 18.17 0.16
MBF 29.07 0.67
MMBF 28.40 0.65

A subjective analysis of the results provided by MBF and
MMBF can be performed from inspection. Figs. 6a, 6b and
6c (respectively, the noisy image and the images processed
by MBF and MMBF) show results for σnoise is 0.027. The
three images had their edges highlighted by the same contrast-
equalization algorithm, for better analysis. It can be verified
that MMBF is elected as the best filtering option since it
achieves the best cost-benefit regarding preserving the edges

while reducing the noise level. As a starting point, the reader
should zoom the regions indicated with arrows in Fig. 6b and
6c. It is quite clear that in the second, the stripes have been
preserved, while in the first there is a haze across the region.

It is crucial to highlight that the VAS in-field calibration
method can be accomplished with any metrics that are better
suited to the user’s expectations, and it is not restricted to
PSNR or MSSIM. In this context, the specialist can also
apply his own subjective evaluation or a Quality-Safety Index
[2] to determine the tuple of parameter values that optimize
performance.

V. CONCLUSIONS

Recent publications have presented the MBF as a means
of improving the capability of reducing noise and preserving
image details, usually applying wavelet techniques to the low-
frequency coefficients as well as to the reconstructed image.
Here, we introduced the MMBF, a novel approach to the
MBF, as a contribution regarding the use of bilateral filters
in multiple sub-bands of the same multiresolution level of
wavelet domain.

After investigating several proposals concerning the BF
and MBF structures, it could be observed a lack of efficient
procedures to calibrate the parameters of this type of filter
when applied to images of any bit-depth. We also presented,
in this report, a new and accurate in-field calibration procedure
for the bilateral filters based on a visual analysis of sensitivity
to its setting parameters (VAS), through the use of images of
a calibration phantom. In-field calibration consists of a useful
and practical tool concerning the nature and multiplicity of
factors which affect the quality of dynamic images.

We have presented a case study based on X-ray phantoms
and used the VAS method to calibrate the bilateral filters
embedded into both MBF and MMBF. It was possible to
conclude that for high noise levels the use of one-dimensional
bilateral filters in the HL and LH sub-bands (MMBF) is
no longer relevant if compared to UHT use (MBF). Under
such circumstances, MMBF achieved similar or lower level of
performance than MBF. However, for noise levels compatible
with usual X-ray doses in fluoroscopy, it was demonstrated the
best performance of the MMBF on preserving image details
while reducing noise, surpassing the capacity of the MBF. It
was verified not only from objective metrics calculated for
test phantom images, such as PSNR and MSSIM, but also
through visual inspection of one of the frames. In general,
results indicate a promising future for the MMBF in image
processing applications.
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