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Abstract - This paper presents two general fading
distributions - the x-¢ Distribution and the 7-¢ Distribution.
The x-p Distribution includes the Rice and the Nakagami-
m distributions as special cases. The n-g Distribution
includes the Hoyt and the Nakagami-m distributions as
special cases. Therefore, in both fading distributions, the
One-Sided Ganssian and the Rayleigh distributions also
constitute special cases and the Lognormal distribution may
be well-approximated. Preliminary results show that these
new distributions provide a very good fitting to
experimental data.
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Resumo - Este artigo apresenta duas distribuiges gerais de
desvanecimento — a Distribui¢io x-g e a Distribuigao 128
A distribuico x-y engloba as distribuigdes de Rice e
Nakagami-m como casos especiais. A distribuigdo 7-¢
engloba as distribuices de Hoyt e Nakagami-m camo casos
especiais. Conseqiientemente, em ambas as distribuigfes de
desvanecimento, as distribui¢Ses de Rayleigh e Semi-
Gaussiana Positiva - também sio obtidas como casos
especiais e a distribvigdio Log-normal pode ser obtida de
forma aproximada. Resultados preliminares mosiram que
estas novas distribui¢des proporcionam um bom ajuste com
dados experimentais.

Palavras-Chave:  distribuigdes de  desvanecimento,
distribuicio de Nakagami, distribuigdo de Rayleigh, Rice
distribution,  distribuicio  Semi-Gaussiana  Positiva,
distribuicio de Hoyt, distribuigdo Lognormal.

1. INTRODUCTION

The propagation of energy in a mobile radio environment
is characterized by incident waves interacting with surface
irregularities via diffraction, scattering, reflection, and
absorption. The interaction of the wave with the physical
structures generates a continnous distribution of partial
waves [1], with these waves showing amplitudes and phases
varying according to the physical properties of the surface.
The propagated signal then reaches the receiver through
multiple paths. If the waves are not resolvable within the
available bandwidth or if an appropriate signal treatment is
not carmried out, the result is a combined signal that fades
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rapidly, characterizing the short term fading. For surfaces
assumed to be of the Gaussian random rough type, universal
statistical laws can be derived in a parameterized form [1].

A great number of distributions exist that well describe
the statistics of the mobile radic signal. Extensive field
trials have been used to validate these distributions and the
results show a very good agreement between measurements
and theoretical formulas. The long term signal variation is
well characterized by the Lognormal distribution whereas
the short term signal variation is described by several other
distributions such as Rayleigh, Rice, Nakagami-m, and
Weibull, though to the latter, originally derived for
reliability study purposes, little attention has been paid. It is
generally accepted that the path strength at any delay is
characterized by the short term distributions over a spatial
dimension of a few hundred wavelengths, and by the
Lognormal distribution over areas whose dimension is
much larger [2]. Three other distibutions attempt to
describe the transition from the local distribution to the
global distribution of the path strength, thus combining both
fast and slow fading. These composite (or mixed)
distributions assume the Iocal mean, which is the mean of
the fast fading distribution, to be lognormally distributed.
The best-known composite distributions are Rayleigh-
lognormal, also known as Suzuki, Rice-lognormal, and
Nakagami-m-lognormal.

In fact, the Rayleigh distribution constitutes a special
case of the Rice, Nakagami-m, Weibull, and of the
composite distributions and can be obtained in an exact
manner by appropriately setting the parameters of these
distributions. Nakagami-m and Rice are found to
approximate each other by some simple equations relating
the physical parameters associated to each disribution.

Among these, the Nakagami-m distribution has been
given a special attention for its ease of manipulation and
wide range of applicability [3]. Although, in general, it has
been found that the fading statistics of the mobile radio
channel may well be characterized by the Nakagami-m,
situations are easily found for which other distributions
such as Rice and even Weibull yield better results [4, 5].
More importantly, situations are encountered for which no
disributions seem to adequately fit experimental data,
though one or another may yield a mederate fitting. Some
researches [5] even question the use of the Nakagami-m
distribution because its tail does not seem to yield a good
fitting to experimental data, better fitting being found
around the mean or median.

