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Abstract—This paper addresses the performance, the report
channel traffic and the computational complexity of two blind
centralized cooperative spectrum sensing schemes under the
effect of unequal and dynamical noise and received signal powers.
The first one is the generalized likelihood ratio test, applying
decision fusion, and weighted and non-weighted data fusion
of samples and eigenvalues. The second one is the circular
folding cooperative power spectral density split cancellation
method, applying data fusion. It is demonstrated that different
configurations of the system parameters may influence the above
three metrics in different extents, meaning that none of the
techniques is capable of overcoming the others in all metrics
simultaneously. As a consequence, the choice of the most suitable
technique must be made to match the specific scenario to which
the technique is intended to be applied. The results presented in
this paper serve as guidelines for assisting this choice.

Index Terms—Circular folding cooperative power spectral den-
sity split cancellation, cognitive radio, data fusion, decision fusion,
eigenvalue fusion, generalized likelihood ratio test, nonuniform
noise, spectrum sensing, unequal signal-to-noise ratio, dynamical
noise.

I. INTRODUCTION

THE unprecedented demand for new telecommunication
systems and services is currently motivating a huge re-

search effort for developing new technologies and standards, as
happens for instance with the fifth generation (5G) of wireless
communication networks, the wireless sensor networks (WSN)
and the Internet of things (IoT). The congestion of the radio-
frequency spectrum as a possible consequence of the high
expected number of new transceivers has become an issue,
representing the main bottleneck to the development of such
systems and services.

However, it has been verified that a significant portion
of frequency bands is in fact underutilized, in spite of the
apparent spectrum scarcity problem inherited by the current
fixed allocation policy [2]. In this policy, frequency bands
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are permanently and exclusively reserved to the incumbent
or primary network.

The cognitive radio (CR) [3] concept has recently emerged
as a possible solution to this scarcity problem. CR-enabled
secondary user (SU) devices that form the secondary network
make use of a flexible spectrum allocation and access strategy
in which the primary radio-frequency bands are used oppor-
tunistically, in a shared manner with the primary network.

A key enabler of the opportunistic access is the spectrum
sensing [4]. It is responsible for detecting unused primary
frequency bands (the so-called white-spaces or spectrum holes)
that can be occupied by the SU terminals. Thus, the spectrum
sensing task must be accurate and fast enough to avoid harmful
interferences to the primary user (PU) terminals, yet providing
a high data throughput to the secondary network.

If a single SU senses the spectrum, erroneous decisions
on the actual occupation state of the channel may be made
mainly due to multi-path fading, shadowing and the hidden
terminal problem [4]. The accuracy of the spectrum sensing
can be improved if more than one SU cooperate to decide on
the channel occupation state, thanks to the spatial diversity
experienced by SUs located at different positions.

In centralized cooperative spectrum sensing, the binary
decisions made by the SUs, or the samples collected by the
SUs (or some quantity derived from them) are transmitted to
a secondary network element called fusion center (FC), where
the final global decision on the channel state is made. When
the binary decisions are sent to the FC, a centralized decision
fusion cooperative spectrum sensing takes place, i.e., the FC
receives the individual binary decisions from all SUs and
combine them to make a centralized global decision. On the
other hand, when the received signal measurements made by
the SUs, or related quantities, are sent to the FC, a centralized
data fusion cooperative spectrum sensing is performed. In this
case, the FC receives the measurements or related quantities
from each SU and process them to form the test statistic that
will be used to allow for the global decision on the sensed
channel occupation.

A. Related work

The way in which the PU signal is sensed and processed
by an SU determines the specific local spectrum sensing
technique. As far as narrowband PU signals are concerned,
energy detection [5], [6], matched filter detection [7] and
cyclostationary feature detection [8] are widely discussed in
the literature. For wideband PU signals, recent studies point
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to three major techniques: energy detection [9], [10], wavelet-
based detection [11] and compressed (or compressive) sensing
detection [12], [13].

Eigenvalue-based detection [14]–[20] is one of the most
recent and promising techniques. Likewise energy detection, it
can be applied to either narrowband or wideband signals. The
test statistic is computed from the eigenvalues of the received
signal sample covariance matrix, yielding several different pos-
sibilities, for instance the eigenvalue-based generalized likeli-
hood ratio test (GLRT), the maximum-minimum eigenvalue
detection (MMED), also known as eigenvalue ratio detection
(ERD), and the maximum eigenvalue detection (MED), also
named Roy’s largest root test (RLRT) [17], [18].

The most important attractiveness of the eigenvalue-based
spectrum sensing is that no a priori knowledge about the
PU signal is needed for computing the test statistic. In some
schemes, like the GLRT and the MMED, the knowledge of
the thermal noise variance is not needed as well, meaning that
these are considered blind spectrum sensing schemes.

Semi-blind spectrum sensing techniques are those in which
the PU signal characteristics are not needed, but the noise
variance information is used to compute the test statistic. It
is known that the detection performance of such techniques
degrades considerably in practice due to the uncertainty in the
estimated noise variance. On the other hand, even some blind
methods, such as the eigenvalue-based GLRT and the MMED,
suffer from performance degradation under nonuniform noise
condition, i.e., when noises are assumed to have unequal
variances at the inputs of the receivers of the SUs. A generic
diagonal noise covariance matrix is allowed in order to take
into account these unequal variances or calibration uncertain-
ties at different receiver front-ends. The receiver front-ends
in which the noise power is unknown and not assumed to be
equal are sometimes referred to as uncalibrated receivers.

Several researchers have proposed techniques to enhance
detection performance under nonuniform noise. In [21], robust
spectrum sensing methods based on the Gerschgorin disk and
the Gerschgorin radii were proposed, but the resultant test
statistics do not exhibit the constant false alarm rate (CFAR)
property, although this property is claimed by the authors.

In [22] it is proposed a GLRT-based detector for a scenario
in which the noise that affects the elements of the multi-
antenna receiver has different and unknown variances, and
for an arbitrary signal-to-noise ratio (SNR). The method
requires solving a non-convex optimization problem. All of the
detectors formulated in [22] are assumed to have knowledge
of the signal rank, which is an unknown parameter when, for
instance, it is related to the number of PUs simultaneously
transmitting.

In [1] are addressed the performance and the reporting
(control) channel traffic in the decision fusion, and in the
weighted and non-weighted sample and eigenvalue fusion
schemes, under variable noise levels among the SUs, consid-
ering the cooperative spectrum sensing with the eigenvalue-
based GLRT. Two empirical weighting schemes are proposed
to control the combination of the samples or the eigenvalues
received at the FC. This is made to confer robustness to the
sample and eigenvalue fusion in the case of nonuniform noise,

in which the different noise variances were kept unchanged
from one sensing interval to the next. The channels between
the PU transmitter and the receivers of the SUs are assumed
to exhibit flat and slow fading, with identical average SNR
for all SUs. Results are presented for a fixed number of SUs,
each having a fixed number of antennas.

The performance of the GLRT under nonuniform noise
and received signal powers is also analyzed in [23], assum-
ing sensing channels subjected to correlated shadowing. The
sensing channels are modeled by a three-dimensional (3D)
correlated shadowing model in which the sensors are assumed
to be moving uniformly distributed in an 3D space. Similarly
to [1], in [23] it is also proposed one weighting scheme
for the eigenvalue fusion and one weighting scheme for the
sample fusion. However, differently from [1], these schemes
were developed based on the maximum likelihood estimate of
the noise variance, which provides better performances results
when compared to the ones considered in [1].

