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Abstract - We propose an estimator for the direction of 
arrival (DOA) of plane waves incident on a linear equally 
spaced array of sensors. The estimator nses a forward - back­
ward linear prediction filter optimized by means of the total 
least squares criterion subject to constraints. The DOA an­
gles are estimated by the zeros of the optimum filter. The 
proposed procedure is compared with two maximum likeli­
hoodmethods presented in the literatnre. 
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Resumo .. Propomos urn estimador para a diret;lio de chegada 
(DOA) de ondas planas incidentes em urn arranjo de sensores 
linear e com elementos iguahnente espat;ados. 0 estimador 
usa urn filtro de predit;ffo linear "fmward-backward" otimi­
zado atraves do criteria dos rninimos quadrados totais sujeito 
a restri<;6es. Os iingnlos DOA sao estimados atraves dos ze­
ros do filtro otimizado. 0 procedirnento proposto e compa­
rado com dais m6todos de maxima verossimilhant;a presentes 
na literatura. 

Palavras-chave: Processamento de Sinais de Sensores, 
Dire<;ao de Chegada, Predi<;ao Linear, Minimos Quadrados 
Totais. 

1. INTRODUCTION 

Array signal processing is a subarea of statistical signal 
processing and its main purpose is the estimation of signal 
parameters by fusing temporal and spatial (space-time pro­
cessing) information obtained via sampling a wavefield with 
a set of sensors. The sensors are conveniently arranged in 
space and the wavefield is assumed to be generated by a fi­
nite ilumber of emitters. 

One of the applications of array signal processing is the es­
timation of the direction of arrival (DOA) of the waves gener­
ated by the emitters. The DOA problem and array signal pro­
cessing are present in mobile connnunication, radar, sonar, 
seismology, radio astronomy and industry applications [1]. 

This paper deals with DOA estimation of plane waves in­
cident on a linear equally spaced array of sensors. 
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When the DOA angles are well separated in space, clis­
crete Fourier transform (DFT) is efficient and effective for 
DOA estimation [2]. However, if the angles are more closely 
spaced than the reciprocal of the aperture in space, the DFT is 
ineffective and a high resolution technique is required. Direct 
maximum likelihood (ML) estimation is effective but being a 
non-linear least squares fitting problem, requires a multidi­
mensional search procedure to estimate the angles. Recently, 
ML-basedmethods were proposed [3], [4], where a reparam­
eterization of the direct ML problem is employed to circum­
vent the multidimensional search. This reparameterization 
leads to an optimization problem, which is solved by means 
of an iterative algorithm. MODE [5] and MODEX [6] are 
meaningful examples of this class of estimators. 

As an alternative to the reparameterised ML estimators, 
linear prediction leads to an estimator that can be used if the 
signal-to-noise ratio (SNR) is sufficiently high. The Forward 
- Backward Linear Prediction (FBLP) method introduced by 
Nuttal [7] and Ulrich and Clayton [8] is particularly effec­
tive. The performance of the FBLP method were significantly 
improved by Kumaresan [9] through the Modified Forward -
Backward Linear Prediction (MFBLP) method. MFBLP uses 
the array output correlation matrix to determine both the sig­
nal and the noise subspaces. Then the linear prediction is 
optimized using only the signal subspace and the resulting 
estimator presents improved performance at low SNR. 

The proposed estimation procedure modifies the MFBLP 
method in three aspects. The MFBLP method optimizes the 
linear prediction problem through the least squares (LS) cri­
terion. The classical least squares technique has been used 
to solve the overdetermined system of equations Ax = b, 
where noise is present in the data elements of A and b. When 
A is noise free and the noise in b is zero mean Gaussian, 
the LS solution is identical to maximum likeW10od solution 
[10]. However, if A is also noisy, as in the case of the FBLP 
and the MFBLP methods, then the LS solution is no longer 
optimum. Our first modification of the MFBLP method at­
tempts to improve the optimization criterion, substituting LS 
by the total least squares criterion (TLS). TLS was introduced 
by Golub and Van Loan [11] in 1980 to deal with this sitn­
ation. Assuming that the system of equations Ax = b is 
consistent in the absence of noise, TLS attempts to reduce 
the noise using pertnrbations !::,.A and /::,.bin A and b such 

that (A+ !::,.A)x = (b+/::,.b) and [.!::,.A :!::,.b] presents the 
smallest Frobenius norm. 