The well-known fading distributions have been derived
assuming a homogeneous diffuse scattering field, resulting
from randomly distributed point scatterers. With such an
assumption, the central limit theorem leads to complex
Gaussian processes with in-phase and quadrature Gaussian
distributed variables x and y having zero means and equal
standard deviations. In case one cluster of multipath wave is
considered then the Rayleigh distribution can be obtained.
If a specular component predominates over the scattered
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waves, then the Rice distribution is accomplished. The
Nakagami signal can be understood as composed of clusters
of multipath waves so that within any one cluster the phases
of scattered waves are random and have similar delay times
with delay-time spreads of different clusters being relatively
large. The assumption of a homogeneous diffuse scattering
field is certainly an approximation because the surfaces are
spatially correlated characterizing a non-homogeneous
environment [1].

This paper presents two general fading distributions - the
k-p¢ Distribution and the 7-g Distribution. The x-u

Distribution includes the Rice and the Nakagami-m -

distributicns as special cases. The 1-x Distribution includes
the Hoyt and the Nakagami-m distributions as special cases.
Therefore, in both fading distributions, the One-Sided
Gaussian and the Rayleigh distributions also constitute
special cases and the Lognormal distribution may be well-
approximated. Preliminary results show that these new
distributions provide a very good fitting to experimental
data.

2. THE x-u DISTRIBUTION

The x-u distribution is a general fading distribution that
can be used to represent the small scale variation of the
fading signal. For a fading signal with envelope r and

normalized envelope p=r/#, #=+Elr’} being the rms
value of r, the xpt probability density function p(p) is

written as

p+l

olo)= Zﬂlﬂc)_

K 2 exp(ux)
xI H_l(z K‘(1+K)p)

where x =0 is the ratio between the total power of the
dominant components and the total power of the scattered

o exp-pfi+x)p?)

(1)

. > 0 3 14+2x
waves, MU 7 is pgiven by jpi= vl 2 m(1+x)2 (or
equivalently, u= XA é’“z’;z Y and I,() is the

modified Bessel functmn of the first kind and arbitrary
order v (v real),

For. a fading signal with power w=r2/2 and

normalized power @ = w/W , where W = E(w), the xpu
probability density function p(co) is given by

(1+K)_
KT explun)
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In particular, we may also write U= (or

14+2x

W (m:)z

equivalently p =

21 PHYSICAL MODEL: x-u DISTRIBUTION

The fading model for the x-u Distribution considers a
signal composed of clusters of multipath waves propagating
in an non-homogeneous environment. Within any one
cluster, the phases of the scattered waves are random and
have .similar delay times with delay-time spreads of
different clusters being relatively large. The clusters of
multipath waves are assumed to have the scattered waves
with identical powers but within each cluster a dominant
component is found that presents an arbitrary power.

2.2 DERIVATION OF THE x-u DISTRIBUTION

Given the physical model for the x-i Distribution the
envelope, the envelope r can be written in terms of the in-
phase and quadrature components of the fading signal as

2 n 2 L3 2
P =30+ )+ 20 +a) (3)
i=] i=1
where x; and y; are mutually independent Gaussian

processes with E(x;)= E(y;)=0, E(xi?‘ )= E(y? )= c?,
and p; and g; are respectively the mean values of the in-
phase and quadrature components of the multipath waves of

cluster ;. Now, we form the processes &; = (x,- + p; )2 and

w; ={y; +q; Y. so that
2 n n
=1 =%& + Xy
i=1 i=1

Define p(;) and ply;) as the densities of £; and v,
respectively. In such a case

452 L. 5
p(fLi)z_- 1 exp| — Ai +5i cosh —‘J_ISI
276 202 c?

where A; =&; and s5; = p; or A; =y; and 5; =¢; The
Laplace transform L[p(li )] of p(A;) is found in an exact
manner as [6, page 1026, Eq. 29.3.77]

1 2
Llp(;)l= exp| ———
V1+202% 1+20%s

where 5 is the complex frequency (Laplace variable).
Knowing that & and w,;,i=1,2, .., n are mumwally
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independent, the Laplace transform L[p('y)] of p('y) is
found as a 2n -fold multiplication of L[p (y)] . Therefore

2
:—I(P +a; )

1+2s0?

) S ——

(1+2sa2)’ |

whose inverse is given by [6, page 1026, Eq. 29.3.81]

a1
2
y ¥+ E(P; +q )
——— exp —aan.m—i_-—"-—————
2 n 2
(p7+4?) 2
= )
n
) 24 g?)
xI, =
n 1 0_2
It is not difficult to show that
?2=Elr J 2ng? + 3¢ ¢?, where ¢? =p} +q?. In the

same way it can be shown that
E[r4]= 4no® + 40‘22:-;161-2 + [chrz X5 sz]z .