The authors of [24] address the problem of multi-antenna
spectrum sensing, considering the correlation between the
received signals at different uncalibrated receivers in the
presence of additive white Gaussian noise (AWGN). In order
to compute the test statistic, it is proposed to combine the
weighted estimated correlations between all antenna pairs. The
performance of the proposed detector is optimized by tuning
the weighting factors used in the test statistic.

The cooperative power spectral density split cancellation
(CPSC) is one of the most recent blind and robust spectrum
sensing methods proposed in the literature [25], [26]. The test
statistic is constructed in such a way that the noise variance is
canceled-out. A modified version of the CPSC named circular
folding cooperative power spectral density split cancellation
(CF-CPSC) is proposed in [27]. It maintains the low complex-
ity and robustness against nonuniform-dynamical noise (when
noise variances are different among the SUs and vary from
one sensing interval to the next) with respect to the original
CPSC, yielding considerable performance improvements over
its previous version.

A large number of other researches related to the influence
of nonuniform noise or, more generally, of arbitrary and
varying SNRs, on the spectrum sensing performance can be
found in the literature. The works cited here are, thus, far from
exhaustive.

B. Contributions and structure of the paper
This paper is an extended and improved version of [1], in

which the weighting schemes proposed in [23] are adopted
instead of those applied in [1]. The performances of two blind
centralized cooperative spectrum sensing schemes under uni-
form and nonuniform-dynamical signal and noise powers are
assessed, considering different numbers of SUs and different
numbers of antennas in each SU. The first scheme applies
the eigenvalue-based GLRT with decision fusion, and with
weighted and non-weighted data fusion of samples and eigen-
values. The second scheme applies the CF-CPSC with total
and with partial data fusion. The performances are then traded
off against the report channel traffic and the computational
complexity of the techniques.
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The following scenarios are considered in the case of the
eigenvalue-based GLRT: i) it is analyzed under weighted
and non-weighted sample fusion (WSF and SF, respectively),
with the eigenvalues of the received signal covariance matrix
computed at the FC to form the test statistic; ii) a mod-
ified GLRT is analyzed under weighted and non-weighted
eigenvalue fusion (WEF and EF, respectively), now with the
eigenvalues computed at the SUs and sent to the FC, where
the test statistic is formed; iii) the GLRT is applied in each
SU equipped with multiple antennas, and local decisions are
sent to the FC in a decision fusion (DF) scheme under the
combining rules OR, AND and majority-voting (MAJ).

In the case of the CF-CPSC, the following scenarios are
addressed: i) total sample fusion (TSF), a case in which the
entire processing regarding the computation of the test statistic
is performed at the FC; ii) partial sample fusion (PSF), a case
in which parts of the test statistic are computed by the SUs
to save report channel resources, and the final test statistic is
computed at the FC. In this case, the CF-CPSC of [27] is
slightly modified to operate with multiple antennas.

To take into account situations of more practical signifi-
cance, two scenarios regarding the noise variances are consid-
ered: i) uniform noise, in which the noise variances are the
same in all receivers of the SUs; ii) nonuniform-dynamical
noise, in which different and time-varying (from one sensing
interval to the next) variances among SUs are considered.
Moreover, nonuniform SNRs at the receivers of the SUs are
assumed, and the channels between the PU transmitter and
these receivers exhibit frequency-selective and slow fading.

In summary, the main novelties with respect to [1] are:
i) the inclusion of the CF-CPSC and its modified version
(for multiple antennas) in the analyses; ii) the computational
complexity analysis of the underlying techniques; iii) the noise
variances are allowed to vary from one sensing time to the
next; iv) the average SNRs are assumed nonuniform to account
for different distances from the PU transmitter to the SU
receivers; v) the channels between the PU transmitter and
the SU receivers are frequency-selective, what is compatible
with the wireless regional area network (WRAN) standard
IEEE 802.22 [28], [29]; vi) the number of SUs and antennas
per SU are varied to allow for the choice of better system
configurations; and vii) the weighting schemes adopt the more
accurate noise estimation process suggested in [23], yielding
improved performances.

The remainder of the paper is organized as follows: a short
background and the system model are given in Section II. Sec-
tion III describes the approaches adopted for constructing the
test statistic of the GLRT and the CF-CPSC, as well as those
adopted in the fusion of the spectrum sensing information at
the FC. Numerical performance results and discussions are
given in Section IV. The trade-off analysis regarding perfor-
mance, report channel traffic and computational complexity is
made in Section V. Section VI concludes the paper and gives
some directions for further related research.

II. BACKGROUND AND SYSTEM MODEL

The spectrum sensing can be viewed as a binary hypotheses
test in whichH0 denotes the hypothesis that the PU transmitter

is off (inactive), whereas H1 denotes the hypothesis that the
PU transmitter is on (active). The main metrics for assessing
the performance of this test are the probability of false alarm,
Pfa, and the probability of detection, Pd. The former is the
probability of declaring an active PU transmitter when in fact
it is inactive. The latter is the probability of declaring the PU
transmitter active when it is indeed active. Mathematically,

Pfa = Pr{decision = H1 |H0}, (1a)
Pd = Pr{decision = H1 |H1}, (1b)

where Pr{A|B} is the probability of the event A conditioned
on the occurrence of the event B.

When the SUs make local decisions on the presence of
the PU signal to subsequently transmit them to the FC, a
pair of probabilities of false alarm and detection will measure
the local decision performance, and another pair will do the
same with respect to the global decision performance made
at the FC. For example, when the GLRT is used as the
detection technique in each SU, PfaSU = Pr{T > γ |H0} and
PdSU = Pr{T > γ |H1} are the local metrics (for now assumed
the same for all SUs), where T is the test statistic and γ is the
local decision threshold. In this case, the global performance
metrics are determined by the rule used to combine the local
decisions at the FC. For example, let um = 0 denote the
decision made by the m-th SU associated to the hypothesis
H0, m = 1, 2, . . . , M , and um = 1 associated to the hypothesis
H1, with M being the number of SUs in cooperation. For
the combining rule OR, the FC decides in favor of H1 if∑M

m=1 um > 0, and in favor ofH0 otherwise; for the combining
rule AND, the FC decides in favor ofH1 if

∑M
m=1 um = M , and

in favor of H0 otherwise; for the MAJ rule, the FC decides in
favor of H1 if

∑M
m=1 um > M/2, and in favor of H0 otherwise.

Under error-free report channels and equal local perfor-
mances, the global metrics are determined from the local ones
by means of [30]

Pd =

M∑
l=k

(
M
l

)
(PdSU)l (1 − PdSU)M−l, (2a)

Pfa =

M∑
l=k

(
M
l

)
(PfaSU)l (1 − PfaSU)M−l . (2b)

The above expressions apply to the well-known k-out-of-
M combining rule [30], in which the FC decides in favor of
the presence of the PU signal if there are k or more SUs
that individually decide on the presence of the PU signal.
When k = 1, k = M , and k = dM/2e, the k-out-of-M rule
specializes to the OR rule, the AND rule and the MAJ rule,
respectively, where dM/2e is the smallest integer greater than
or equal to M/2. The general relations between the local and
the global metrics when the local ones may be different from
each other, and when the FC performs a weighted combining
of the decisions of the SUs, can be obtained from [31, Eqns.
(15) and (16)].

