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On Geostatistical Methods for Radio Environment
Maps Generation under Location Uncertainty

Ricardo Augusto and Cristiano Panazio

Abstract—Radio environment map (REM) can provide impor-
tant information for designing and optimizing the performance
of wireless communication networks. However, the location
uncertainty related to the measurements used to build the
REM can considerably deteriorate the accuracy of such map.
This paper addresses this problem by proposing a modified
approach of a classical geostatistical prediction tool, named
Kriging method, which incorporates the location uncertainty and
is able to improve the REM accuracy without adding significant
complexity. Finally, we also show through simulation results that
the average path loss and covariance parameter estimation play
an important role and should be considered when the location
errors occur in the wireless communication systems.

Index Terms—Spatial Predictions, Kriging, Location Errors,
Geostatistics.

I. INTRODUCTION

RECENTLY, there has been growing interest in the gener-
ation and use of Radio environment map (REM) in wire-

less communications systems [1-7]. Part of this is due to the
attempt to make better use of geolocation information such as
efficient use of spectral resources in wireless communications
systems [8-9]. Initially, the REM concept, proposed in [10-
11], was defined as a database with geolocalized information
applied to the dynamic spectrum access used in cognitive
radio systems. Ever since, the focus on REM has expanded
because of its potential applicability in telecommunications.
In fact, REM can be used to extract relevant information
about the behavior of the wireless channel as well as for
making decisions related to different applications in wireless
communications, such as: planning and optimization coverage
tasks [3], [6-9]; minimization of drive tests (MDT) in mobile
networks [37-40]; analysis and decision-making in cognitive
radio systems involving: resource allocation [28], detection of
coverage opportunities [5] and interference analysis in het-
erogeneous networks [29-30]; essential public safety services
related to mobile networks such as 911 calls [8] and other
specific applications, related to high speed trains [31-32], radar
systems [33] and location-estimation-problems [34-36].

It is of fundamental importance to realize that the way
each application relates to REM depends on how the location
information is used in the system model and what kind of
quantity constitutes the REM concept. In this work, we follow
the approach considered in [3-5], in which REM consists
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of a map that indicates a physical quantity of the radio
environment, the most common being the signal intensity,
i.e., radio signal power. Specifically, from a limited set of
measurements collected in the radio environment, we will use
spatial predictions for the REM generation. The applicability
of spatial predictions to wireless communications systems is
directly related to the spatial statistical characterization of the
radio environment, which is complex because of the several
propagation mechanisms of the wireless channel [21-27]. In
fact, these mechanisms will influence the received signals
and, consequently, may affect the REM generation process.
Thus, the processing of geolocalized measurements for reliable
generation of coverage maps presents itself as a challenge.
Moreover, modern wireless communication systems require
accurate and robust spatial predictions against adversities.
On the latter, a problem that has recently been investigated
consists in the study of the impacts of the location uncertainty
on the performance of the spatial predictions [41-44].

In a wireless communication system, the location infor-
mation depends mainly on the measurements sent by the
network devices as well as the network-based location esti-
mation methods, which gives an error between 50 and 300
meters, and the global positioning system (GPS), with an
error between 5 and 30 meters [8], [41]. Despite the evolution
of positioning techniques, due to channel adversities leading
to imperfect location estimation as well as inaccuracy of
measurements performed by network devices, it is reasonable
to assume that the location information involved in the wireless
communication system is not entirely accurate. Besides that,
with the growth in the use of geolocation services, especially
on the high accuracy required in public emergency services,
we can mention that there is a fundamental need to incorporate
the location uncertainty into the analysis of spatial predictions
tools applied to the wireless communications systems.

In this context, we are looking for low-complexity spatial
predictors (e.g., linear predictors), that are also robust to
the channel adversities. On this aspect, a trade-off arises
through two different approaches applied to the wireless
spatial predictions: Bayesian and classical. In the Bayesian
framework, a priori statistical distributions can be incorporated
into the model so that the predictive posteriori distribution
can be obtained, considering the uncertainties of the model
[12-13], [16-17]. This is a promising and interesting feature,
since it allows to incorporate different types of uncertainties
into spatial predictions such as location uncertainty. However,
complex integration methods are probably involved in the
search for optimal predictors in some statistical sense (e.g.,
the conditional mean of the posterior distribution) and, conse-
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quently, two important points emerge as obstacles to practical
prediction Bayesian methods [17]: First, the requirement of
a priori knowledge about the system model distributions as
well as the analytical complexity of the parameters related to
the conditional distributions necessary for the formulation of
the Bayesian approach. Second, the high computational cost
in the evaluation of the integrals to convert a specified model
and prior to a posterior or Bayesian predictive distributions. A
discussion about treatability is made in [42], in which a unified
view of the Gaussian processes and the Bayesian approach is
applied to the prediction problem with location uncertainty.

In a alternative way, the classical approach is characterized
by the conventional estimation methods with semivariogram-
based geostatistical framework used by Kriging spatial pre-
dictors, which allows us to find a flexible and low complexity
solution for the REM generation. Indeed, when the model is
characterized by Gaussian processes, the optimal conditional
mean predictor of Bayes posterior distribution converges to the
classical Kriging predictor. However, as we shall see later, the
location uncertainty affects the Gaussianity of the model. In
this sense, although the Bayesian approach can lead to non-
linear predictors that may be more robust, our attention is
focused on two specific points: the use of low complexity
linear predictors considering the treatment of the location
uncertainty; and dealing with the lack of knowledge about
the covariance parameters related to the radio environment.

The main contributions of our work can be summarized
as follows: We extend our work in [76] by applying a
geostatistical model for REM generation and discussing the
main peculiarities and limitations of this approach; We in-
corporate the location uncertainty into the radio environment
model and use the methodology in [69-70] to manipulate
intractable quantities that arise when location errors are con-
sidered in the spatial prediction problem. This allowed us to
make adjustments in the conventional Kriging technique to
take into account the statistics of the location errors in the
spatial predictions, i.e., Kriging adjusted for location error
(KALE). Moreover, we show that the covariance parameter
estimation subject to location errors plays an important role
and significantly affects the performance of KALE predictor.
In this sense, we propose a new method that modifies the
estimation of the semivariogram, (i.e., semivariogram adjusted
for location error (SALE) in order to improve the performance
of the predictor KALE when there is lack of knowledge about
the covariance parameters of the radio environment.

This paper is structured as follows. Sections II and III
presents the system model of the radio environment and
the geostatistical framework for REM generation. Section IV
presents the Kriging spatial predictor. Section V incorporates
the location uncertainty into the system model and propose a
method for dealing with uncertainties. Numerical results and
discussion are given in Section VI. Finally, Section VII points
out the conclusions and proposals for future research.