Thereforé Var( ) anc® + 40 ancz .
We define
=1 ":2

K=
2

2ng

Note that x is the ratic between the fotal power of the
dominant components and the toral power of the scattered
waves. Then

E22)_ (ex)
Var(rz) - (1+2x)

(3)

Note from (5) that n may be totally expressed in terms
of physical parameters such as mean squared value,
variance of the power, and the ratio of the total power of the
dominant components and the total power of the scattered
waves of the fading signal. Note also that whereas these
physical parameters are of a continuous nature, n is of a
discrete nature. It is plausible to presume that if these
parameters are to be obtained by field measurements, their
ratios, as defined in (5), will certainly lead to figures that
may depart from the exact n. Several reasons exist for this.
One of them, probably the most meaningful one, is that,
although the model proposed here is general, it is in fact an
approximate solution to the so-called random phase
problem, as are approximate solution to the random phase
problem all the other well-known fading models. The
limitation of the model can be made less stringent by
defining u as

2

_E?) 1eax

B Var(r2 ) (1 + rc)2 ©

4 being the real extension of » . Non-integer values of the
parameter ;1 account for a) non-zero correlation among the
clusters of multipath components and b) non-Guassianity of
the in-phase and quadrature components of the fading
signal. (We note that in derivation of the Nakagami-m
model [7], the parameter », which describes the number of
“component signals” [7], therefore discrete, is also written
in terms of the Nakagami confinuous parameter m as
m=nf2) It has been observed experimentally by

Nakagami (7] that E*r )>% Therefore, for the wxu
ar\r -
Distribution
2
ﬁ”(1+_7()_2_1“ (7
1+2x 2

with £k =0 and g =0. Being of an experimental nature

{7]. the constraint of Equation 7 does not necessarily need
to be observed. In fact, the distribution can be used for u

assuming any real value 20 and x 20, as already

observed. Using the deftnitions and the considerations as
above and by means of a transformation of variables and a
series of algebraic manipulations, the x-g¢¢ probability
density function of the envelope can be written from (4) as

ull+x)72

) o]
)

In the same way, the probability density function of the
power is given as

iplr)=
®)

]~

xfﬂ_l(z,um

)T

wp(w)=—1 3 )[:W-]#T—l exp[- i+ K{%D

x % exp(pic

ool

Equations (8) and (9) in their normalized forms are
respectively given by (1) and (2).

®

2.3 THE x-u DISTRIBUTION AND THE
OTHER FADING DISTRIBUTIONS

The x~u Distribution is a general fading distribution that
includes the best known fading distributions, namely Rice
and Nakagami-m distributions. Note that both Rice and
Nakagami-m include the Rayleigh distribution and the
Nakagami-m includes the One-Sided Gaussian. Therefere,
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these distributions can also be obtained from the &
Distribution. The Lognormal distribution may also be well
approximated by the x-g Distribution.

2.3.1 RICE AND RAYLEIGH

The Rice distribution describes a fading signal with one
cluster of multipath waves in which one specular
component predominates over the scattered waves.
Therefore, by setting g =1 in (1), the xu Distribution
reduces to

plo)= gegl:;i;))pexp(-(1+x)p2)10(2 K(l+1{)p) (10)

which is the Rice probability density function for the
normalized envelope. In this case, the parameter x
coincides with the well-known Rice parameter k. Now
setting Kk =0 in (10) (therefore, £t =1 and x — 0 in the

k-y Distribution) the Rayleigh distribution can be obtained
in an exact manner. Moreover, for x = m—-1+1/m(m—1)

in (10) (therefore n=1 and Kk =m—1+/m(m—1) in the
it Distibution), where m is the Nakagami parameter, the
Nakagami-m distribution can be obtained in an approximate
MAnner.