When the test statistic T if formed at the FC, which is the
case of both the GLRT and the CF-CPSC with data fusion,
Pfa = Pr{T > γ |H0} and Pd = Pr{T > γ |H1} are the global
metrics, where γ is now the global decision threshold set in
the FC.
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The performance of the spectrum sensing is typically as-
sessed by means of a receiver operating characteristic (ROC)
curve, which trades Pfa versus Pd. Low values of Pfa are
desired to increase the throughput of the secondary network,
while high values of Pd are desired to protect the primary net-
work against interferences caused by the secondary terminals
due to missed detections of the PU signal.

In order to improve the spacial diversity effect beyond
the one provided by cooperation, and to reduce the sensing
interval, assume that the m-th SU, m = 1, 2, . . . , M , is equipped
with J antennas [32]. From each antenna, N received samples
are collected during a sensing interval and arranged in a matrix
Ym ∈ C

J×N given by

Ym =
[
ym,1 ym,2 · · · ym, j · · · ym,J

]T
, (3)

where ym, j ∈ CN×1 is the vector formed with the N samples
collected by the j-th antenna, j = 1, 2, . . . , J, of the m-th SU,
and [·]T stands for matrix or vector transposition.

The discrete-time impulse response of the channel between
the PU transmitter and the j-th antenna of the m-th SU can
be represented by the vector hm, j ∈ C

Nc×1, where Nc is the
impulse response length. The elements of hm, j are the path
gains, which are considered zero mean complex Gaussian ran-
dom variables with unitary power gain, i.e. E

[
h†m, jhm, j

]
= 1,

with E[·] denoting the statistical expectation operator and
[·]† denoting the conjugate and transpose operation. The path
gains are kept constant during the sensing interval and are
independently coined from one interval to the next. This
channel model simulates a slow and time-varying frequency-
selective Rayleigh fading.

It is assumed that when the PU signal is sensed, the channel
output is already in a steady state, meaning that the received
samples were affected by all path gains. In other words, the
sensing interval does not encompass the tails of the channel
output samples, which are transient periods at the beginning
and the end of a PU transmission; such tails result from the
influence of not all channel path gains and, thus, must be
ignored. Then, the vectors ym, j can be written as

ym, j = RHm, jx + vm, j, (4)

where Hm, j ∈ C
(N+2Nc−2)×(N+Nc−1) is a banded Toeplitz chan-

nel matrix whose band diagonal is formed from the elements of
hm, j [33], and x ∈ C(N+Nc−1)×1 represents the PU signal sam-
ples. The product Hm, jx replaces the convolution between the
transmitted signal and the channel impulse response. The ad-
ditional product by the matrix R = [0N×(Nc−1) IN 0N×(Nc−1)]
is responsible for cutting-off the above described tails in the
channel output sequence, yielding the desired number N of
samples in ym, j . The block matrices forming R are two zero
matrices of order N × (Nc − 1) and the identity matrix of
order N . Finally, the vector vm, j ∈ CN×1 in (4) is formed
by zero mean circularly-symmetric complex AWGN samples
with variance σ2

m . Notice that the noise variances are possibly
different among the receivers of the SUs, which is a common
situation in practice, but they are considered the same in
each antenna branch, meaning that each SU antenna array is
assumed to be calibrated by means of a suitable technique [34].

It is important to notice that the vector x in (4) could have
any length greater than, or equal to N + Nc − 1, which would
represent a PU transmission initiated more time before the
beginning and after the end of the sensing interval. However,
there is no reason for choosing such lengthened x in the present
model, since only the N steady-state samples are eventually
considered.

For the sake of simplicity, no particular node distribution
or mobility model is explicitly applied to the terminals of
the cognitive secondary network. Nonetheless, node mobility
is implicitly considered when dynamical received signal and
noise powers are taken into account. In other words, when
nonuniform noise and received signal powers are assumed, it
can be interpreted that, due to node mobility, the SUs are
at different distances from the FC in each sensing round.
Moreover, if it is assumed that when at different locations
the SUs are almost-surely subjected to different temperatures,
the time-varying noise power also mimics the node mobility,
as well as the inherent receiver component differences.

III. TEST STATISTICS AND FUSION TECHNIQUES

The variants of the GLRT and the CF-CPSC with respect
to the way in which the spectrum sensing information is
processed and transmitted to the FC are discussed in this
section, assuming an error-free report channel.

A. GLRT with sample fusion (SF) and weighted sample fusion
(WSF)

In the GLRT with SF, which can be referred to as the con-
ventional cooperative GLRT [17], the m-th SU transmits the
samples in Ym to the FC; see (3). A new matrix YFC ∈ C

JM×N

is formed at the FC by concatenating the M matrices {Ym },
according to

YFC =
[
YT

1 YT
2 · · · YT

M

]T
. (5)

The sample covariance matrix RFC ∈ C
JM×JM is then

estimated as
RFC =

1
N

YFCY†FC, (6)

from which the JM ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λJM

are computed.
Since the FC does not know the noise variances {σ2

m }
M
m=1,

under the sample fusion approach it applies the GLRT test
statistic [17]

TSF =
JMλ1∑JM
i=1 λi

. (7)

In order to improve the robustness of the GLRT with sample
fusion against nonuniform noise, the authors of [1] and [23]
developed two weighted sample fusion (WSF) schemes. In
this paper, the scheme of [23] is used instead of the one
in [1], since the former makes use of a maximum likelihood
noise variance estimate, whereas the latter uses a less accurate
estimate.

In the GLRT with weighted sample fusion, the matrix
defined in (5) is modified to

Y′FC =
[

f1YT
1 f2YT

2 · · · fMYT
M

]T
, (8)
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where the weight fm is computed by the m-th SU according
to [23]

fm =
1
σ̂m
=

*.
,

1
J − 1

J∑
j=2

λ j,m
+/
-

− 1
2

, (9)

with σ̂2
m =

1
J−1

∑J
j=2 λ j,m being the maximum likelihood

estimate of the noise variance at the input of the m-th SU,
assuming the presence of a signal [17], [35]. This estimate
is made from the smallest J − 1 ordered eigenvalues λ2,m ≥

λ3,m ≥ · · · ≥ λJ,m of the m-th sample covariance matrix
Rm ∈ C

J×J , which is computed as

Rm =
1
N

YmY†m, (10)

where Ym comes from (3). The role of the weights { fm } is to
weaken the signal samples that are subjected to higher noise
levels and to strengthen those under lower noise levels, thus
favoring a larger influence of the signal samples less affected
by noise on the composition of the test statistic.