The second modification results from the observation that 
TLS operates under the assumption that the noise compo­
nents in A and b are identically independently distributed 
and zero mean. If there is a linear dependence among the 
noise components, then the TLS formulation must be re­
viewed to take into account the reduced dimensionality of 
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wheren(t) = [n,(t) ... nN(t)JT. 
The output of the sensors are sampled at times tk, k 

1, ... , K, leading to the noisy data vector (snapshot) y k given 
by 

Yk = Axk + n1, ; k = 1, ... , K . (8) 

Additionally, we assume that the signal and the noise are 
independent zero mean complex stationary Gaussian random 
processes with the following second-order moments 

E{xkx{'} = Cok,l 
E{ nkn{'} = <7

2I0k,l 
E{xkxf} = o 
E{nknf} = 0 

(9) 

where E {} is the expectation, C is the unknown signal co­
variance matrix, 0 k,l is the Kronecker delta operator, cr 2 is 
the unknown noise power, I is the identity matrix and (.) H 

denotes the conjugate transpose. These conditions imply that 
signal and noise at different instants are not correlated. Signal 
components may present some spatial correlation described 
by matrix C, whereas the noise components do not. Also, it 
can be verified that the condition E { x kxf} = 0 implies that 
the real and the imaginary components of the signal at the 
nth sensor output have equal variance. The same holds for 
the noise. 

The concepts and equations to be presented in Sections 3 
and 4 and in Appendix A refer to the kth snapshot. Then we 
omitted the subscript "k", like that in the symbol y k, in order 
to simplify the notation in those Sections and in Appendix A. 

3. FORWARD-BACKWARD LINEAR PRE­
DICTION 

Linear prediction leads to an estimator for the frequencies 
w = [w, ... w M J [9]. To present the estimator, consider a 
forward linear prediction error filter of order L ( M :5 L < 
N), coefficients bf = [ - 1 b{ ... b{jT and processing y 
(for the kth snapshot), as illustrated by Figure 2a, [15]. The 
forward prediction error is 

L 

ef(n)=-y(n)+Lb{y(n-i); n=L+1, ... ,N. (10) 
i=l 

Equation (10) can be written as Y f bf = ef, where ef = 
[ef(L+1) ef(N)f and 

yf = [ y(L:+ 1) 

y(N) 

y(1) 

y(N- L) 
] . (11) 

Consider the polynomial pi (z) = -zL + b{ zL-! + ... + 
b{, obtained after the filter has been optimized by minimizing 
the energy of the vector e f. In the absence of noise, P f ( z) 
has M zeros on the unit circle (signal zeros) at the positions 
{exp (jwm) ;m = 1, ... , M}. The remaining (L- M) zeros 
(noise zeros) are inside the unit circle [9], [15]. Therefore, 
the forward linear prediction error filter can be employed as 
a frequency estimator. 

Consider now a backward linear prediction error filter of 
order L and coefficients b b = [ - 1 bi . . . btJT, as that of 
Figure 2b, processing y and producing the prediction error 

L 

eb(n) = -y(n) + 2:)! y( n+i); n = 1, ... , N- L. (12) 
i=l 

(a) 

(b) 

Figure 2. Linear prediction error filters: a) forward; b) 
backward. 

Equation (12) can be written as yb bb= eb, where eb 
[ eb(1) eb(N- L) ]T, yb = yfJ andJ is a per­
mutation matrix (its anti-diagonal is composed by "ones", 
whereas the others entries are "zeros"). 

After optimization, the polynomial pb(z) = -zL + 
bi zL- 1 + ... + b1, in the absence of noise, has M ze­
ros on the unit circle (the signal zeros) at the positions 
{ exp (jwm) ; m = 1, ... , M} and the remaining (L - NI) 
zeros (the noise zeros) out of the unit circle [15]. 