2.3.2 NAKAGAMI-M, RAYLEIGH, AND ONE-SIDED
GAUSSIAN

The Nakagami-m signal can be understood as composed
of clusters of multipath waves with no dominant
compenents within any cluster. Therefore, by setting x =0
in the x-p Distribution it should be possible to obtain the
Nakagami-m distribution. We note, however, that, apart
from the case g =1, which has been explored in the

previons subsection, the introduction of k¥ =0 in the xp
Distribution leads to indeterminacy (zero divided by zero).
For small arguments of the Bessel function the relation

I,.1(z)=(2/2)* /T(u} bolds [6, page 375, Eq. 9.67].
Using this in (1}, and after some algebraic manipulation,

2 +K)T
(o =;p—(£x+)r%pz“ Lexplep@+x)p?)  a)
As x = 0 (11) reduces to
2u# a
p(p)=r—‘(‘ﬂ-5p2“ el 1p?) (12)

which is the exact Nakagami-m density function for the
normalized envelope. In this case, the parameter g

coincides with the well-known Nakagami parameter m.
Now setting gt =1 in (12) (therefore, x =1 and ¥ — 0 in

the x-it Distribution) the Rayleigh distribution can be
4

obtained in an exact manner. In the same way, by setting
@ =0.5 in (12) (therefore, 1t=0.5 and ¥ — 0 in the &gt

Distribution) the One-Sided Gaussian distribution can be
obtained in an exact manner. Moreover, for

,u=(1+k)2/(1+2k) in (12) (therefore x —0 and

n= (1+.Fc)2 / (1+2k) in the x-y Distribution), where & is
the Rice parameter, the Rice distribution can be obtained in
an approximate manner. The Lognormal distribution, given
as a function of m in (12) of [7], can also be approximated
by the x-¢t Distribution for el g p<e,and for x =50

and f=m.

2.4 APPLICATION OF THE »xu
DISTRIBUTION

The x-g Distribution, as implied in its name, is based on
two parameters, ¥ and u . Its use involves a procedure

similar to that of the other distributions, as explained next.
From (6), it can be seen that the two parameters ¥ and u

can be expressed in terms of the ratio between the mean
squared value and the variance of the power, which is
usually defined as m. In other words

2
1+2x
For a given m, the parameters x and {i are chosen that

vield the best fitting. Note, on the other hand, that, for a
given m, the parameter tt shall lie within the range m and

0, obtained for x =0 and x — <o, respectively. Therefore,
for a given m
0<pusm (14)

The parameter p is then chosen within the range of (14).
Given that it has been chosen, then x must be calculated

k=214 22
p wlp

so that the relation as in (13) be kept.

as

1)

2.5 SAMPLE EXAMPLES OF THE x-u
DISTRIBUTION

This section shows some plots of the x-pt Distribution.
Fig. 1 and Fig. 2, respectively, depict a sample of the
various shapes of the k-1t probability density function p(p)
and probability distribution function P(p) as a function of
the normalized envelope p for the same Nakagami
parameter m=0.5. Fig. 3 and Fig. 4 do the same but for
m=0.75; and Fig. 5 and Fig. 6, for m=1.0; and Fig. 7 and
Fig. 8, for m=1.25; and Fig. 9 and Fig. 10, for m=1.35.
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The plots are illustrated for x —eo,x =8.47, 3.43, 1.72,
0.81, and x —0 (which in decibels correspond to
approximately +eo, 9.28, 5.35, 2.36, -0.92, and -== dB). The
corresponding values of [t are respectively:

e (,01,02,03,04,and0.5, for Fig. | and Fig. 2;

s (,0.15,0.3,045, 0.6 and 0.75, for Fig. 3 and Fig. 4;

e 0,02, 04,06,0.8and I, for Fig. 5 and Fig. 6;

e 0,0.25,0.5,0.75, 1 and 1.25, for Fig. 7 and Fig. 8;

e 0,0.3,0.6,09,12, and 1.5, for Fig. 9 and Fig. 10;

In addition, in Fig. 9 and Fig. 10, the curve for x = 1.37
(=1.36 dB) was plotted with p=1.

The curves for which x — 0 ceoincide with the
Nakagami-m curve, in which case iy =m . The curves for
which # =1 coincide with the Rice curve for which
K=k.

It can be seen that, although the nommalized variance

(parameterm ) is kept constant for each Figure, the curves
are substantially different from each other. And this is

0.8 E
MNakagami

06 R

p(p}

04 F E

02 R

0.5 1.0 1.5 2.0 25 3.0

Figure 1. A sample of the various shapes of the x-u
probability density function for the same Nakagami
parameter m=0.5.

particularly relevant for the distribution function, in which
case the lower tail of the distribution may yield differences
in the probability of some orders. This feature renders the
k-t Distribution very flexible and this flexibility can be
used in order to adjust the curves to practical data.