The modified sample covariance matrix R′FC ∈ C
JM×JM is

estimated at the FC as

R′FC =
1
N

Y′FCY′ †FC, (11)

from which the JM ordered eigenvalues λ ′1 ≥ λ
′
2 ≥ · · · ≥ λ

′
JM

are computed. Thus, the GLRT test statistic given in [17],
which is Eq. (7) of this paper, under the weighted sample
fusion strategy becomes

TWSF =
JMλ ′1∑JM
i=1 λ

′
i

. (12)

B. GLRT with eigenvalue fusion (EF) and weighted eigenvalue
fusion (WEF)

In this data fusion approach, the m-th SU terminal com-
putes the sample covariance matrix (10) and its eigenvalues
λ1,m ≥ λ2,m ≥ · · · ≥ λJ,m . The JM eigenvalues from all SUs
are transmitted to the FC, where it is computed the test statistic
of the modified GLRT with eigenvalue fusion, proposed orig-
inally in [36, Eq. (24)] and adapted here to the single-carrier
PU transmission1, yielding

TEF =
J
∑M

m=1 λ1,m∑M
m=1

∑J
j=1 λ j,m

. (13)

Similarly to the weighted sample fusion, the weighted
eigenvalue fusion proposed in [23] is also studied in this
paper. In this case, more weight is given to eigenvalues coming
from SUs affected by lower estimated noise powers, improving

1In [36] it is proposed an empirically-modified version of the
eigenvalue-based GLRT given in [17], yielding the test statistic
TEF,s =

(
PJ

∑M
m=1 λ1,s,m

) (∑P
p=1

∑M
m=1

∑J
j=1 λ j,s,m

)−1
for centralized

cooperative spectrum sensing of orthogonal frequency division multiple
access (OFDMA) signals. The FC receives the JP eigenvalues sent by the
M SUs and computes one decision for each sub-channel of the OFDMA
signal, where P is the total number of OFDMA sub-channels, J is the
number of eigenvalues of the sample covariance matrix, which is also the
number of sub-carriers per sub-channel, denoted as K ′ in [36], and s is the
s-th OFDMA sub-channel.

the spectrum sensing robustness against nonuniform noise
variances. The weights are given by

gm = f 2
m =

1
σ̂2
m

, (14)

where fm is from (9). The resulting modified GLRT test
statistic is TWEF =

(
J
∑M

m=1 gmλ1,m
) (∑M

m=1 gm
∑J

j=1 λ j,m

)−1
,

which after some simple manipulations [23] becomes

TWEF = J
*..
,
1 +

M∑M
m=1

λ1,m∑J
j=2 λ j,m

+//
-

−1

. (15)

C. GLRT with decision fusion (DF)

When the GLRT with DF is considered, each SU makes its
local decision upon the presence or absence of the PU signal
and sends the decision to the FC. The GLRT test statistic [17]
formed in the m-th SU is

TDFm =
Jλ1,m∑J
j=1 λ j,m

, (16)

where λ1,m ≥ λ2,m ≥ · · · ≥ λJ,m are the ordered eigenvalues
of the m-th received signal sample covariance matrix given
by (10). The m-th SU decision is um = 1 if TDFm > γ, and
um = 0 if TDFm ≤ γ, being γ the local decision threshold.
The global decision at the FC is then made according to the
combining rule applied to the M received decisions from the
SUs, namely OR, AND or MAJ, as described in Section II.

D. CF-CPSC with total sample fusion (TSF) and partial
sample fusion (PSF)

As already mentioned, the CF-CPSC [27] has low complex-
ity and is robust against dynamical noise variance, likewise
the original CPSC [25], but attains superior performance with
respect to the original version. A single adaptation of the CF-
CPSC to work with SUs having multiple antennas is given
here, since the CF-CPSC has been originally conceived to
work with a single antenna per SU. The adaptation, which
acts in the steps 1 to 4 in the subsequent algorithm, treats each
antenna as a separate receiver, i.e., the CF-CPSC algorithm is
applied to the signal received by each antenna branch, for each
SU, which from the algorithmic point of view is equivalent
to having M J single-antenna SUs instead of M SUs with
J ≥ 1 antennas each. The adapted CF-CPSC method works
according to the following steps:

1) Estimate the instantaneous power spectral density (PSD)
of the discrete-time signal received at the j-th antenna
of the m-th SU as

F′m, j =
1
N

���DFT{ym, j }���
2
, (17)

where DFT{·} is the discrete Fourier transform (DFT)
operator and ym, j is from (4).

2) Compute the modified circular-even component of F′m, j
according to

Fm, j [k] =



F′m, j [1]+F′m, j [N/2+1]
2 , k=1,

F′m, j [k]+F′m, j [N−k+2]
2 , k=2, 3, . . . , N .

(18)
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3) Divide the sensed band into L sub-bands and compute
the signal power in the `-th sub-band, ` = 1, 2, . . . , L, as

F`m, j =

V∑
k=1

Fm, j [(` − 1) V + k] , (19)

where V = N/(2L).
4) Compute the total signal power in the sensed band,

Ffullm, j =

N/2∑
k=1

Fm, j [k]. (20)

5) Compute the average of the ratio F`m, j /Ffullm, j , where
the noise variance influence is canceled-out, yielding

rm,` = 1
J

J∑
j=1

F`m, j /Ffullm, j . (21)

We emphasize that (21) is a more general computation in
comparison with the corresponding one defined in [27],
since here it is assumed that each SU has J ≥ 1 antennas
(rm,` = F`m/Ffullm in [27], since J = 1 for each SU).

6) For both the partial and the total sample fusion strate-
gies, the adapted CF-CPSC test statistic for the `-th sub-
band is formed at the FC, yielding

TTSF/PSF` =
1
M

M∑
m=1

rm,` . (22)

In TSF, the digitized samples from all vectors ym, j are
transmitted to the FC (see step 1), where all computa-
tions regarding the CF-CPSC method are carried-out. In
PSF, the variables rm,` are computed by the SUs, then
digitized and transmitted to the FC, thus transferring to
the SUs most of the computations. On the other hand,
less report channel data traffic is needed in PSF when
compared to TSF.

7) Compare the test statistics with a global decision thresh-
old γ to reach the decision on the occupation state of
the `-th sub-band, that is,




TTSF/PSF` < γ, decide H0 for `-th sub-band
TTSF/PSF` ≥ γ, decide H1 for `-th sub-band

. (23)

8) Finally, make the global decision on the occupation of
the sensed band according to




All sub-bands decided H0, H0

One or more sub-bands decided H1, H1
. (24)

IV. PERFORMANCE RESULTS AND DISCUSSIONS

In this section we present several MATLAB® simulation
results regarding the global performance of the spectrum
sensing in terms of ROCs. The aim of these results is to show
the influence of having SUs under uniform and dynamical-
nonuniform noise variances, as well as under different SNRs
due to different distances from the PU transmitter, and dif-
ferent system parameters. Different sets of system parameters
are explored, not necessarily but intensionally keeping some
level of similarity with the parameters adopted in [1], since this

paper is as an extension of it. The authors attest, however, that
all the analyses discussed here could be made for any different
and uncorrelated set of the system parameters considered here
or in [1]. The GLRT and the CF-CPSC are analyzed under all
fusion rules described in Section III.

In the case of uniform noise condition, the noise power
for all SUs was σ2

m = 1, and the PU signal power was set
according to the desired average SNR in each SU. In the
nonuniform-dynamical noise condition, the noise power was
varied uniformly within ±80% around the average σ2

m = 1,
that is, σ2

m ∼ U [0.2, 1.8]. The variations occur among SUs
and from one sensing interval to the next.

It is important to highlight that the uniform distribution for
the noise variance fluctuations in each SU was chosen here
for simplicity; other distributions could be adopted as well,
for instance some distribution based on field measurements or
on device-dependent models.

The average signal power received by the m-th SU was
computed according to

Pm = σ
2
m × 10SNRm/10 = 10SNRm/10, (25)

with the average SNR in each SU configured according to
Table I. In this table, the SNRs are shown for M = 3 SUs
equipped with J = 6 antennas each, and for M = 6 SUs
with J = 3 antennas. Notice that the average of the SNR
values is −10 dB, which represents a challenging situation
from the perspective of the spectrum sensing. For instance, the
IEEE 802.22 WRAN standard [28], [29] determines that the
sensors have to detect very weak primary signals, for instance
with power level of −114 dBm, with a probability of detection
of 0.9, which represents a low SNR situation for this target
performance.