The optimum vector b~t that minimizes the energy of ef 
obeys the normal equation (Yi)H yf b~1= 0, whereas the 

optimum vector b~, obeys (Yb) H yb b~,= 0 , [15]. 
For stationary signals and in the limit N _, oo, we can 

verify that (Yf)HYf = ((Yb)HYb)' ,implying that 

b~, = (b~,)*, where (.)* denotes the complex conjugate 
[15]. 

This result motivated the definition of the forward­
backward linear prediction, where bf = (bb)* is used 

even for finite N. Defining b = b f = (bb )* , Y = 

[(Yf)T (Yb)Hr and e = [(ef)T (eb)Hr,thefor­

mulation of the FBLP problem can now be expressed as 
Yb = e. The optimum vector bot is obtained by minimizing 
llell2 , where 11-11 2 denotes the 2-norm. 

ConsiderthepolynomialP(z) = -zL+b1zL-1 + ... +bL, 
obtained after the FBLP filter has been optimized. In the ab­
sence of noise, P(z) has M zeros on the unit circle at the 
positions { exp (jwm) ; m = 1, ... , NI} (the signal zeros), 
whereas the remaining (L - M) zeros (the noise zeros) are 
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situated inside the unit circle [9], [15]. Therefore, the fre­
quencies w can be estimated searching for the signal zeros on 
the unit circle [9]. 

The presence of the noise causes the zeros to fluctuate 
around their noise free positions. But for signal-to noise ra­
tios (SNR) not excessively low, the frequencies w can bees­
timated searching for the M zeros that are closest to the unit 
circle [9]. 

Although this property is common to the forward, back­
ward and forward-backward arrangements, the last one 
presents the best performance as a frequency estimator [7], · 
[8]. 

4. FBLP AND THE CONSTRAINED TO­
TAL LEAST SQUARES CRITERION 

The least squares criterion is usually employed to optimize 
the forward-backward filter. This criterion assumes that just 
one of the columns of Y has errors or noise, whereas, in 
fact, all the columns are affected by the noise. Then the total 
least squares (TLS) criterion [11], [16] should be employed 
and its application to the minimization of the energy of the 
FBLP errore leads to the foiiowing problem 

min II~ YIIF subjectto {Y + ~ Y) b = 0 (13) 
(L;Y,b) 

where 11-IIF denotes the Frobenius norm and~ Y is a ma­
trix composed of independent variables representing pertur­
bations to the matrix Y [11], [16]. 

Another aspect suggesting the use of the TLS criterion is 
the Toeplitz and Hankel structures of the matrix Y. Although 
they are not taken into account in the least squares optimiza­
tion process, the Constrained Total Least Squares (CTLS) cri­
terion is able to consider those structures [12], [16]. 

It is demonstrated in the appendix A that the application 
of the CTLS criterion to the minimization of energy of the 
FBLP error leads to the foiiowing problem 

min { (~yfb)H p ~yfb} 
(b,L;y!b) 

subject to Yb + BH ~yfb = 0 . 
(14) 

As B has rank 2{N- L), the solution to problem (14) is 
[12] 

(15) 

5. THE FBCTLS METHOD 

Problem (15) refers to the kth snapshot. When all the K 
snapshots are considered, it is desirable to have the same bot 
solution for ail of them, since signal and noise are stationary 
and DOA angles are the same for ail the snapshots, imply­
ing, as shown by equations (34) and (42), in Appendix A, 
that both P and B matrices wiii also be the same for all the 
snapshots. 

One possible strategy is to rnininiize the sum of the terms 
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in equation (15) fork = 1, ... , K, leading to 

bot =argm~n {bHt [vf (BHP-1B)-
1

Yk] b} 

(16) 
It is shown in Appendix B that problem (16) can be written 

as 

bats= argmin {bHDHDb} subject to bo = -1 (17) 
b 

where D is a matrix with dimensions 4M (N- L) x 
( L + 1) . This is a fourth order minimization problem with 
respect to b. 