1Particularly, we are interested in the modeling of large-scale phenom-
ena, especially the average path loss and shadowing of wireless channel,
since the small-scale fading decorrelates within tens of centimeters (depending
on the carrier frequency), making it infeasible to predict based on location
information [42].

II. RADIO ENVIRONMENT MODEL

The radio environment model is based on a wireless commu-
nication system composed of mobile devices and a radio base
station (RBS). It is assumed that such devices are capable of
performing the measurements of the received signal level and
send them to the RBS, which coordinates the entire operation
of the wireless communication system network. This means
that the RBS is responsible for the processing of the mea-
surements collected and for the REM generation. Specifically,
the propagation mechanisms of the radio environment, such
as diffraction, reflection, refraction as well as average path
loss, will influence the intensity of the signals received in the
devices and consequently can affect the process and accuracy
related to the REM generation.

In this work, we considered that the radio environment is
interpreted as a spatial random process P, which is composed
by two main components and is defined in all spatial locations
s = (x, y), according to

P(s) = µ(s) + ξ(s), with s ∈ D, (1)

where µ(s) consists of the spatial process drift, which is
called trend in geostatistical terminology, ξ(s) represents the
zero-mean spatial random fluctuations of the model and D
represents a coverage area of interest that compose the spatial
domain in two dimensions.

In this model, the trend component is related to the wireless
channel path loss while the spatial random fluctuations of the
model depict shadowing effects of the wireless channel1. In
fact, the spatial random process P(s) consists of a collection
of random variables P(si) which are reception power mea-
surements whose statistical properties depend on µ(s) and
ξ(s). Therefore, the main challenge on spatial predictions is
to capture the effects of the components that form the model
in (1) from measurements in the radio environment. First,
the following subsections address the component related to
the spatial trend. Then, the concepts about spatial random
fluctuations are presented.

A. Trend Modeling

Trend modeling is characterized by the mean component
µ(s) and is based on average path loss of the wireless channel.
The mean component consists of the average reception power
measurements and can be described by a set of base functions
with corresponding coefficients, according to

µ(s) = Ptx −

p∑
k=1

αk fk(s), (2)

where Ptx is the RBS transmission power (dBm), fk(s) are the
base functions of the model and αk are the unknown constant
trend coefficients. Propagation tools for planning wireless
systems and models for path loss have been extensively
investigated in the literature and many papers discuss different
models and methods on this subject (e.g., [45-48]). In this
work, the model considered for average path loss is the well-
known log-distance model, denoted as

P̄L(d) = ¯̄PL(d0) + 10 log
(

d
d0

)α
, (3)
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where ¯̄PL(d0) is the attenuation (dB) at a reference distance
d0 (meters), also known as critical distance, P̄L(d) is the
attenuation (dB) suffered by the signals transmitted due to
average the path loss at a given distance d (meters) and α
which consists of the propagation coefficient of the path loss
model [49]. This model was chosen due to its widespread use
and since it allows to formulate the trending estimation as a
linear estimation problem. It is important to note that the log-
distance path loss model depends on the distance d between
the RBS, with fixed location stx = (xtx, ytx), and the devices
in network. By making some simplifications without loss of
generality, (with ¯̄PL(d0) = 0dB and d0 = 1m) and algebraic
manipulations, it becomes possible to transporting this model
to two dimensions as follows:

P̄L(s) = +10α log (d(stx, s)) where s, stx ∈ D,

= +10α log
√
(xtx − x)2 + (ytx − y)2,

(4)

where d(stx, s) is the distance function with two dimensional
coordinates. The model in (4) suggests how the average path
loss of the radio environment fluctuates as a function of
distance. In this sense, the value of the α parameter implies
different decays of the logarithmic function of the path loss.
Table I shows the association of some known scenarios and
the respective values for the propagation coefficient [50].

TABLE I
Wireless Scenarios and Propagation Coefficient
Environment Type Propagation Coefficient

Free-Space 2
Rural (Plan) 3

Rural(Montain) 3.5
Suburban (City) 4

Urban(City) 4.5

By using the base functions of the model in (2) and
considering one-parameter α path loss model (p = 1), it is
possible to apply the average path loss in the trend model in
(2) and express the average power reception, according to

µ(s) = Ptx − α f(s)
= Ptx − 10α log (d(stx, s)) .

(5)

At this point, it is possible to highlight two information
that will be useful: i) An inspection of the log-distance model
allows to observe that this model is linear in the α parameter
and ii) Although it is linear in α, the model is not linear on the
spatial coordinates s. These characteristics will influence the
parameter estimation and spatial predictions processes internal
to the geostatistical methods.

B. Spatial Random Process Modeling

The model in (1) indicates that the spatial random fluc-
tuations of ξ(s) occur around the average reception power.
In a wireless communication system, this is due to the large
buildings, mountains and large-scale obstacles that adorn the
receivers in the network. In fact, a signal transmitted by
a wireless propagation channel undergoes random variations
due to obstructions along the path of the receiver. Since the
location, size and dielectric properties of these obstruction

objects are unknown, statistical models for describing such
fluctuations become fundamentally necessary in this analysis.
One of the most commonly used models in the literature is
the log-normal shadowing [50-52]. This model is characterized
by a Gaussian random process in the dB scale and has been
confirmed empirically to accurately model the variation in
received power in both outdoor and indoor radio propagation
environments [51-52]. Thus, the log-normal shadowing is used
to characterize the random fluctuations ξ(s) and is incorporated
into the system model by adding a Gaussian spatial random
process to the average path loss trend (4), according to

P(s) = µ(s) + ξ(s)
= Ptx − 10α log d(stx,s)︸            ︷︷            ︸

Path Loss

+ ξ(s)︸︷︷︸
Shadowing

, (6)

where ξ(s) is a zero-mean Gaussian spatial random process
with standard deviation σ, representing the shadowing in the
spatial position s. Also, ξ(s) is characterized by structured
parametric spatial covariance C(si, sj). In other words, the
spatial dependence relationship between the collections of
random variables that form the spatial random process P
arises in the form of a structured covariance C(si, sj). On the
geostatistical perspective, these are important presuppositions
of our work and favor the choice of the Kriging predictor.
In fact, the central idea of geostatistics is to explore this
relationship of spatial dependence to generate spatial pre-
dictions at unknown locations. Thus, the spatial predictors
must be followed preceded by steps that have the objective of
extracting the covariance parameters of ξ(s). On this aspect,
two spatial functions are of fundamental importance, namely
covariance and semivariogram.