TABLE I: Average SNRs for the SUs, assuming M = 3 SUs having J = 6 antennas
each, and M = 6 SUs having J = 3 antennas each.

SNR for the m-th SU, dB
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

M = 3 −12 −10 −8
M = 6 −15 −13 −11 −9 −7 −5

The PU transmitted signal vector x was configured to simu-
late base-band binary phase-shift keying (BPSK) symbols [37],
each one represented by 5 samples. The channel between
the PU transmitter and the receivers of the SUs was set
to simulate a slow, multi-path frequency-selective Rayleigh
fading according to the delay profile given in Table II, which
follows the IEEE 802.22 standard for WRAN scenarios [28],
[29]. In other words, the vectors hm, j that model the channels
between the PU transmitter and the j-th antenna of the m-th
SU are composed of elements following a complex Gaussian
distribution whose power gain is determined from Table II.
The overall power gain was then normalized to unit.

TABLE II: Delay profile of the PU-SU multi-path fading channel.

Path index 1 2 3 4 5 6
Path delay, µs 0 3 8 11 13 21
Path gain, dB 0 −7 −15 −22 −24 −19
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Each pair of global Pfa and Pd in the ROC curves pre-
sented hereafter was generated from 100,000 Monte Carlo runs
comprising the events: primary signal transmission, spectrum
sensing, fusion and global decision. The PU signal activity
was simulated by means of a Bernoulli random variable with
probability of success equal to 0.5, yielding a 50% PU signal
duty-cycle.

In the case of the CF-CPSC, the number of sub-bands
dividing the sensed band was set to L = 5.

The report channel was assumed perfect, meaning that no
transmission errors were caused to the information sent by the
SUs to the FC in any of the fusion strategies.

Figure 1 shows performance results for the GLRT and the
CF-CPSC under nonuniform non-dynamical noise condition,
with noise variances randomly selected but constant over all
sensing intervals. This non-dynamical noise variance approach
was adopted in [1], but can lead to non-general conclusions
regarding absolute or relative performances, because the curve
positions may change significantly from a given realization
of the set of noise variances to another, even if the average
variance is maintained. This is demonstrated by the noticeable
difference between the results in Fig. 1(a) with respect to those
in Fig. 1(b). These results were obtained assuming M = 3 SUs
with J = 6 antennas each, N = 30 received signal samples per
antenna in each sensing interval, yielding JN = 180 samples
per SU, noise variances (σ2

1, σ
2
2, σ

2
3) = (1.75, 0.3, 0.95) in the

case of Fig. 1(a) and (σ2
1, σ

2
2, σ

2
3) = (1.1, 1.2, 0.7) in the case

of Fig. 1(b). Notice that the average noise variance among the
SUs is equal to 1. The average variance for the m-th SU in
several random realizations of such sets of variances over time
would be σ2

m = 1, yielding those SNRs in Table I, i.e., −12,
−10 and −8 dB. However, the actual SNRs achieved by fixing
the above noise variances over time are −14.43, −4.77 and
−7.78 dB (−8.99 dB on average) for Fig. 1(a) and −12.41,
−10.79 and −6.45 dB (−9.88 dB on average) for Fig. 1(b).

From the results in Fig. 1 one can notice that not only the
performances of all techniques have changed from Fig. 1(a)
to Fig. 1(b), but also the ranking has changed. This can be
observed, for instance, in the case of the GLRT with DF and
combining rule MAJ, whose performance is better than the
GLRT with EF and the GLRT with SF in Fig. 1(a), but is
worse than these two in Fig. 1(b). As another example, in
Fig. 1(a) the GLRT with SF is the worst, but in Fig. 1(b) it is
only outperformed by the GLRT with WSF and the CF-CPSC.
The same behavior can be observed in the case of the GLRT
with DF and combining rule AND, for which the performance
overcomes the GLRT with SF in Fig. 1(a), but is far below it
in Fig. 1(b).

The results in Fig. 1 bring out the important conclusion
that it is not encouraged to assess the spectrum sensing
performance under nonuniform noise conditions by keeping
the noise variances unchanged from one sensing interval to the
next, unless this behavior is intended to mimic some particular
scenario that will actually happen in practice or is worth
analyzing for some specific purpose. Nonetheless, this fixed
noise variance condition is still useful for determining to which
extent a given technique is robust against nonuniform noise.
However, not a single result should be used. For instance, a

record of the average performances and their variations over
several realizations of the noise powers is capable of reveal
the specific degree of robustness of the techniques.

Table III shows averages and standard deviations of the
area under the ROC curve (AUC) for each technique under
analysis, and the performance ranking. The top-three are
emphasized in bold. The AUCs were obtained from 5000
uniformly-distributed realizations of the noise variances in the
interval [0.2, 1.8], under the same system parameters used
to plot Fig. 1. Each realization of the noise variances was
kept unchanged over 1000 sensing intervals. The performance
ranking shows that the top-three techniques are the GLRT with
WSF, the CF-CPSF with TSF and PSF, and the GLRT with
WEF (which has attained roughly the same performance of the
GLRT with DF OR). The poorest performance was achieved
by the GLRT with DF AND. On the other hand, it can be seen
that the most robust technique is the CF-CPSC, for which the
smallest standard deviation of the AUCs has been achieved.
The CF-CPSC is closely followed by the GLRT with WSF
and the GLRT with DF AND. The less robust technique is the
GLRT with DF OR. From Table III it can also be concluded
that none of the techniques under analysis wins over the others
in terms of both the performance and the robustness against
nonuniform noise. However, one can clearly notice that the
CF-CPSC and the GLRT with WSF are equivalently attractive
in terms of these two metrics.

TABLE III: Averages and standard deviations of AUCs over several realizations of the
noise variances. System parameters are those used to plot Fig. 1.

Average AUC; ranking Std. deviation; ranking
GLRT, SF 0.8028; 6 0.0950; 6
GLRT, WSF 0.9301; 1 0.0659; 2
GLRT, EF 0.8209; 5 0.0812; 4
GLRT, WEF 0.8650; 3 0.0977; 7
GLRT, DF OR 0.8574; 4 0.1024; 8
GLRT, DF MAJ 0.7871; 7 0.0875; 5
GLRT, DF AND 0.6997; 8 0.0663; 3
CF-CPSC, TSF/PSF 0.9071; 2 0.0643; 1

In practice, the SNR may vary due to the mobility of
the SUs (which causes variations in the average received
signal power), and due to noise power variations caused
by different temperatures to which the SUs are submitted
at different locations and in different moments. Thus, to
avoid misinterpretations in the spectrum sensing performance
analyses and to confer a more practical appeal to them,
hereafter it is considered that the noise powers vary from one
sensing interval to the next. We refer to this as a nonuniform-
dynamical noise situation.