2.6 COMMENTS ON THE -1 DISTRIBUTION

A new general fading distribution — the s~y Distribution
— has been presented. It models a signal composed of
clusters of multipath waves propagating in a non-
homogeneous environment. Within any one cluster, the
phases of the scattered waves are random and have similar
delay times with delay-time spreads of different clusters
being relatively large. The clusters of multipath waves are
assumed to have the scattered waves with identical powers
but within each cluster a dominant component is found that
presents an arbitrary power, The distribution includes the
One-Sided Gaussian, the Rayleigh, and, more generally, the
Nakagami-m and the Rice distributions as special cases and
offers a higher degree of freedom.

10° 1

10

P(p)

Nakagami

107 L 1 L 1 : 1 L
-30 -20 «10 0 10

20 log(p)

Figure 2. A sample of the varous shapes of the x-u
probability distribution function for the same Nakagami
parameter m=0.5.
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1.0 . ; . . . 10°
0.8 Nakagami B
107 E 7
06 - C ]
s )
=% o
0.4 - Nakagami
107 E
0.2 -
D.O 1 ] L] L] 103 , 1 1 1 L] 2
0.0 0.5 1.0 1.6 2.0 2.5 3.0 =30 -20 -10 8] 10
P 20 log(p)

Figure 3. A sample of the various shapes of the x-i Figure 4. A sample of the various shapes of the x-g
probability density function for the same Nakagami probability distribution function for the same Nakagami
parameter m = 0.75. parameter m=(.75.

1.0 T [ T T 1 10 E

Rayleigh

107 |

P{p)

Raylaigh

10° ¢

10"‘ 1 1 5 1 z i
3.0 -30 -20 =10 0 10

P 20 log(p)

Figure 5. A sample of the various shapes of the x-u Figure 6. A sample of the varions shapes of the xu
probability density function for the same Nakagami probability distribution function for the same Nakagami
parameter m=1.0. parameter m=1.0.
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plp)

Figure 7. A sample of the various shapes of the wxu

probability density function for the same Nakagami

parameter m=1.25.

1.0 |- Nakagami
Rice

0.8

0.6 &

pip)

0.4

0.2

1.0 15 2.0 25 3.0

Figure 9. A sample of the various shapes of the x-pt
probability density function for the same Nakagami
parameter m=1.5.

Ple)

-4 : L N 1 . 1

-30 -20 -0 0 10
20 log{p)

Figure 8. A sample of the various shapes of the xut
probability distribution function for the same Nakagami
parameter m=1.25.

F(p)

10-5 I i 1 1 . 1 i
-30 -20 -10 0 10

20 log{p)

Figure 10. A sample of the various shapes of the wxpu
probability distribution function for the same Nakagami
parameter m=1.5.
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3. THE n-u DISTRIBUTION

The 7-4t distribution is a general fading distribution that
can be used to better represent the small scale variation of
the fading signal. For a fading signal whose envelope is »
and whose envelope p normalized with respect to the rmns

-

value is given by p =r/F, F=+E r2

density function p(p) is written as

, the 1-4 probability

HNapht
T(u)H*

plp)=——— p exp( 2ukp )

(16)
I (2;:}1 2)
xI, .l fo
247 4y nten Ez(rz) 1472
h = = =
where h " H T M Var(rz) T (or
2
equivalently, p:;}_l(a—z]x (Ez)z ), T() is the Gamma

function, I, () is the modified Bessel function of the first
kind and arbirary order v (v real), £20 and 0<7 <1.
{(In fact, the distribution is symmetrical for 157 <00, Or

equivalenfly 0s<n™' <1, in which case H= _”

Therefore, more generally, we may write 0<7 <oe and
=|n—n_1l/4. But, due to the symmetry around 1, it

suffices to consider n within one of the ranges only, the
range 0 £7 <1 being preferable for its compactness.)