Formally, the covariance between two random variables in
the coordinate pairs C(si, sj), ∀si, sj ∈ D, is defined as

C(si, sj) = E{[P(si) − µ(si)][P(sj) − µ(sj)]} (7)

where µ(si) is the mean of the random variable P(si) and
E{·} is the expectation operator. The semivariogram function
is defined as the variance of the differences of the random
variables that compose P(s),

γ(si, sj) =
1
2

Var{P(si) − P(sj)}

=
1
2
E{[P(si) − P(sj) − E{P(si) − P(sj)}]2}.

(8)

Two properties are of fundamental importance for these
functions, especially when it is assumed that the spatial
random process are wide sense stationary: First, the expected
value of the spatial random process exists and is constant,
i.e., E{P(s)} = µ(s) = µ. Note that in the case of the radio
environment, the average reception power depends on the
spatial position related to the RBS. Consequently, the presence
of the trend affects the stationarity and, therefore, the trend
must be estimated. Second, the covariance and semivariance
for any pair of points in the spatial random process is finite
and its value depends only on the separation vector h, i.e.,
C(si, si + h) = C(h), where the vector h = (hx, hy) consists
of a spatial separation distance vector, h ≡ si − sj , [12],
[69]. Thus, in these circumstances the structured covariance
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does not depend specifically on the spatial positions analyzed,
but on the separation h of such coordinates. In this way,
we can rewrite the theoretical expressions of covariance and
semivariogram considering the invariance to the translations

C(h) = E{[P(si + h) − µ][P(si) − µ)]}, ∀si, si + h ∈ D,

γ(h) =
1
2

Var{P(si + h) − P(si)}, ∀si, si + h ∈ D.
(9)

If the direction of the vector h does not influence the
expected values in (9), the covariance and semivariogram will
only depend on the distance, i.e, |h| = |si − sj |. This isotropic
property is useful in the application of the covariance and
semivariogram functions in the characterization of correlation
model of the log-normal shadowing of the wireless channels.
In fact, one of the most used models for shadowing correlation
characterization is the Gudmundson model [51-55]. Specif-
ically, this model belongs to the class of correlation models
that take into account the separation distance |h| between mea-
surement collected in a radio environment. Exhaustive tests
and measurement campaigns indicate an exponential behavior
for the decay of the spatial correlation as a function of distance
of the log-normal shadowing of the wireless communication
channels [51-56]. Therefore, in this paper, an option was made
for isotropic-exponential structured covariance for the spatial
random process generation, given by

C(|h|) = m e
−
|h|
r ,

(10)

where m represents the variance of the spatial random process
and is called sill variance while the parameter r is known
as range and reflects the exponential decay of the covariance
function. Under wide sense stationarity assumption there is
a direct relationship between the covariance function and the
semivariogram function [12], C(si, sj) = C(0) − γ(si, sj). Thus,
the isotropic-exponential semivariogram model is given by

γ(|h|) = m
1 − e

−
|h|
r

 . (11)

Obtaining reliable estimates of reception power P̂(s) at
unknown spatial positions will depend on the ability of the
spatial predictors to capture the spatial variations of the
radio environment. Thus, the semivariogram and covariance
functions are fundamental for the spatial prediction problem
of the REM generation process.

III. RADIO ENVIRONMENT SPATIAL PREDICTION MODEL

In this section, we present the spatial prediction method
based on geostatistical approach applied to the radio environ-
ment modeling. Fig. 1 shows the diagram of the proposed
model. First, the trend modeling is performed to generate the
average reception power measurements as a function of the
path loss model in (4). The spatially correlated shadowing
generation characterizes the spatial random process modeling.
Different techniques can be used to generate log-normal shad-
owing, and it is possible to highlight the techniques based
on Cholesky decomposition, autoregressive filtering, sum of
sinusoids and Fourier transformations of the shadowing corre-
lation models (with higher computational cost) [22], [57-62].
In this work, the Cholesky decomposition is chosen since it is
directly based on the covariance matrix of the spatial random
process and has a direct relation with the semivariogram. The
combination of the trend with spatial random process forms the
large-scale component of the wireless communication channel.

In a wireless communication system, only an observable
part of the radio environment can be captured. Specifically,
a spatial sampling is performed and N network devices send
the reception power measurements Prx to the RBS composing
a set of N power measurements. The spatial collection of
measurements from the network devices characterizes the
spatial sampling process applied to the radio environment. For
simplicity, it is assumed that Ptx = 0dBm. Thus, based on the
system model (6), we can write

P = Xα + ξ, (12)

where P = [Prx(s1) ... Prx(sN)]
T are the set of the power

measurements, X = [−10 log d(stx, s1) ... − 10 log d(stx, sN)]
T

are the vector of base functions, α is the path loss exponent
and ξ = [ξ(s1). ... ξ(sN)] is the zero-mean spatial correlated
Gaussian random vector. Initially, we emphasize an important
assumption: In this section, the vector model (12) is location-
error-free as location uncertainty will be incorporated later on.
This means that the measurements of the radio environment
are taken exactly in the spatial coordinates (s) of the two-
dimensional space and will be processed by geostatistical
methods to generate spatial predictions.

The geostatistical approach used in the work is characterized
by three estimation stages: i) trend estimation; ii) experimental
semivariogram (covariogram) estimation and iii) estimation
of covariance parameters. These stages form the well-known
learning phase of the channel parameters and precede the

Fig. 1: Diagram with the model for generating spatial predictions based on the geostatistical approach.
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spatial prediction phase of the radio environment. In other
words, the estimates of spatial predictions depend directly on
the information about wireless channel parameters. Thus, we
are particularly interested in proposing techniques that provide
support for spatial predictors when there is location uncertainty
in wireless system as well as the lack of knowledge about
wireless channel parameters.

The first process to be performed is the trend estimation
and it is important for two reasons: i) the presence of a trend
in the radio environment affects the stationarity of the spatial
random process influencing the results of the spatial predictors
and ii) the experimental estimates of the semivariogram or the
covariogram, if performed directly on the measurements, can
lead to biased results [12]. In this sense, the objective of the
trend estimation process is to obtain the regionalized variable
(RV) [12], [15], [18], which only characterizes the spatial
random variations of the wireless channel shadowing. The log-
distance model allows us to formulate the estimation problem
(α estimation) linearly allowing the use of the minimum
variance unbiased estimator through methods such as least
squares (LS) techniques. Thus, after trend estimation of the
radio environment (performed with least squares fitting), RV
is obtained by removing the estimation results from the trend
of the measurements collected, i.e., Z = P − µ̂ characterizing
the detrending process.