An iterative algorithm wiii now be presented to solve prob­
lem (17). In the first step we adopt B =I and calculate the 
corresponding matrix D. Therefore, the minimization prob­
lem is reduced to a second order one which can be solved us­
ing the QR decomposition [5]. This procedure leads to a first 
value to b, which is used to update the B and D matrices. In 
the second step, a new value forb is calculated using the up­
dated matrix D, and so on for the next steps. In general, three 
such steps are sufficient for an adequate convergence [5], [6]. 

In order to calculate the solution to the second order min­
imization problem at each step of the iterative algorithm, 
we take into account the constraint b0 = -1 writing b = 

[ -1 '1T] T. Then the problem at each step can be written as 

bHDHDb = IIDbll; (18) 

= 11-D, +Dz7JII; 

where D = [D 1 D 2] , D 1 = first column of D and D2 E 

C41Vl(N-L)xL The minimization of expression (18) leads to 

(19) 

The QR decomposition [17] produces D2 = QR, with 
Q E C4M(N-L)x4M(N-L), R E c•M(N-L)xL and 

Q = [ Q, Q 2 ] ; Ql E C4M(N-L)xL 

R = [ ~o l; RoE cLxL. 

Then we get from (19) 

R5' Ro7J = R6' Q{' D1 . 

Since Ro has fuii rank L, we finally obtain 

as the solution for each step of the iterative algorithm. 

(20) 

(21) 

(22) 

(23) 

Once bot has been calculated, the polynomial P(z) is 
formed and the corresponding zeros are calculated. The 1VI 
signal zeros are estimated searching for those 1\1.[ zeros closest 
to the unit circle. 

Tlris procedure was applied to an example [6] with the fol­
lowing parameters: number of plane waves 1\II = 2, signal 
correlation matrix C = I (uncorrelated signals), number of 
sensors N = 10, frequencies to be estimated w, = 0.5455 
and w:i = 0.8131, order of the FBLP filter L = 6, number of 



Amauri Lopes, lvanil S. Bonatti, Pedro L. D. Peres, Ricardo F. Colares and Carlos A. Alves 
A DOA Estimator Based on Linear Prediction and Total Least Squares 

situated inside the unit circle [9], [15]. Therefore, the fre­
quencies w can be estimated searching for the signal zeros on 
the unit circle [9]. 

The presence of the noise causes the zeros to fluctuate 
around their noise free positions. But for signal-to noise ra­
tios (SNR) not excessively low, the frequencies w can be es­
timated searching for the M zeros that are closest to the unit 
circle [9]. 

Although this property is couuuon to the forward, back­
ward and forward-backward arrangements, the last one 
presents the best performance as a frequency estimator [7], · 
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4. FBLP AND THE CONSTRAINED TO­
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the forward-backward filter. This critelion assumes that just 
one of the columns of Y has errors or noise, whereas, in 
fact, all the columns are affected by the noise. Then the total 
least squares (TLS) cliterion [11], [16] should be employed 
and its application to the minimization of the energy of the 
FBLP errore leads to the following problem 

ntin 11.0. YIIF subject to (Y + .0. Y) b = 0 (13) 
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where II·IIF denotes the Frobenius norm and .0. Y is a ma­
trix composed of independent valiables representing pertur­
bations to the matrix Y [11], [16]. 

Another aspect suggesting the use of the TLS criterion is 
the Toeplitz and Hankel structures of the matrix Y. Although 
they are not taken into account in the least squares optimiza­
tion process, the Constrained Total Least Squares (CTLS) cli­
terion is able to consider those structures [12], [16]. 

It is demonstrated in the appendix A that the application 
of the CTLS criterion to the minimization of energy of the 
FBLP error leads to the following problem 

(14) 

As B has rank 2(N- L), the solution to problem (14) is 
[12] 

(15) 

5. THE FBCTLS METHOD 

Problem (15) refers to the kth snapshot. When all the K 
snapshots are considered, it is desirable to have the same bot 

solution for all of them, since signal and noise are stationary 
and DOA angles are the sanae for all the snapshots, imply­
ing, as shown by equations (34) and (42), in Appendix A, 
that both P and B matrices will also be the sanae for all the 
snapshots. 