For a fading signal with power w= r? / 2 and normalized
power ® = w/w , where W = E(w), the 7-i probability
density function p(co) is given by

)= 2

"7 expl-2pho)

r(u)H“ ?
a7
xI i (2uHo)
=
In particular, we may also write g = i—r({‘:%x T {or
+17
equivalently pt = m:a 1+17)_)

3.1 PHYSICAL MODEL: n-u DISTRIBUTION

The fading model for the 17-u Distribution considers a
signal composed of clusters of multipath waves propagating
in an non-homogeneous environment. Within any one
cluster, the phases of the scattered waves are random and
have similar delay times with delay-time spreads of
different clusters being relatively large. The in-phase and

8

quadrature components of the fading signal within each
cluster are assumed to have different powers.

3.2 DERIVATION OF THE - DISTRIBUTION

Given the physical medel for the n-u Dismibution the
envelope rcan be written in termns of the in-phase and
quadrature components of the fading signal as

2 =3 (2 +52) (18)

i=l

where x;

processes with E(x; )= E(y;)=0,

and y; are mutually independent Gaussian
E(x,?' )= o2 and
E(yiz)=0'§. Now we form the process riz = x,?' + y,?, 80
= ilr,-z . In the same way, we may write w= §1Wi )
i= i=
where w =72 / 2 and w; = rl-?‘ /2. %We proceed to find the

density of # . This can be carried by following the standard,
but long and tedious, procedure so that

p(,})=_w/iziw[_(l+ngrf} [(7? 1)7,]
o Jo 4o, ‘ 40';

where n=0'3_°f / 0'3 and [ () is the modified Bessel
function of the first kind order zero. Note that 0 <7 <1

that 72

. ey . 2 )
defines the region within which oy <o}, whereas,

0 <n~! <1 defines the region within which 0'5 s 0'_3 Jtis

A
possible to show that 7 =E (r;-z )= (1 +n7t )03 . Therefore

2 2
2Jhr . .
Azr[ exp|—h f—‘ Io| H Trt—
) o o

where h and H are as previously defined. The density
plw;) of the power w; is easily found by a simple
transformation of variables and it is given by

(wz)-ﬂexp[-h—-]ro[“‘””= ]
W Wy Wo

where Wy = E(w;). The Laplace transform Llp(w;)] of
plw; ) is found in an exact manner as [6, pag. 1025, Eq.

29.3.60] i
A

s+ b P~ (Efmo

pli)=

Llp(w;)]=

Knowing that w;, i = 1, 2, ..,
Laplace transform L{p(w)] of p(w) is found as

n, are independent, the
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it

i/,
N+ P - (1

Lp(w)]=

whose inverse is given by [6, pag. 1025, Eq. 29.3.60]

z nl
Jmh? w2 hw Bw
=0 Aw | A5 |5
H)7 TE)\™ o) F M

We note, however, that # = E(w)= ¥ . Therefore

(W)

n+l n -1

wp(w)= %(%]T exp(—i"_’i"iJ

X‘In—l[_ngﬁ}

2

(19)

The corresponding density of the envelope is found to be

J

ntlon
2fmn 2 B2 (F Y
=—'—”;1—[?7] exp -nh[
a)7 1)

, 2
X1y HH[TJ
ZL \

From Equation 18 we find that E(r2)= n(1+n)0'§ and

-~

CPo(r)

~]

(20)

Var(r2)= 211(1 +n2)0'; . Thus

EZ? _n, 1+n)?
1+n2

(21)
Varlr?) 2

Note from Equation 21 that x/2 may be totaily
expressed in terms of physical parameters such as mean
squared value, variance of the power, and power of the in-
phase and quadrature components of the fading signal. Note

also that whereas these physical parameters are of a
continuous nature, n/2 is of a discrete nature (integer
multiple of 1/2). Tt is plausible to presume that if these
parameters are to be obtained by field measurements, their
ratios, as defined in Equation 21, will certainly lead to
figures that may depart from the exact n/2. Several reasons
exist for this. One of them, probably the most significant
one, is that, although the model proposed here is general, it
is In fact an approximate solufion to the so-called random

phase problem, as are approximate solution to the random
phase problem all the other well-known fading models. The

limitation of the model can be made less stringent by
defining ¢ as

EZ(J"Z)>< I+’l’]2

- Vai"(r2 ) (1 +1f])2 @2

]

U being the real extension of n/2. Values of u that
differ from multiples of 1/2 account for a) non-zero
correlation among the clusters of multipath components and
b) non-Guassianity of the in-phase and quadrature
components of the fading signal. (We note that in derivation
of the Nakagami model [7], the parameter =, which
describes the number of “‘component signals”, therefore
discrete, is also written in terms of the Nakagami
continuous parameter m as m=n/2.) It has been observed
experimentally by Nakagami [7] that