The next stage of the learning phase is the experimental
semivariogram estimation process that is obtained from the RV.
The experimental semivariogram (and covariogram) consists
of the empirical estimate of the theoretical semivariogram
(and covariance) function required for the spatial predictions.
The method of moments of Matheron [12-15], [23] is used to
obtain the experimental semivariogram from the regionalized
measurements and can be described by

γ̂(h) =
1

2Nh

∑
si−s j=h

[Z(sj) − Z(si)]2, ∀si ∈ D, i = 1, 2, ...N,

(13)
where Nh represents the number of pairs of points distant
of h obtained from RV. Hence, the semivariogram estimates
are obtained through the mean of the semivariance values
of all pairs of points that are distanced themselves from h.
In practice, for the calculated experimental semivariance to
have a statistical meaning, it is necessary that Nh should be
sufficiently large, i.e., a reasonable number of measurements
must be taken for each distance h. However, the RV is com-
posed of a finite set consisting of N measurements. Facing this
practical situation, the semivariogram estimation is based on
pre-calculated separation distances, denoted as lag distances.

This work makes the semivariogram estimation through the
methodology of [76] which is based on the quantization of the
separation distances and Matheron method (details can be seen
in [12], [14-18]). Fig. 2 shows a conceptual example of the
parametric-analytical semivariogram model (solid curve) and
the results of experimental semivariogram estimation (points).
The analysis of the semivariogram estimation aims to provide
a description of the spatial variability of the spatial random
process. It is important to note that the analytical models and
experimental parts have different definitions. The experimental

Fig. 2: Semivariogram analytical model (solid curve) experimental
semivariogram (points).

semivariogram (covariogram) has no parameters while the
semivariogram (covariance) analytical model is parametric.
Also, there is an interest in the estimation of three parameters:
the upper bound parameter m, called sill, the r parameter,
called range and the nugget c0 parameter, which is related
to the nugget effect [66]. These parameters are grouped in the
form of a vector θ = [m, r, c0].

In the wireless communications context, the parameter m
consists of the variance of the spatial random process gen-
erated for wireless shadowing characterization and, therefore,
can be interpreted as a measure of the shadowing severity. The
parameter r is related to the slope of the semivariogram (decay
of the covariance model) and allows to measure the separation
distances from which there is a low spatial correlation between
the captured measurements. Then, it can be interpreted as a
measure of the de-correlation distance dcorr of the wireless
shadowing. Specifically, the distances between measurements
that are smaller than r present a higher degree of spatial
correlation, resulting in spatial dependence zones. Otherwise,
measurements of the radio environment that distances beyond
the range are weakly correlated characterizing the zones of
spatial independence. The parameter c0 is related to the nugget
effect, which implies an abrupt change in the spatial variability
of the random process at small separation distances (less than
the smaller spatial sampling intervals considered) and may
result from measurements inaccuracies, short-range variations,
or superimposed noise [23-24].

The covariance parameter estimation can be performed
using different techniques, e.g., Maximum Likelihood (ML)
and Least Squares (LS) [12], [15-20]. The Gaussian nature of
the wireless channel shadowing makes the ML method better
suited for the estimation problems. However, as we will see
later, the location uncertainty affects the Gaussianity of the
model [41], [69], [72]. Also, although the ML method has
superior performance, the estimation can be computationally
challenging for large data sets, as each likelihood evaluation
requires a Cholesky factorization of covariance matrix or
equivalent operations, which is O(N3) [72]. On the other hand,
the least squares estimators uses the separation distances h and
the experimental semivariogram to find the values of θ that
lead to the minimization a cost function by using search algo-
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rithms (e.g., Trust Region and Levenberg-Marquardt [67-68]).
In fact, the LS estimation presents a practical geostatistical-
based solution in which no probabilistic assumptions are made
about the measurements and, for this reason, (associated with
ML convergence problems) it is used in this work.

A. Radio Spatial Prediction Model Simulation

Figure 3 presents the initial simulation results of radio
environment spatial prediction model related to the learning
phase. Typical configuration settings were used and the radio
environment simulation is composed of: the average received
power due to the average path loss effects, depicted in
Fig.3(a), and the wireless channel shadowing with a isotropic-
exponential covariance analytical model, shown in Fig.3(b).
The combination of maps in Figs. 3(a) and 3(b) results in
the spatial random process presented in Fig.3(c). The RBS
is characterized by a transmitter with Equivalent Isotropically
Radiated Power (EIRP = 0dBm) positioned in the location
stx = (20, 20), within a coverage area with size given by
100m × 100m. The propagation coefficient of the path loss
model was simulated with the value α = 3. The log-normal
shadowing of the radio environment has standard deviation
σ = 5dB (m = 25) and zones of spatial dependence equal to 20
meters (r = 20). Also, we assume that abrupt spatial variations
do not occur at small separation distances (c0 = 0), since we
are particularly interested in modeling the large-scale effects of
the channel only with average path loss and shadowing. The
spatial sampling is performed by capturing N = 200 power
measurements which were uniformly distributed.

Particularly on this aspect, the spatial sampling pattern is
conditioned to the type of application analyzed (e.g., drive-
tests campaign or measurement report systems). In a planning
for the execution of drive-tests, there is more control over the
locations where the measurements will be captured through
routes that are predefined and usually accompany the roads
and streets of the cities. The spatial sampling with routes is
common in works where some practical drive-test activity was
performed as in [41]. Otherwise, an operation scenario where
the measurements are sent from users devices, there are no
predefined routes but a spatial pattern movement of the devices
in the network, which will determine the type of the spatial
distribution. In fact, the use of uniform distribution in REM
occurs in applications related to distributed sensors networks
[43], cognitive radio networks [29-30] and also in wireless
communications systems [5-6]. In this context, the uniform
spatial sampling hypothesis is plausible in scenarios where
there is no a priori control over measurement locations and,
therefore, is used in this work. Even so, it is important to note
that the minimum control in the execution of the sampling
strategy is enough to find alternatives to choose the most
appropriate strategies (e.g., [80-82]). Moreover, for analysis
simplification, we also consider the use of ominidirectional an-
tennas as in [41-42]. The incorporation of directional antenna
modeling is possible to make the model more practical, but it
increases the simulation complexity. Actually, it is important
to mention that the directional antenna transmission impacts
the radio parameter estimation and can consequently affect the
performance of spatial predictions [79-80].