Figure 2 shows the performances of the GLRT and the
CF-CPSC under uniform, and nonuniform-dynamical noise
conditions, assuming different SNRs among the SUs, as de-
fined in Table I. Different numbers of SUs and antennas are
also considered, with a fixed number of samples collected
by each SU, i.e. JN = 180 samples. The number of SUs,
M , and the number of antennas, J, per SU were chosen in
such a way that the product JM = 18 is fixed for both
scenarios. With this constraint it is possible to establish a
fair performance comparison from the point of view of the
influence of the number of antennas in each SU and the
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Nonuniform noise

M = 3, J = 6, N = 30

Probability of false alarm, Pfa

GLRT, WSF

CF-CPSC, TSF/PSF

GLRT, SF

GLRT, WEF

GLRT, DF OR

GLRT, EF

GLRT, DF MAJ

GLRT, DF AND

Fig. 1: Global spectrum sensing performance under nonuniform noise for the CF-CPSC with total sample fusion and partial sample fusion (TSF/PSF), and for the GLRT with
sample fusion (SF), weighted sample fusion (WSF), eigenvalue fusion (EF), weighted eigenvalue fusion (WEF), and decision fusion (DF) under the combining rules OR, AND and
majority-voting (MAJ), assuming M = 3 SUs with J = 6 antennas each and N = 30 samples per antenna. The noise variances were kept unchanged over all sensing intervals, as
in [1], a set to (σ2

1, σ
2
2, σ

2
3) = (1.75, 0.3, 0.95) in (a) and (σ2

1, σ
2
2, σ

2
3) = (1.1, 1.2, 0.7) in (b).

number of cooperating SUs in the secondary network. In
other words, it is possible to infer if it is better, in terms
of performance, having more SUs with less antennas each or
less SUs with more antennas each. One can notice, however,
that the same analysis could be performed for other numbers
of SUs and antennas per SU, provided that the product JM is
maintained. Furthermore, the value of JM = 18 was adopted
in this paper to maintain coherence with the configurations
implemented in the conference paper [1], which is the work
on which the present research was based. Such a number
represents a desired practical scenario in which the number
of SUs in cooperation and the number of antennas in each SU
are not high.

Figures 2(a) and (b) were built by adopting M = 3 SUs,
each containing J = 6 antennas, and N = 30 samples collected
in each antenna branch, for the uniform and the nonuniform-
dynamical noise scenarios, respectively. On the other hand,
Figs. 2(c) and (d) were built by adopting M = 6 SUs,
each containing J = 3 antennas, and N = 60 samples for
each antenna, also for the uniform and for the nonuniform-
dynamical noise scenarios, respectively. In the uniform noise
scenario, i.e., Figs. 2(a) and (c), σ2

m = 1 for all SUs. In the
nonuniform-dynamical noise scenario, i.e., Figs. 2(b) and (d),
σ2
m ∼ Um[0.2, 1.8] for any m. Notice that, contrasting to what

has been observed regarding the results shown in Fig. 1, the
average SNR given in Table I for each SU is attained.

From graphs (a) and (b) of Fig. 2, one can see that only
the GLRT with SF, i.e, the conventional GLRT, has been
penalized by the nonuniform-dynamical noise situation. The
other techniques benefited from this situation, but in different
degrees. Recalling that noise variances are uniformly dis-
tributed around 1 among the SUs and over time, the observed
improvements can be credited to lower penalties caused by
variances above 1 than ameliorations caused by variances
below 1. In other words, based on the observation of the

simulation results presented in the graphs (a) and (b) of Fig. 2,
a given noise variance fluctuation above the mean reduces the
performance less than what the same fluctuation below the
mean improves it. An inverse behavior applies to the SNR
when it is not uniform among the SUs.

A similar behavior can be observed from the graphs (c)
and (d) of Fig. 2, but now with smaller improvements in the
nonuniform-dynamical noise condition, with the exception of
the GLRT with SF, which again has been strongly penalized.
Moreover, a small performance reduction for the GLRT with
EF in the nonuniform noise condition is observed, which
is credited to the smaller number of antennas (yielding a
smaller covariance matrix order) in comparison with the cases
considered in graphs (a) and (b).

It can also be noticed from all graphs in Fig. 2 that the
CF-CPSC is intrinsically robust against nonuniform-dynamical
noise, as expected. It can also be concluded that the sample and
eigenvalue weighting schemes (WSF and WEF, respectively)
have brought a remarkable robustness improvement to the
GLRT. The larger the noise variance differences, the more
effective is the weighting process.

An interesting aspect unveiled by Fig. 2 is that more SUs
with less antennas can yield better performances than less SUs
with more antennas. This would be even more emphasized if
the SUs were subjected to correlated shadowing, a situation in
which the close apart antenna array elements are less efficient
in terms of spatial diversity than far apart SUs.

The results in Figs. 1 and 2 show that the GLRT with DF
and combining rules OR, MAJ and AND achieve quite differ-
ent performances, which is credited to the higher probabilities
of correct local decisions made by the SUs under high SNRs,
and the higher probabilities of incorrect local decisions made
by the SUs under low SNRs. For instance, notice that the OR
rule is superior, since a single SU yielding correct decisions
more frequently (under high SNR) is enough for improving
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Fig. 2: Global spectrum sensing performance under uniform noise and nonuniform-dynamical noise for the CF-CPSC with total sample fusion and partial sample fusion (TSF/PSF),
and for the GLRT with sample fusion (SF), weighted sample fusion (WSF), eigenvalue fusion (EF), weighted eigenvalue fusion (WEF), and decision fusion (DF) under the combining
rules OR, AND and majority-voting (MAJ). Graphs (a) and (b) are for M = 3, J = 6, N = 30. Graphs (c) and (d) are for M = 6, J = 3, N = 60. In the nonuniform-dynamical
noise scenario, noise variances are uniformly distributed among SUs and independently varied from one sensing interval to the next.

the global decision accuracy, because a single correct decision
determines the correctness of the global decision. On the other
hand, a single SU yielding incorrect decisions more frequently
(low SNR) is enough for reducing the global decision accuracy
in the case of the AND rule. The MAJ is in-between these two
extreme cases, since a correct global decision is reached based
on the majority of the correct decisions made by the SUs.

From the pair of graphs (a,b) to the pair (c,d) of Fig. 2
it can be noticed that all techniques, except the GLRT with
DF AND, have improved their performances. The reason
for the unaltered performance of the GLRT with DF AND
can be explained in light of the previous paragraph. The
improvement achieved by the other techniques can be justified
by the following arguments: i) the product JM is fixed, which
means that the diversity effect is the same in both cases; ii)
the reduction in the order J × J of the sample covariance
matrix from (a,b) to (c,d) is somewhat compensated for by the
increased number N of samples used to estimate this matrix

from (a,b) to (c,d) in the DF, EF and WEF schemes; iii)
the remaining schemes make use of a fixed number N J of
samples, which put them into the same situation from (a,b) to
(c,d); iv) thus, the improvements are credited to the already-
mentioned unbalanced influence of the nonuniform SNRs, i.e.,
an SNR shift above the mean improves the performance less
than what the same shift below the mean reduces it (notice
from Table I that the SNR shifts above and below the mean
−10 dB are the same for the two cases analyzed).

Table IV lists the techniques and their relative positions
ranked according to the ROC metric extracted from Fig. 2,
that is, the performance of a given technique is superior with
respect to another one if, for a given probability of false alarm,
it attains the highest probability of detection. The bold-faced
numbers highlight the top-three techniques in each condition.
It can be seen that the top-three are the same for M = 3
and J = 6 and for M = 6 and J = 3. The ranking has
changed from the uniform noise to the nonuniform-dynamical
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noise condition, as well as the performance shifts. The poorest
performance in all situations was attained by the GLRT with
DF and combining rule AND, and the largest performance
shift was demonstrated by the GLRT with SF. The smallest
shift was achieved by the GLRT with WSF, closely followed
by the GLRT with EF and the CF-CPSC. Notice that the top-
three performances shown in the third column of Table IV
are the same as those unveiled by the average AUCs in
Table III, which was constructed under the same settings,
but used the average AUC instead of the absolute ROC
position for establishing the relative performance positions.
Changes in some ranking positions in Table IV with respect
to the performance ranking in Table III are credited to normal
statistical fluctuations of the Monte Carlo simulation results.
TABLE IV: ROC performance ranking of the techniques under analysis in the uniform,
and nonuniform-dynamical noise conditions. Bold-faced numbers highlight the top-three
techniques in each condition.