52{2

=
Varlr®

=

Therefore, for the 1-u Distribution

2
le 2%
2 2
1+ 2
with
0<n<1 24

for equivalently 0 Sn"l <1). Being of an experimental
nature [7], the constraint of Equation 23 does not
necessarily need to be observed. In fact, the distribution can
be used for p assuming any real value (=20 and

0< 1 £1, as already observed.
The probability density function of the envelope can be
1
o Amut IR
pl(r)= avmp nh

written as
2 2
r(wa ™ ’

5] |

In the same way, the probability density function of the
power is obtained as

=]~

iy 1y w
O Ta I ST
Mt " ”
(26)
2pH
o)

which, in the normalized form, are given as in Equations 16
and 17, respectively.
S
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3.3 THE 5-u DISTRIBUTION AND THE
OTHER FADING DISTRIBUTIONS

The -4 Distribution is a general fading distribution that
includes the Hoyt, the One-Sided Gaussian, the Rayleigh,
and, more generally, the Nakagami distributions as special
cases. Rice and Lognommal distributions may also be well-
approximated by the n-g Distribution. We note that the
One-Side Gaussian and the Rayleigh distributions can be
obtained from the Nakagami distribution by setting the
Nakagami parameter m=05 and m=1, respectively.
Therefore, in order to relate the 1~y Distribution with these
two distributions it suffices to relate it with the Nakagami
one.

3.3.1 HOYT, ONE-SIDED, AND RAYLEYGH

The Hoyt distribution can be obtained from the n-u
Distribution in an exact manner by setting i =}é. From

the Hoyt distribution the One-Sided Gaussian is obtained
when 11 — 0. In the same way, from the Hoyt distribution

the Rayleigh distribution is obtained when 11 =1.

3.3.2 NAKAGAMI-M, RAYLEIGH, AND ONE-SIDED
GAUSSIAN

The Nakagami distribution can be obtained in an exact
manner from the 7-4 Distribution for g=m and 1 — 0
(or equivalently 77 — <) or, in the same way, for y = m/2
and 77 — 1. This result is not straightforwardly seen from
the densities here derived. We observe, nonetheless, that for
these conditions all the Gaussian variates present identical
variances and the fading model proposed here deteriorates
into that of [8], where the Nakagami distribution is obtained
in an exact manner. For intermediate values of 77 the 7-it
distribution and the Nakagami distribution relate to each

ul+n)
1+1','2
which shows that an infinite number of curves of the 7-g¢
distribution can be found that presents the same Nakagami
parameter m, conditioned on the fact that the constraints

. hﬂ—l
m

m/ZS,LLSm and T]='£n—;";"—— are

it

other for =m_ This is a very interesting result

satisfied. The

Lognormal distribution, given as a function of m in
Equation 13 of [7], can also be approximated by the 7-1
Distribution for e !<p<e, and for 7, i, and m
satisfying the relations given above for the Nakagami case.
In the same way, an infinite number of curves of the 7-g
Distribution can be found that presents the same Nakagami
parameter for the Lognormal distribution. The Rice
distribution can be approximated by the 77-£¢ distribution for

plnf _ el

>0 .
Lo’ T where &£ >0 is the Rice parameter. In the

same way, this result shows that an infinite number of
curves of the n-u Distribution can be found that presents
the same Rice parameter &, conditioned on the fact that the

10

constraints

) 7
(+kF /2 < < Gk}
i+ 2k+1

and

. n =[#(1+2k) _ [z ]/[1_ ,u(1+2k)]
kP | (kY (1+k Y

are satisfied.