Fig. 3: Simulation results: (a) average received power; (b) wireless shadowing; (c) radio environment realization with uniform spatial
sampling; (d) path loss trend estimation results; (e) experimental semivariogram; (f) experimental covariogram.
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The trend estimation is presented in Fig.3(d), which shows
a comparison between the theoretical average path loss model
and the result of trend estimation along with average path loss
measurements contaminated with shadowing of the wireless
channel. The experimental semivariogram and covariogram are
presented in Figs.3(e) and 3(f). The amount of combinations
of pairs of points associated with each lag distance is also
shown (boxes). It is possible to note that the semivariogram
and the covariogram reveal important information about the
parameters used in the generation process of the radio envi-
ronment. First, an upper bound is revealed by the estimates
of semivariance in Fig.3(e). It is verified that such an upper
bound occurs from distances of the order of the range. This
result can also be seen in the behavior of the covariogram,
where a more pronounced covariance drop occurs around 20
meters of separation. The solid lines in Figs.3(e) and 3(f) are
the semivariogram and covariance analytical functions with
the LS estimated parameters θ̂ = [m, r, c0] = [31.3, 23.8, 0].
The difference between the estimated covariance and the
true parameters θ = [m, r, c0] = [25, 20, 0] is due to the
estimation performance of the sequential methods (i.e., trend,
semivariogram and covariance parameter estimation) used in
this geostatistical approach.

IV. SPATIAL PREDICTIONS - KRIGING METHOD

The formulation of the spatial prediction problem in wire-
less communications is to obtain a reliable value of received
power in a coverage area from a limited set of measurements
sent by the network devices. A spatial predictor is intended
to solve this problem and Kriging is a best linear unbiased
predictor (BLUP) in the sense that it minimizes the variance
of the prediction error [12], [14-20].

Depending on the characteristics of the problem, different
Kriging methods are better suited to perform the spatial pre-
diction. In circumstances where the specific value of the mean
µ is known a priori, the simple Kriging (SK) method is used.
In the case where µ is not necessarily known, but constant,
the ordinary Kriging (OK) method is used, since it requires
only the constant behavior of µ along the D domain. In
practice, the mean of the spatial random process can vary along
the space (as in the radio environment), compromising the
stationarity assumption. In this situation, the universal Kriging
(UK) method can be used if the trend can be decomposed into
a set of base functions represented by low-degree monomials
[12]. In other words, if the trend is linear at coordinates or
with powers that normally do not exceed the power of two,
the UK can be used. Despite this, the average path loss trend
in the radio environment is modeled with non-linear functions
in the coordinates (such as square root and logarithms) with
powers that are usually greater than two indicating that the use
of the UK in this case requires complex transformations for
the decomposition of base functions to be achieved. Then, in
order to overcome this problem, the OK predictor combined
with detrending process is the chosen tool to perform spatial
predictions in this work, where

ZOK(s0) = λT Z =
N∑

i=1
λiZ(si), (14)

is the scalar result of spatial prediction in a given unknown
spatial coordinate s0, obtained through the linear combination
with the Kriging weights column vector λ, with size N × 1,
and column vector of measurements Z, with size N × 1.

It is important to mention that the unknown locality s0 is
taken into account indirectly in the OK predictor (14) through
the calculation of the Kriging weights λi. Specifically, the
values λi are calculated with the objective of minimizing the
variance of the prediction error, i.e., Var{ZOK(s0) − Z(s0)},
based on the condition that the predictor in (14) is unbiased. In
this sense, the optimal Kriging weights consists in the search
for the solution of a system of equations, given by

λ = Γ−1β, (15)

where Γ is the semivariance matrix between the measurements
that is based on covariance parameters and β is the semi-
variance vector between the RV measurements and the target
coordinate of spatial prediction s0. The details of the Lagrange
mathematical procedure for obtaining the Kriging system of
equations as well as the optimal weights can be found in
[12], [14-20], [76-78]. It is worth noting that the matrix
inversion may lead to some numerical problems, especially
in application where the amount of data is significantly high
[78], due to ill-conditioning. One way to overcome this if it
may happen is to use a fixed-rank Kriging method [77], which
decomposes the matrix into low order matrices.

The spatial prediction ZOK(s0) generated by OK predictor is
a result of the linear combination of the Kriging weights with
the trend-removed vector of measurements Z. Thus, the sum
of ZOK(s0) with the the average received power estimation in
s0, denoted as µ̂(s0), allows to obtain the prediction value of
the received power at unknown location according to

P̂(s0) = µ̂(s0) + ZOK(s0)

= µ̂(s0) +

N∑
i=1

λiZ(si).
(16)

Fig. 4 shows the spatial prediction results, i.e., REM, based
on the measurements captured from the spatial random process
previously shown in Fig. 3. In Fig. 4(a) the true reception
power map subject to the average path loss and shadowing
effects is present while the REM generation, composed of
trend estimation and spatial predictions, is shown in Fig. 4(b).
The comparison between the wireless shadowing and OK
spatial predictions can be observed in Figs. 4(d) and 4(e).
Through a single realization and difference maps, it is possible
to verify that the Kriging spatial predictor was able to capture
the spatial variability of the radio environment. However, it
is noted in Figs.4(c) and 4(f) that the difference between the
values of spatial predictions and the true values of the radio
environment fluctuates spatially in the map. Investigations
carried out in our simulations also indicated that as important
as the number of measurements is the representativeness of
such measurements, i.e., how efficient these measurements
are in capturing the spatial variability of the random process
that characterizes the radio environment. Therefore, the spatial
sampling pattern and density (i.e., the relationship of N with
the size of the coverage area) and the de-correlation distance of
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Fig. 4: Simulation results of REM: (a) true power reception; (b) REM obtained from trend estimation and OK predictions; (c) difference
map: power reception and REM; (d) wireless shadowing; (e) OK predictions; (f) difference map: shadowing and OK prediction.

the wireless shadowing are factors that have a direct influence
on the prediction accuracy of REM.

Furthermore, it is important to highlight that these results
refer to a single realization of the spatial random process
(Section VI brings the performance analysis with more re-
alizations). At thit point, it is intuitive to think that the
incorporation of uncertainties on the devices positions can
influence spatial prediction results. In the next section, we
introduce the location error in our system model and proposes
a spatial predictor that can mitigate its harmful impacts.