One possible strategy is to ntininiize the sum of the terrus 
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in equation (15) fork= 1, ... , K, leading to 

bot= argm~n { bH t, [Yf (BHP-1B)-
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Yk] b} 

(16) 
It is shown in Appendix B that problem (16) can be written 

as 

b 0 t, = argmin {bHDHDb} subject to bo = -1 (17) 
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where D is a matrix with dimensions 4M ( N - L) x 
(L + 1). This is a fourth order minimization problem with 
respect to b. · 

An iterative algorithm will now be presented to solve prob­
lem (17). In the first step we adopt B = I and calculate the 
corresponding matrix D. Therefore, the minimization prob­
lem is reduced to a second order one whlch can be solved us­
ing the QR decomposition [5]. This procedure leads to a first 
value to b, which is used to update the B and D matrices. In 
the second step, a new value forb is calculated using the up­
dated matrix D, and so on for the next steps. In general, three 
such steps are sufficient for an adequate convergence [5], [6]. 

In order to calculate the solution to the second order min­
imization problem at each step of the iterative algorithm, 
we take into account the constraint bo = -1 writing b = 
[-11)Tf. Then the problem at each step can be written as 

bHDHDb = IIDbll; (18) 

= 11-D, +Dz7JII; 

where D = [D, D 2] , D 1 = first column of D and Dz E 
C4M(N-L) xL The minintization of expression (18) leads to 

(19) 

The QR decomposition [17] produces D 2 = QR, with 
Q E C4M(N-L)x4M(N-L)' R E c•M(N-L)xL and 

Q = [ Q, Qz l; Ql E C4M(N-L)xL 
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Then we get from (19) 

R;i' Ro1J = Rii' Q(' D, . 
Since R 0 has full rank L, we finally obtain 

as the solution for each step of the iterative algorithm. 

(20) 

(21) 

(22) 

(23) 

Once b 0 t has been calculated, the polynomial P(z) is 
formed and the corresponding zeros are calculated. The M 
signal zeros are estimated searching for those l'vf zeros closest 
to the unit circle. 

Tllis procedure was applied to an example [6] with the fol­
lowing paranaeters: number of plane waves lvf = 2, signal 
correlation matrix C = I (uncorrelated signals), number of 
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andwi = 0.8131, order of the FBLP filter L = 6, number of 
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snapshots K = 100. One hundred different experiments were 
produced with the above specifications, but with different re­
alizations for the random signal and the noise. Referring to 
expression (9), the signal-to-noise ratio (SNR) is defined as 
SNR= 1jcr2 • 

Figure 3a) presents the superposition of the zeros of the 
polynomial P(z) for the 100 experiments and SNR= 15 dB. 
There are two signal zeros close to the ideal positions de­
fined by the desired frequencies on the unit circle, whereas 
the noise zeros are distributed inside the unit circle. There­
fore, the desired frequencies can be estimated searching for 
the two zeros that are closest to the unit circle. 

I 
11 

0] . 

J 
_J 

I 

'1.5':--1 -----'-c--':'c::'+-'--!-----'-,-":-'----'-,"---'-'---.J• 
·1 .. 5 

Fignre 3. Zeros in the z-plane: a) SNR=15 dB; 
b)SNR=OdB. 

However, the variance of the zeros increases as the SNR 
decreases and for SNR < 5 dB there are noise zeros closer 
to unit circle than the signal zeros, as shown in Figure 3b. 
Therefore, the estimation strategy based on searching for the 
two zeros that are closest to the unit circle leads to poor per­
formance for small values of the SNR. 

We adopted another criterion for the selection of the signal 
zeros to overcome this problem. We select the lvf signal zeros 
as those that minimize the maximum likelihood cost function 
for the DOA problem, given by [6] 

where A is formed by the arguments of the zeros to be tested. 
For each group of j\1[ zeros among the L zeros obtained at 
each experiment, we form the corresponding A matrix and 
calculate J(w). 

Figure 4 shows the results achieved with the proposed pro­
cedure applied to the example with L = 7. This value of 
L maximizes the performance. The root mean square er­
ror is calculated for both frequencies after 100 different ex­
periments and for various values of the SNR. Figure 4 also 
presents the performance of the methods MODE [5] and 
MODEX[6]. 