Uniform noise Nonuniform noise
M = 3
J = 6

M = 6
J = 3

M = 3
J = 6

M = 6
J = 3

GLRT, SF 1 1 7 6
GLRT, WSF 2 2 1 1
GLRT, EF 4 4 5 5
GLRT, WEF 5 5 3 3
GLRT, DF OR 6 6 4 4
GLRT, DF MAJ 7 7 6 7
GLRT, DF AND 8 8 8 8
CF-CPSC, TSF/PSF 3 3 2 2

The ROC performance analysis was also undertaken for the
case in which the channels between the PU transmitter and the
receivers of the SUs are considered flat instead of frequency-
selective. The corresponding ROC results are not presented
for the sake of conciseness, and because they would not
bring any relevant information besides the following ones: the
performances of all techniques improve from the frequency-
selective to the flat fading channel, as expected, maintaining
the ranking. The CF-CPSC is less sensitive to the channel
model, meaning that its performance changes slightly from the
frequency-selective to the flat fading condition. The sensitivity
of the CF-CPSC is lower when the number of SUs is M = 6
than when M = 3. If the SNRs among the receivers of the SUs
are considered uniform, the performances of all techniques
reduce slightly when M = 3, J = 6. A more noticeable
reduction, though still small, occurs when M = 6, J = 3. The
exception is the GLRT with DF and combining rule AND, for
which the performance practically does not change from the
uniform to the nonuniform SNR condition.

V. TRADE-OFF AMONG PERFORMANCE, REPORTING
CHANNEL TRAFFIC AND COMPUTATIONAL COMPLEXITY

As far as the volume of data traffic over the report channel
is concerned, the GLRT with SF is equivalent to the GLRT
with WSF, and the GLRT with EF is equivalent to the GLRT
with WEF, since the weighting operation does not influence the
traffic because it is implemented by the SUs in both cases, just
producing modified samples and eigenvalues to be transmitted
to the FC. We highlight that the weighting operation of the
GLRT with WEF can be applied directly by the FC, what can
be concluded from (15).

In the case of the GLRT with SF/WSF, the M SUs, each
having J antennas, collect N samples per antenna, yielding
M JN samples that are subsequently sent to the FC. Since in
practice the real and imaginary parts of the sample values are
treated by the two branches of a quadrature transceiver, each
branch will apply a b-bit quantization process, yielding a total
of 2bM JN bits reported to the FC in each sensing round.

In GLRT with EF/WEF, each SU computes J eigenvalues
of the received signal sample covariance matrix of order J× J,
and transmits these eigenvalues or their weighted versions to
the FC. Assuming the same number b of quantization bits, the
total data traffic reported to the FC is bM J bits per sensing
round. Notice that the EF/WEF yields 2bM JN/bM J = 2N
times less bits than the SF/WSF.

For the CF-CPSC with TSF, the test statistic is completely
implemented at the FC from the samples sent by the SUs.
Thus, the report channel traffic per sensing round is the same
as in the case of the SF/WSF, that is, 2bM JN bits.

In the case of the CF-CPSC with PSF, the values of rm,`
in (22) are computed by the m-th SU for all sub-bands ` =
1, 2, . . . , L. The ML resulting values are transmitted to the FC,
where the final test statistic is formed. Thus, the report channel
traffic is bML bits per sensing round.

The ratio between the report channel traffics of the GLRT
with SF/WSF and the CF-CPSC with PSF is 2bM JN/bML =
2JN/L, meaning that the latter saves more report channel
resources if L < 2JN , which can be easily accomplished
in practice. On the other hand, the ratio between the traffics
of the GLRT with EF/WEF and the CF-CPSC with PSF is
bM J/bML = J/L, meaning that the latter saves more report
channel resources if L < J, which is not impossible to
achieve in practice (recall that in the simulation results we
have considered L = 5, and J = 6 or J = 3).

In what concerns the GLRT with all decision fusion
schemes, namely the DF with OR, AND and MAJ rules,
only M bits are transmitted to the FC per sensing round,
yielding the smallest report channel traffic. The GLRT with
SF/WSF and the GLRT with EF/WEF reach a traffic that
is 2bM JN/M = 2bJN and bM J/M = bJ times higher,
respectively. The CF-CPSC with PSF achieves a traffic ratio
of bML/M with respect to the DF strategies, occupying more
report channel resources, since bL > 1 by definition.

To facilitate comparisons, Table V summarizes the above
total number of bits transmitted to the FC for each technique,
as well as the associated traffic ratios.

TABLE V: Total number of reported bits and traffic ratios. 1 GLRT with SF/WSF and
CF-CPSC with TSF; 2 GLRT with EF/WEF; 3 CF-CPSC with PSF; 4 GLRT with
DF. The row and column heads are the technique and the corresponding number of bits.

Traffic ratios (rows divided by columns)
1 , 2bMJN 2 , bMJ 3 , bML 4 , M

1 , 2bMJN 1 2N 2JN/L 2bJN
2 , bMJ 1/2N 1 J/L bJ
3 , bML L/2JN L/J 1 bL
4 , M 1/2bJN 1/bJ 1/bL 1

A numerical example might be of further help at this
point. Assume that the analog quantities to be reported are
digitized with b = 4 bits, and that the techniques 1 (GLRT
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with SF/WSF and CF-CPSC with TSF) apply quadrature
phase-shift keying (QPSK) modulation [37] in the report
transmissions, so that each symbol carries one bit related to
the real part of a sample value, and the other related to the
imaginary part. Consider that the techniques 2 (GLRT with
EF/WEF), 3 (CF-CPSC with PSF) and 4 (GLRT with DF)
apply BPSK modulation for the report channel transmissions.
The two system configurations analyzed in Section IV were
M = 3, J = 6, N = 30, and M = 6, J = 3, N = 60. The
number of sub-bands in the CF-CPSC was L = 5. Adopting
these configurations, the number of symbols transmitted to
the FC per sensing round and the associated traffic ratios
determined according to Table V are shown in Tables VI
and VII, respectively.

TABLE VI: Total number of modulation symbols and traffic ratios. 1 GLRT with
SF/WSF and CF-CPSC with TSF; 2 GLRT with EF/WEF; 3 CF-CPSC with PSF;
4 GLRT with DF. The row and column heads are the technique and the corresponding
number of symbols, for M = 3, J = 6 and N = 30.

Traffic ratios (rows divided by columns)
1 , 2160 2 , 72 3 , 60 4 , 3

1 , 2160 1 30 36 720
2 , 72 1/30 1 6/5 24
3 , 60 1/36 5/6 1 20
4 , 3 1/720 1/24 1/20 1

TABLE VII: Total number of modulation symbols and traffic ratios. 1 GLRT with
SF/WSF and CF-CPSC with TSF; 2 GLRT with EF/WEF; 3 CF-CPSC with PSF; 4
GLRT with DF. The row and column heads are the technique and the corresponding
number of symbols for M = 6, J = 3 and N = 60.