V. DEALING WITH LOCATION UNCERTAINTY

In this work, the uncertainty location uncertainty model
proposed by Cressie and Gabrosek in [69-71] is applied to
the wireless communication system. It is assumed that the
network devices are uniformly distributed within the coverage
area and that each device is capable of making reception
power measurements. Figure 5 illustrates the problem of
location uncertainty in the wireless environment showing how
Gaussian location errors can affect the positions reported by
devices in the wireless network and by consequence how it
will imply in some perturbations when creating the REM.
Through network location methods, the devices send their
location information to RBS, forming the set of intended sites
{s1, ..., sN }, marked as small circles in Fig.5. However, the
incorporation of location uncertainty corrupts this information,
since the devices are positioned in the set of realized sites
{r1, ..., rN }, which are the true unknown positions, marked
as small crosses. Thus, the reception power measurements

are taken in r and mistakenly associated with s coordinates.
This mismatch between the power measurements and the set
s characterizes the location uncertainty model,

r = s + p(s), (17)

where p(s) ≡ r − s = (ux, uy) consists of the two dimensional
location error vector related to the spatial coordinates and
follows a given probability distribution g(·). In this model,
it is assumed that the location error p(s) is independent in
the spatial coordinates, that is, a correlation between location
errors in the radio environment is not assumed a priori. Two
types of statistical distributions for the location error are
evidenced in [69-71]:

(i) i.i.d. normal location errors, p(s) ∼ N(0, σ2
p IdN), where

σp is a standard deviation of location error, measured in
meters, IdN is identity matrix with size of dN× dN and d
is the dimension of spatial domain (d = 2).

(ii) i.i.d. uniform location errors that is the random vector
p(s) ∼ Unif(−

√
3σp,+

√
3σp).

Gabrosek in [70] investigated the influence of location errors
with Gaussian and uniform distributions on several spatial co-
variance models and pointed out that both distributions caused
similar effects on the covariance of the spatial random process.
In this work, we chose the Gaussian distribution to characterize
the random effects of location errors of uncertainty model,
since it is plausible to assume this distribution to model
location errors in the context of wireless communications
systems [41-42].
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Fig. 5: Spatial random process generated with θ = [25, 10, 0],
α = 3 and with the location uncertainty.

In this way, by incorporating the uncertainty model (17) into
the system model of the radio environment (6), it becomes
possible to write

Pg(s) = µ(r) + ξ(r)
= µ(s + p(s)) + ξ(s + p(s))
= Ptx − 10α log d(stx, s + p(s))︸                      ︷︷                      ︸

Path Loss

+ ξ(s + p(s))︸      ︷︷      ︸
Shadowing

,
(18)

where we denote the set of received power measurements
with location errors as {Pg(s1), ... , Pg(sN )} and s, r ∈ D.
Also, it is assumed that the set {Zg(s1), ... , Zg(sN )} represents
the RV obtained from the removed trend estimation process
subject to location errors. In this context, some difficulties
arise, especially in aspects related to the characterization of
the spatial random process with location uncertainty and the
influence of such errors in the trend and covariance parameters
estimation. To verify that the spatial random process of the
radio environment has its Gaussian characteristics affected
when subjected to location uncertainty, the equation below
shows the cumulative distribution function of the location
corrupted process Zg(s),

Pr(Zg 6 z) =
∫

Pr(Z(s + u) ≤ z)g(u)du

=

∫ ∫ z

−∝

(2πσ2)−1/2exp
{
−

t2

2σ2

}
g(u)dtdu,

(19)

where g(u) is the probability density distribution of location
error vector p(s) = u = (ux, uy), which is responsible for
affecting the Gaussian characteristic of the spatial random
process. This means that the covariance of the spatial ran-
dom process subject to location uncertainty is different when
compared to the covariance of the location-error-free random
process and, consequently this difference will have some
influence on the estimation of the covariance parameters.

Two important effects of the location uncertainty are shown
in Fig. 6. First, the estimation and removal of the trend
is influenced by location errors. This can be observed in
Fig.6(a) where the dispersion (variance) of the RV increases
as the severity of the location errors also increases. As a
consequence, some residue of the trend contaminates the RV

that will be processed by the next estimation steps. The effects
of location errors on the spatial covariance are shown through
experimental semivariograms in Figs. 6(b) and 6(c), obtained
from the measurements Z(s) (without location errors) and
Zg(s) (with location errors), respectively. Through the simula-
tions, a change in the structured covariance was observed as
well as a lifting effect in the vicinity of the semivariogram
origin (flattening effect on the covariogram origin). These
observations agree with the results presented in [69-73].

Specifically in the works [69-71], the influence of the
location errors on the structured covariance is also investigated
and an adjustment procedure to take into account the location
uncertainty in the spatial predictions is proposed. In this
work, we propose a method to deal with location uncertainties
and that complements the methodology of [69], with the
objective of applying it to the radio environment of wireless
communications systems. The methodology of [69] is based
on the adjustment of the covariances of the Kriging system
through the use of the location error statistics g(·). Thus,
the adjusted covariances between intended sites s, denoted as
Cg(si, sj), and intended sites s and target coordinate s0, denoted
as Cg(si, s0), are obtained through

Cg(si, sj) = Cg(h) =
∫ ∫

C(h + v − u)g(u)g(v)dudv,

Cg(si, s0) = Cg0(h) =
∫

C(h + u)g(u)du,
(20)

where u = (ux, uy) is a location error vector in position s, and
v = (vx, vy) is a location error vector in s + h. These integrals
are analytically intractable, even for simple combinations of
covariance and statistical distributions of location errors. In an
attempt to solve this problem, as pointed out in [69] [72], we
adopted the Monte Carlo Integration approach to evaluate (20)
and reach approximations for adjusted covariances.

The practical implementation to solve such integrals is
accomplished through an approximation of the covariances
between the measurements from the generation of M i.i.d.
location error sample vectors with distribution g(·) and de-
scribed by ui = (ux, uy) ∼ g(u) and vi = (vx, vy) ∼ g(v), with
i = 1, ... ,M, according to

Cg(si, sj) ≈
1

M2

M∑
k=1

M∑
l=1

C(si + vk − ul, sj + vk − ul)

Cg0(si, s0) ≈
1
M

M∑
k=1

C(si + uk, s0 + uk), with i, j = 1, ..., N.

(21)
The use of data with location errors {Zg(s1), ... , Zg(sN )}

combined with Kriging weights obtained from covariance C(·)
without adjustments and applied to the spatial predictor in
(14) characterize the Kriging ignoring location error (KILE)
predictor. In another way, the use of data with location errors
combined with Kriging weights that were obtained from the
adjusted covariance Cg(·) in the system of Kriging equations
is denoted as a Kriging adjusted for location error (KALE).
The system of adjusted Kriging equations is constructed
from adjusted covariances, given by Γgλg = βg. Thus, the
KALE optimal weights are obtained from the matrix inversion
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Fig. 6: Location error effects: (a) dispersion of RV due to the location errors; (b) semivariogram without location errors; (c)
semivariogram with location errors; (d) semivariogram adjusted for location error (SALE).

Fig. 7: Histogram of covariance parameter estimation: (a) sill estimation with location errors; (b) sill estimation based on SALE method;
(c) range estimation with location errors; (d) range estimation based on the SALE method.

calculation λg = Γ
−1
g βg. The compact form of both predictors

can be described according to:

ZKILE(s0) = λT Zg,

ZKALE(s0) = λT
g Zg .