FBCTLS presents better performance than the classical 
MODE for SNR values smaller than 5 dB and is competitive 
withMODEX. 

10' 

-o.. -o. "().. 
'0. 

' ' 

'• ' • ' ' • 
' ' • ' 

' ' • 
' • 

SNR (dB) 

-a- MODE 
-- MODEX 
-o- FBSTLS 

Fignre 4. Root mean square error as a function of the SNR 
for FBCTLS, MODE and MOD EX. 

In order to compare the computational complexity of the 
three methods, we observe that MODE and MODEX solve 
problems similar to (17). But MODEX and FBCTLS use 
L > M, whereas MODE uses L = M. So MODE is the 
most economical in this part of the algorithm. MODE is also 
the most economical when searching for the signal zeros be­
cause it uses L = Nf, that is, just the signal zeros. On the 
other hand, MOD EX and FBCTLS use the maximum likeli­
hood cost function in (24) to select the signal zeros. There­
fore, MODE is the most economical in terms of computa­
tional complexity. 

The comparison between MOD EX and FBCTLS is not an 
easy task. MODEX search for the signal zeros in a ensem­
ble composed by (L + NI) zeros, while FBCTLS uses L ze­
ros. Thus MOD EX is less economical than FBCTLS as it de­
mands additional efforts to execute the MODE and to search 
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for the signal zeros. On the other hand, the matrices in prob­
lem (17) for the FBCTLS have larger dimensions then those 
related to MOD EX. Therefore, a detailed quantitative analy­
sis is necessary to compare the numerical complexity of both 
methods, but that is beyond the scope of this paper. 

6. CONCLUSIONS 

We proposed a DOA method, FBCTLS, based on forward­
backward linear prediction and the Constrained Total Least 
Squares criterion. 

The proposed procedure leads to a minimization problem 
similar to that presented by some popular maximum likeli­
hood methods. The solution was achieved by means of an 
iterative algorithm similar to the one employed in the MODE 
and MOD EX methods. 

Numerical comparisons showed that FBCTLS and 
MODEX perform similarly and that both are better than 
MODE. However, both demand additional computational ef­
fort when compared to MODE. 
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7. APPENDICES 

A. SOLUTION TO THE CTLS PROBLEM 

The application of the CTLS criterion to the minimization 
of the energy of the FBLP error leads to following problem 
[12]: 

min II~YII 
(L'.Y,b) F 

(25) 

subject to (Y +~Y)b = 0 (26) 

where 

[ ~yf l ~y = (~Y')* (27) 

~yf = [F{~y ... Ff+l~yJ (28) 

~yo= [F~~y ... Ft+,~YJ (29) 

~y = [~y(l) ... ~y(N)JT . (30) 

The vector ~y is composed of independent variables rep­
resenting perturbations to the vector y. The matrices 

Ff E n<N-L)xN and F' E n(N-L)xN 

' ' (31) 

i = l, ... ,L+ 1 

are composed by "ones" and "zeros" describing the structures 
of the matrices yf andY', respectively. Each row has (N-
1) "zeros" and just one "one", whose position is chosen to 
assure that 

(32) 

and 

(33) 

The matrices ~ Y f and ~ Y' are composed by the pertur­
bation variables of ~y and present the same structure of Y f 
and Y 0, respectively. 
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Referring to [[D. Y[[F in problem (25) and using expres­
sions (27), (28), (29) and (30), it is possible to write 

(34) 

where 

t:.yfb = [ e:.~ l 
C:.y 2Nxl 

(35) 

B. TRANSFORMATION OF THE CTLS 
PROBLEM 

Problem ( 16) is repeated here for convenience: 

bot= argm~n { bH ~ [Yf (BHP-'Br' Yk] b} 

(46) 

p = diag [p, ··· PN PI ··· PN]2Nx2N 

We will inttoduce some modifications in equation ( 46). It 
(36) can be verified that 

and the real numbers Pi, ( i = 1, ... , N) are weighting factors 
that take into account how many times C:.y(i) and C:.y(i)* 
appear in D. Y. 