3.4 SAMPLE EXAMPLES OF THE n-u
DISTRIBUTION

This section shows some plots of the 1-u Distribution.
Fig. 11 and Fig. 12, respectively, depict a sample of the
various shapes of the 1-u probability density function p(p)

and probability distribution function P(p) as a function of
the normalized envelope p for the same Nakagami

parameter m =0.5 . Fig. 13 and Fig. 14 do the same but for
m=0.75; and Fig. 15 and Fig. 16, for m=1.0; and Fig. 17
and Fig. 18, for m=1.25; and Fig. 19 and 20, for
m =1.5. The plots are illustrated for 17 — 0, 17=0.005,
0.026, 0.055, 0.127, 0.225, 0382, and n —1 (which in

decibels correspond to approximately -ee, -23.01, -15.85, -
12.60, -8.96, -6.48, 4.18 and 0 dB). The corresponding
values of i are respectively:

o (.5, 0495, 0475, 045, 04, 0.35, 0.3, 0.25, for Fig. 11
and Fig. 12;

e 0.75,0.7425,0.7125, 0.675, 0.6, 0.525, 0.45, 0.375, for
Fig. 13 and Fig. 14,

e 1.0, 099, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, for Fig. 15 and
Fig. 16;

o 1.25,1.2375, 1.1875, 1.125, 1.0, 0.875, 0.75, 0.625, for
Fig. 17 and Fig. 18;

o 1.5, 1485, 1.425, 1.35, 1.2, 1.05, 0.9, 0.75, for Fig. 19
and 20;

The curves for which 7 —1 and 77 —> 0 coincide with
each other and also with the Nakagami one, as indicated in
the Figures. In such cases, we haveyt =m/2 and u=m,

respectively, It can be seen that, although the normalized
variance (parameter 1) is kept constant for each Figure, the
curves are substantially different from each other. And this
is particularly noticeable for the distribution function, in
which case the lower tail of the distribution may yield
differences in the probability of some orders. Moreover, the
curves present a very interesting feature, as described next.
For the same value of m and departing from the condition
for which 7 — 1, as 77 diminishes the curves depart from

that for which 7 — 1, initially keeping a similar shape. As
1} diminishes the shapes of the curves change substantially.
As » diminishes even further and as 17 — 0, the curves

merge with that of the initial shape but such curves present
shapes very different from those obtained as 11 — 0. This

feature renders the 77-y¢ Distribution very flexible and this
flexibility can be used in order to adjust the curves to
practical data. ‘
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Figure 11. A sample of the
probability density function
parameter m=0.5.
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various shapes of the 7-¢4 Figure 12. A sample of the various shapes of the 7-u
for the same Nakagami probability distribution function for the same Nakagami

parameter m=0.5.
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Figure 13. A sample of the
probability density function
parameter m=0.75.
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various shapes of the 7-i¢ Figure 14. A sample of the various shapes of the 7-y
for the same Nakagami probability distribution function for the same Nakagami

parameter m=0.75.
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pip)

3.0

Figure 15. A sample of the various shapes of the 7-4
probability density function for the same Nakagami
parameter m =1.0.
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Figure 17. A sample of the various shapes of the -y
probability demsity function for the same Nakagami
parameter m=1.25.

3.5 COMMENTS ON THE 5-u DISTRIBUTION

A new general fading distribution — the 1-g Distribution
—has been presented. Itmodels a signal composed of
clusters of muitipath waves propagating in a non-
homogeneous envircnment. Within any one cluster, the
phases of the scattered waves are random and have similar

12
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Figure 16. A sample of the various shapes of the n-u
probability distribution function for the same Nakagami
parameter m=1.0.

Nakagami

P(p)

-30 -20 -10 0 10
20 leg(p)

Figure 18. A sample of the various shapes of the 7-u
probability distribution function for the same Nakagami
parameter m=1.25.

delay times with delay-time spreads of different clusters
being relatively large. The clusters of multipath waves are
assumed to have the scattered waves with different powers
and no dominant component is found. The distribution
includes the One-Sided Gaussian, the Rayleigh, the Hoyt
and, more generally, the Nakagami-m distributions as
special cases and offers a higher degree of freedom.
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plp)

340

Figure 19. A sample of the various shapes of the 1-u
probability density function for the same Nakagami
parameter m=1.5.

4. CONCLUSIONS

. This paper presented two general fading distributions —

the x-p Distribution and the 1-y Distribution. The x-u
Distribution inclodes the Rice and the Nakagami-m
distributions as special cases. The 77-u Distribution includes
the Hoyt and the Nakagami-m distributions as special cases.
Further investigations, not included here, show that the
Nakagami distribution can be thought of as a mean
distribution which divides the fading plane into two: the
upper plane is then described by the x-u Distribution
whereas the lower plane is described by the 7-u
Distribution. Because these distributions are more flexible
than the other fading distributions they can yield better
fitting to experimental data.
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