(22)

With spatial predictors in (22) and the average received
power estimation, the prediction of the received power in
unknown coordinates can be obtained according to

P̂KILE(s0) = µ̂(s0) + ZKILE(s0),

P̂KALE(s0) = µ̂(s0) + ZKALE(s0).
(23)

On the spatial predictions in (22-23), two important points
should be highlighted: i) the covariance adjustments of the
KALE predictor are performed in the the system of Kriging
equations and ii) the covariance parameters used in this system
of equations can be perfectly known or estimated, and in
the latter case, they are affected by the location uncertainty.
This means that the lack of knowledge about covariance
parameters θ will have some impact on the Kriging systems
and, consequently, on the spatial predictions. In this sense,
this work proposes a method that complements the KALE
methodology considering the location uncertainty knowledge
when the covariance parameters are unknown. Specifically,
we propose that the statistical distribution g(·) is also taken
into account in the method of moments related to the exper-
imental semivariogram, which we called the semivariogram
adjusted for location error (SALE) method. In other words,
we proposed additional modifications to the experimental
semivariogram estimation procedure to include location error
statistics. With the knowledge of the probability distribution

of location errors, g(·), the location error sample vectors are
used to perform a random perturbation in the distance matrix
used in the estimation of the experimental semivariogram. The
algorithm and quantization procedures for obtaining the Lag
distances, based on [76], are applied on the disturbed distances
matrix, resulting in adjusted Lag distances and semivariances.
The results using the SALE method are shown in Fig.6(d)
and although the adjusted semivariogram is still different from
the semivariogram obtained without location uncertainty, it is
more smoothed when compared to the semivariogram that was
corrupted by the location errors, shown in Fig.6(c).

Our main motivation for using the SALE method com-
bined with the KALE predictor, namely S-KALE predictor,
is presented in Fig.7. The histograms of Figs.7(a) and 7(b)
show that the sill estimation was not significantly affected
by the location uncertainty while the LS estimation related
to the range parameter, shown in Fig.7(c), was significantly
affected. On the other hand, it is possible to observe in the
histogram of Fig.7(d) that the SALE method allowed to reach
a result closer to the optimal value for the range parameter
estimation. Similar results were obtained with several radio
environment configurations (e.g., coverage sizes) and different
values for the sill and range parameters. This motivates us
to use the S-KALE predictor in the circumstances where
covariance parameter estimation is required. Although we are
considering only the large-scale effects (c0 = 0), it was ob-
served that when the spatial random process has higher nugget
values, comparable to the values of the sill variance (i.e., pure
nugget effect with extremely discontinuous semivariograms),
the SALE method performs equivalent to the case where the
estimated semivariogram is not adjusted.
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VI. SIMULATION RESULTS

This section presents the Monte Carlo simulation results
related to the performance of KILE, KALE and S-KALE
spatial predictors. The simulations are based on L = 10,000
independent realizations through the following steps:

(i) For each realization, an initial spatial sampling strategy
with uniform distribution is generated with the intended
sites {s1, ..., sN }. Location errors p(s) are generated ac-
cording to a Gaussian distribution with location error
standard deviation σp and corrupt the intended locations
resulting in the set of realized sites {r1, ..., rN }.

(ii) For each realization, the radio environment is generated
by combining the trend (with average path loss effects)
and spatial random variations (shadowing effects) in the
realized spatial coordinates r and a target coordinate s0
is randomly chosen for the performance evaluation of the
spatial predictors.

(iii) For each realization, the Kriging method is used to predict
the channel shadowing value in s0, using: (a) the in-
tended sites and isotropic-exponential covariance without
adjustment, i.e., the KILE predictor; (b) the intended sites
and the adjusted isotropic-exponential covariance, i.e., the
KALE predictor and (c) the intended sites with adjusted
semivariogram and isotropic-exponential covariance, i.e.,
the S-KALE predictor.

(iv) The average received power estimation is added to the
spatial predictions (i.e., ZKILE, ZKALE and ZS-KALE) and,
therefore, the results can be compared with the true values
of the spatial random process according to

MSPE =
1
L

L∑
l=1
[P̂l(s0) − Pl(s0)]

2. (24)

where MSPE is the mean square prediction error and it is
empirically estimated through the average over L independent
realizations The objective is to verify the performance of the
spatial predictors under analysis in relation to the number of

measurements required to achieve a given performance as well
as the robustness to the location uncertainty. Although it is not
necessarily an optimal metric, MSPE is widely used in the
context of performance analysis of REM spatial predictions,
especially in wireless communications systems as in [29-30],
[41-42]. In fact, MSPE is a mean indicator of the dispersion
of spatial prediction errors in REM generation process.

First, the a priori knowledge of the covariance parameters
θ of the wireless shadowing is assumed and a performance
analysis is conducted to verify whether taking into account
the location uncertainty in spatial predictions can yield better
results. Therefore, the first performance analysis is made
on the KILE and KALE spatial predictors. Typical wireless
communications settings are chosen with average path loss
with α = 3, wireless shadowing with known parameters
θ = [49, 100, 0] and coverage size of 500m × 500m.

Initially, the variable to be analyzed consists of the number
of measurements N while the location errors are incorporated
into the simulation with Gaussian distribution and fixed stan-
dard deviation, σp = 40m. The perfect and imperfect average
path loss estimation are considered, characterizing Scenarios A
and B, respectively. The results are shown in Fig.8 in which it
can be seen that taking into account the location error statistics
on spatial predictions produced better performance. Although
the increase in N favored both predictors, the location errors
significantly affected KILE performance, while KALE bene-
fited from more measurements. For situations where N > 100,
the MSPE squared reduction of KALE over KILE was more
than 7dB with imperfect trend estimation. Therefore, we can
mention that taking into account the location error statistics is
more efficient than ignoring them as N increases. Moreover,
the ability of predictors to achieve reasonable performance
with the least number of measurements as possible (i.e.,
predictor efficiency) is the key factor in choosing the predictor
for REM generation, especially in systems whose architecture
does not allow to send many measurements due to bandwidth
or energy resources constraints.

Fig. 8: Influence of N on the performance of KILE and KALE spatial predictors with perfect (Scenario A) and imperfect (Scenario B)
average path loss estimation and known covariance parameters.
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Another important aspect is the robustness of the spatial
predictor against the severity of the location errors. In fact,
despite the notorious evolution of network-based location
estimation methods, channel adversities make it difficult to
obtain accurate location estimates, resulting in an uncertainty
in reported positioning of network devices including the pos-
sibility of generating outliers and invalid location information
in the wireless network. Thus, the robustness of the spatial
predictor against the negative effects of the location errors is
also an important feature for REM design.