Referting to equation (26), it is possible to verify that 

(37) 

Let 

[ 

H 
f L+I f 

Bt = -F1 + I; F, b,_1] 
•=2 (N-L)xN 

(38) 

[ 
LH ]H 

Bb = -Fi + I; Fib,_, . 
l=2 (N-L)xN 

Then 

[ ·: 
bL-1 b, -1 0 :r h bz b, -1 

Bt = 

0 -1 
(39) 

Bb =JBtJ (40) 

where J is a permutation matrix. 
Using these matrices and expression (27), it is possible to 

write 

- [ B_f 0 l [ C:.y l (D. Y) b - 0 B£' C:.y* . (41) 

Let 

BH - [ B_f 0 l (42) 
- 0 B£' 2(N-L)x2N . 

Using (41), (42) and (35), expression (26), can be written as 

Yb + BH t:.yfb = 0 . (43) 

Finally, using expressions (34) and (43) in problem (25) 
results 

min {(t:.yfb)H p t:.yfb} (44) 
(b,"yfb) 

Ykb = BHy{b. (47) 

Applying expression ( 4 7) into expression ( 46) yields 

bot= 

= argm~n L~, [ (y[bt B (BHP-1Br' BHy{b]} 

= argm~n trace { B (BHp-l BH) _, BH:iitb} 

where 
K 

- fb _ " fb ( !b) H Ry - L..JYk Yk 
k=l 

(48) 

(49) 

is a correlation estimator, except for a normalizing constant. 
Problem (48) is the same as those obtained in [5], [6], [3] 

and [18], where the maximum likelihood criterion is used for 
the estimation of the frequencies w. 

Now a subspace restriction is used to reduce the effect of 
the noise in the :iitb matrix, following a procedure inspired 
by the one presented in [5]. 

Consider the singular value decomposition of the matrix 
- fb Ry 

iW = U:EUH (50) 

where 

u = [u, ... u2N] ; uHu =I 
(51) 

and u, are the singular vectors and>., are the singular values 
ordered from the largest one to the smallest one [15]. 

In the case ilk = 0 and forK -+ co, it is shown in [15] 
that.._ .A, = 0 for 2M + 1 :S i :S 2N. Imposing this condition 
on RCbof ( 49) produces 

(52) 

where 

Us=[u, ... UzM]; ~s=diag(a, ... CY.2Ml 

( 

2N )2 I; An 
1 n=2M+l . a, = -;- >., - 0f iVI ; ' = 1, ... , 2NI . 
Ai 21 - 21 

(53) 

subject to Yb + BH t:.yfb = 0 
This modification aims to reduce the effect of the noise on 

(45) iitb, by elintinating the participation of the noise subspace. 
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The values adopted for a,, 1 :o; i :o; 2M, reduce the effect 
of the noise on the remaining singular values A i belonging to 
the signal subspace [6]. 

Using the results of (52) into expression (48) results 

hot= 

= argm~n trace { B (BHP-1Br' BH Us:EsU:if} 

(54) 
Let Us (:Es)0

'
5 = V. It can be verified that BHV = 

[81b ... 82Mb] where 

VL+l,i VI,i 

8,= VN,i VN-L,i 

VN+l,i VN+L+l,i 

V2N-L,i V2N,i 

Substituting these results into equation (54) yields 

bot= 

= argm~n trace { (BHP-1B)-
1 

BHVVHB} 

= argm~n trace { (81b ... S2Mb]H (BHP-1B) - 1 

[81b ... 82Mb]} 

Considering the Cholesk:y decomposition 

BHP-1B=GHG 

problem (56) can be written as 

bot= argmbin trace { [81b ... 82Mb]H 

G-1 (GHr
1 

[81b ... 8zMb]} . 

But 

and 

_ [( H)-1 ( H)-1 l - G 81b ... G 82Mb 

trace { [(GH)-
1 

81b ... (GH)-
1 
82Mbt 

[(GH)-
1

81b ... (GH)-
1

S2Mb]} = 

where 
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(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

Using (61) into problem (58), we have 

bot= argmin {bHDHDb} subject to bo = -1. (62) 
b 

The minimization in problem (62) is subjected to b o = -1 
in agreement with the definition of vector b. 
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