Traffic ratios (rows divided by columns)
1 , 4320 2 , 72 3 , 120 4 , 6

1 , 4320 1 60 36 720
2 , 72 1/60 1 3/5 12
3 , 120 1/36 5/3 1 20
4 , 6 1/720 1/12 1/20 1

From Tables VI and VII one can conclude that it is better
to have more SUs (large M) with less antennas (small J) than
less SUs with more antennas if the report channel traffic is
analyzed solely, except in the case of the technique 2 (GLRT
with EF/WEF), in which the number of eigenvalues sent to the
FC does not change if the product M J is maintained. Nonethe-
less, the diversity gain produced with multiple antennas might
be far below the diversity gain produced by spatially separated
SUs, especially in scenarios of spatially-correlated shadowing.

The high number of symbols transmitted when the sample
fusion 1 is adopted highlights an important drawback of this
scheme. The techniques 2 (GLRT with EF/WEF) and 3 (CF-
CPSC with PSF) are similar and considerably better in terms
of the volume of report channel traffic when compared to 1 ,
but still occupy significantly more report channel resources
when compared with the decision fusion scheme adopted by
the technique 4 (GLRT with DF).

Regarding the computational complexity, the techniques
differ in terms of the amount of computations and the number
of samples stored and processed. For the GLRT with SF and
the CF-CPSC with TSF, most of the computational burden is
located at the FC, since it has to process 2bM JN bits. In the
case of the GLRT with SF, the FC has to build the sample

covariance matrix and estimate JM = 18 eigenvalues to
compute the test statistic (7), subsequently making the global
decision. For the CF-CPSC with TSF, the algorithm processes
the same number of samples to yield the test statistic (22)
and the subsequent global decision. As highlighted in [25],
the computational complexities for estimating the eigenvalues
in the GLRT and for working with the Fourier transformations
used by the CF-CPSC are comparable, with a small advantage
of the CF-CPSC. It is worth noticing that, for these two
techniques, the computational burden in the SUs is low, since
they have only to digitize and transmit the sample values.

Considering the GLRT with WSF, the computational com-
plexity at the FC is even higher than in the case of the
GLRT with SF, since the calculation and application of the
weights (9) are additional to the computations of the GLRT
with SF, before the test statistic (12) is formed.

The computational complexity of the SUs increases with
respect to the previous cases when the GLRT with EF or
WEF is applied, since each SU must handle the JN sample
values to build its sample covariance matrix. On the other
hand, the computational burden of the FC is reduced, since it
has to handle only bM J bits and compute the test statistic (13)
or (15). Notice that no significant additional burden due to the
computation of the weights is needed in the case of the GLRT
with WEF with respect to the EF, since all eigenvalues are
already available to the FC.

For the CF-CPSC with PSF, the computational burden is
shifted from the FC to the SUs, where the partial statistics (21)
are computed. The FC receives these statistics and just have
to compute (22) and make the global decision.

The GLRT with DF is advantageous in terms of report
channel traffic, but this is the technique with the highest
computational complexity in the SUs, since each one has to
compute the test statistic (16) for subsequent local decision
and transmission to the FC. Then, one must trade the report
traffic against the complexity. The former is more relevant
in networks with limited report channel resources, which is
aggravated when the number of SUs in cooperation increases.
The latter is more relevant when lightweight and low power
consumption of the SU terminals are desired.

The global spectrum sensing performance must also be
included in the trade-off analysis. For example, the CF-CPSC
with PSF achieves good performances and robustness against
nonuniform noise powers and SNRs, demanding less report
channel traffic with respect to the GLRT with SF/WSF and
comparable traffic with respect to the GLRT with EF/WEF.

When high spectrum sensing performance as well as low
complexity of the SUs are targeted, no matter the report
channel traffic and the robustness under nonuniform noise and
SNRs, the GLRT with WSF is an attractive solution. If the
complexity of the SUs can be increased, the GLRT with WEF
will bring robustness against nonuniform noise and SNRs.

On the other hand, the attractiveness of the GLRT with
DF with respect to the low report channel traffic is somehow
blurred by the poor performances of the DF under the MAJ
and the AND combining rules.

The GLRT with SF is the less attractive solution in the
nonuniform noise scenario due to its strong performance
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degradation. Yet, the report channel traffic is very high. Its
single advantage is the good performance under uniform noise,
and low computational complexity at the SUs.

It is worth recalling that the report channels were assumed
error-free, meaning that they do not cause any lost to the data
sent by the SUs to the FC. In practice, however, these channels,
as any communication channel, are intrinsically erroneous,
which degrades the global spectrum sensing performance.
Imperfect report channels are expected to degrade Pfa and Pd
in different degrees depending on the adopted technique [38]–
[41]. Based on these references, it can be concluded that the
sensitivity to channel errors increases as the amount of data
transmitted from the SUs to the FC in each reporting round
reduces. For example, it is expected that decision fusion strate-
gies are more prone to report channel errors than the fusion
of digitized received signal samples or related quantities.

One might resort to the use of forward error correcting
(FEC) codes for protecting the transmissions from the SUs
to the FC, as done in [42]–[45], which increases the computa-
tional complexity at the SUs and at the FC due to the encoding
and decoding processes, respectively. However, the amount of
bits added to protect the transmissions must be traded against
the overall volume of data that can be sent to the FC, since
the reporting time interval is limited.

If exactly the same FEC scheme is applied to all the
techniques analyzed in the present paper, no matter the specific
code, the ratios in Table V are maintained, as well those in
Table VI and in Table VII. This means that the ranking is
maintained in terms of report channel traffic, being the DF
the most advantageous and the GLRT with SF/WSF and CF-
CPSC with TSF the most disadvantageous. For the GLRT with
EF/WEF and the CF-CPSC with PSF, the final ranking will
depend on the number of sub-bands, L, of the CF-CPSC.

VI. CONCLUSIONS AND OPPORTUNITIES FOR FURTHER
RESEARCH

This paper presented an analysis of the performance, the
report channel traffic and the computational complexity of two
blind centralized cooperative spectrum sensing schemes: the
eigenvalue-based GLRT and the CF-CPSC, under the effect
of unequal and dynamical received signal and noise powers.
These schemes were the basis for constructing the following
variations: GLRT with sample fusion and weighted sample
fusion, GLRT with eigenvalue fusion and weighted eigenvalue
fusion, GLRT with decision fusion under the combining rules
OR, AND and MAJ, CF-CPSC with total sample fusion
and CF-CPSC with partial sample fusion. Amongst several
particular conclusions, it has been shown that there is no
technique superior to the others in terms of all metrics. As
a consequence, the choice of the most suitable technique must
be carefully made to match the specific scenario to which the
technique is aimed to be applied. The results presented in this
paper is intended to serve as a guideline for assisting this
choice.

Some opportunities for future related research are: i) to
include errors in the report channel (we conjecture that some
techniques might be more vulnerable to these errors, especially

those that achieve less report channel traffic, i.e., less bits carry
the important spectrum sensing information); ii) to consider
that the primary signal starts and finishes its transmission at
any time, meaning that only a fraction of this signal might be
captured during the sensing interval; iii) to consider that the
sensed bandwidth is not necessarily equal to the bandwidth
of the primary signal and that the center frequencies of
the sensed band and the primary signal band might not be
the same. All of these new investigations could be carried-
out under nonuniform and dynamical noise and signal-to-
noise ratios at the secondary user terminals, also considering
spatially-correlated shadowing affecting the mobile nodes of
the secondary network.
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