In this sense, a comparative analysis is performed consid-
ering the gradual increase of the standard deviation of the
location errors σp , assuming a fixed set consisting of N = 100
measurements collected in the radio environment for both
KILE and KALE predictors. The same configuration settings
as the previous simulation were chosen. The results are shown
in Fig. 9 and the cases in which the perfect and imperfect
trend estimation occurs are represented by the Scenarios C
and D, respectively. The first conclusion that can be drawn
from the plots is that KALE has proved to be more robust
against location errors when compared to KILE. It is possible
to notice MSPE squared reductions of the order of 4dB when
the location errors have σp = 40m and more than 5dB when
the path loss trend estimation is imperfect. This reaffirms that
ignoring location errors while attempting to capture the spatial
variability for the Kriging predictor is not an efficient decision
from the point of view of the accuracy of the predictions. In
fact, what is occurring is that the difference between the spatial
covariance with and without location uncertainty increases as
long as the location error severity is also increased. Therefore,
ignoring location uncertainty fails significantly to capture the
spatial variability of the radio environment.

At this point, it is important to note that the results obtained
consider the complete knowledge about covariance parameters
of the wireless communication channel. In practice, the lack
of knowledge about θ consists of a more realistic aspect to
be applied on the system model. A simulation is conducted

incorporating the covariance parameter estimation through
the semivariogram and least squares estimation to verify the
impact on both KILE and KALE predictors as well as the
performance of proposed S-KALE predictor. In addition, for
comparative purposes with other REM method, we compare
the Kriging methods to IDW technique [1], [4], which is
essentially based on the deterministic calculation of the inverse
of the distance between the measurements collected and the
target coordinate s0. The results are shown in Fig.10 and the
two cases of perfect and imperfect average path loss estimation
are represented by the Scenarios E and F, respectively. It is
possible to note that when the covariance parameters are esti-
mated first, the difference in performance between KALE and
KILE is reduced. Also, the difference between the Scenarios E
and F shows that the trend estimation affected the performance
of all the predictors. In fact, both KILE and KALE were
significantly affected and the IDW technique had the worst
performance, except for KILE in a regime of high location
uncertainty. For instance, in Scenario F with σp = 40m, the
KILE is 3dB worse than the IDW and KALE has about the
same MSPE performance, while the S-KALE is 4dB better
than it. In other words, it is still advantageous to proceed with
the adjustment on KALE, but the performance improvement
is not substantial and depends significantly on the results of
the covariance parameter estimation. These results corrob-
orate the investigations carried out in [72] and show that
the covariance parameter estimation plays an important role
on spatial predictions subject to location uncertainty. The
performance results point out that the use of the location
error statistics in the semivariogram estimation (SALE) related
to the S-KALE overcomes the performance of KALE in the
circumstances where the covariance estimation is required.
Our simulation analyzes also revealed the superiority of S-
KALE in different configurations of the radio environment
(e.g., different coverage areas and number of measurements)
as well as different values of the parameters range and sill
of the wireless communication channel.

Fig. 9: Influence of location uncertainty on the performance of KILE and KALE spatial predictors with perfect (Scenario C) and imperfect
(Scenario D) average path loss estimation and known covariance parameters.
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Fig. 10: Influence of location uncertainty on the performance of KILE, KALE and S-KALE spatial predictors with perfect (Scenario E)
and imperfect (Scenario F) average path loss estimation and unknown covariance parameters.

Although the different approach in the estimation process
of covariance parameters, these results corroborates the con-
clusions presented in references [41] and [42]. Specifically,
regarding our work, [42] presents some differences, including:
i) the use of the ML technique to estimate the wireless chan-
nel parameters considering location uncertainty at this step,
whereas our work incorporates the location uncertainty in the
classical geostatistical framework based on the semivariogram
and the least squares estimators; ii) the use of closed-form
expressions for Gaussian covariance functions with location
uncertainty, whereas our work uses the Monte Carlo inte-
gration methods to accommodate different spatial covariance
combinations with statistical distributions of location errors
in the Kriging predictor and iii) all performance analyzes
are based on one-dimensional environments, while our work
considers two-dimensional radio environments maps.

Still in relation to other works, the system model of [41]
presents different characteristics in relation to our work due
to the Bayesian approach and the shadowing decomposition
of the system model with several spatial base functions to
perform the fixed rank Kriging method. The ML estimation is
also used and a new strategy is proposed taking into account
the posterior distribution of the observations using modifi-
cations based on the stochastic approximated Expectation-
Maximization (EM) algorithm for parameter estimation. This
brought the possibility of the conditional expectation predictor
being obtained, which is non-linear and more complex, and
presents better results compared to the BLUP predictor used in
our work (albeit with a different system model), especially in
a regime with high severity for location errors. Indeed, dealing
with the location uncertainty in the covariance parameter
estimation is a plausible initiative, but as pointed out by Diggle
and Fanshawe [73] and in [74-75], the intractability of the
integrals involved in parameter estimation implies analytical
and computational challenges when the positioning uncertainty
is present in the system model.

In this sense, the S-KALE predictor proposed in this work
points out an alternative and low complexity solution applied
for large-scale radio environments, since the performance re-
sults were considerably better in several cases when compared
with deterministic techniques, such as IDW, and conventional
Kriging methods. In other words, the potential of our work
lies in the use of techniques that reduce the complexity of the
channel parameter estimation in the geostatistical model when
there is no a priori knowledge of the covariance parameters
of wireless channel subject to location uncertainty.

VII. CONCLUSIONS

In this manuscript, we have applied the Kriging spatial
predictor, a well-known technique in geostatistics, to obtain
a REM. After formulating the spatial prediction problem, we
have shown the necessary steps to generate the REM through
the geostatistical based framework. We introduce the location
errors in the system model to make the prediction problem
more realistic. Moreover, we consider an important assumption
on the lack of knowledge about the covariance parameters of
the wireless channel. In this sense, it was possible to verify
that the average path loss trend and covariance parameter
estimation processes plays an important role when subjected
to location errors and significantly affect the KILE and KALE
performance. To deal with these problems, we propose the
the S-KALE predictor, which took into account the location
error statistical distribution in parameter estimation, through
the adjusted semivariogram procedure. The simulation results
showed that the S-KALE predictor was able to provide supe-
rior performance when compared to KALE and KILE predic-
tors when covariance parameter estimation is required, subject
to location uncertainty. On future research directions, practical
research on REM (e.g., [4], [26], [83-84]) and investigations
on the influence of location uncertainty on structured spatial
covariance are important points in spatial prediction problems
applied to the wireless communications.
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