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Least Squares Channel Estimation for Analog
Network Coding Over Frequency Selective Fading

Channels
Pedro Ivo da Cruz and Murilo Bellezoni Loiola

Abstract—Two-way relay networks can have their throughputs
improved by adopting physical-layer network coding. To work
properly, these systems need to know the channel impulse
responses involved. Most previous works on channel estimation
for physical-layer network coding systems consider flat fading
or frequency-selective fading together with orthogonal frequency
division multiplexing modulation. However, for single carrier sys-
tems under frequency-selective channels, the estimators proposed
in the literature cannot be applied directly. In order to solve this
problem, a least squares channel estimator for these scenarios
is proposed here. Simulations are performed to evaluate the
performance of this channel estimator and the results show the
effectiveness of the proposed technique.

Index Terms—physical layer network coding, channel estima-
tion, least squares, analog network coding, amplify-and-forward,
two-way relay network

I. INTRODUCTION

The first work on communication systems that use two-
way channels for exchanging information between two nodes
was presented by Shannon in 1961 [1]. In his work, Shannon
discussed several channels through which it was possible to
exchange information between two nodes in both directions
at the same time. One of these channels would allow the two
nodes to send their information at the same time and frequency,
and both nodes would receive the XOR mapping of the bits
sent by each user. Shannon did not show how such a system
could be implemented but developed the mathematics necessary
to understand them. This subject has gained a renewed interest
when a technique called Physical-layer Network Coding (PNC)
was proposed in 2006 [2], [3]. PNC adopts a Two-way Relay
Channel (TWRC) network and allows two nodes to send data
simultaneously to the relay, improving the throughput of the
network [3].

The PNC systems take advantage from the electromagnetic
interference between the signals sent by two or more nodes at
the same time and frequency. Specifically in the TWRC, two
nodes send information simultaneously to the relay node, that
must perform the PNC mapping [2] in order to transform its
received signals originated from both users into one that can
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sity of ABC, Santo André, SP, Brazil, E-mails: pedro.cruz@ufabc.edu.br,
murilo.loiola@ufabc.edu.br. This work was partially supported by CAPES
and by FAPESP (2013/25977-7). This work was presented in part at the
XXXIV Brazilian Symposium on Telecommunication and Signal Processing
(SBrT2016).

Digital Object Identifier: 10.14209/jcis.2018.29

be recognized by the end nodes. It is shown in [4] that we
can consider the signal interference itself as a PNC mapping,
and, therefore, the relay only needs to amplify the received
signal and send it to the end nodes. The nodes must, therefore,
be able to extract the information of interest from this signal.
This protocol is known as Amplify-and-Forward (AF), and the
system is said to use Analog Network Coding (ANC), since the
relay does not need to perform any detection, and the mapping
occurs in the analog domain.

Most works on PNC systems consider that the channel
impulse responses (CIR) of each channel are perfectly known
at the relay and at the end nodes. However, in practical
situations, these CIR are not known a priori. Hence, channel
estimation techniques are essential for practical deployment
of PNC systems. Because of the easy implementation of the
ANC systems, most works on channel estimation focus on
these systems. Furthermore, it can be shown that for ANC
systems, channel estimation is only necessary for detection
at the end nodes, i. e., only the impulse responses of the
cascaded channels needs to be estimated, while knowledge of
the individual channels is not required [5]–[10].

Therefore, the literature on channel estimation techniques
focus on the TWRC network and ANC systems. The work in
[6] derives the maximum likelihood (ML) estimator and the
Linear Maximum Signal-to-Noise Ratio (LMSNR) estimator,
considering flat fading channels. It also proposes the optimal
training sequence that reduces the mean squared error (MSE)
associated with those estimators. In [7], the authors developed
Least Squares (LS) estimators for Orthogonal Frequency
Division Multiplexing (OFDM) systems, by using either one
OFDM symbol as training sequence, or by using pilot sub-
carriers. The Zadoff-Chu training sequence for TWRC systems
was proposed in [8] for the LS estimator and OFDM modulated
systems, in order to reduce the peak-to-average power ratio
(PAPR). The Linear Minimum Mean Squared Error (LMMSE)
estimator for OFDM systems was addressed in [9], showing
that it has superior performance than the LS estimator, in
terms of MSE. The work in [10] proposes a different channel
estimation technique: it uses the cyclic time shifting property of
the Discrete Fourier Transform to make the channels separable
at the relay. However, while previous works estimated the
channels at the end nodes, in [10] they are estimated at the
relay, and the end nodes are assumed to receive the estimated
CIRs through a perfect feedback channel.

The majority of works on channel estimation for PNC
systems, included the ones cited previously, considers only
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flat fading environments [5], [6], or frequency-selective fading
environments combined with OFDM modulation [7]–[10], since
OFDM is a robust technique against the frequency selectivity
of wireless channels.

However, in single carrier (SC) communications systems,
such as GSM [11], and satellite networks with CDMA [12]–
[14], PNC technique could also be applied. In the same way,
several communications protocols and standards for IoT and
Wireless Sensor Networks make use of SC modulation and
their importance has increased in recent years. For instance,
the binary-phase shift keying (BPSK) modulation is used
in several open standards such as 6LoWPAN and ZigBee,
and the differential BPSK in SigFox [15]. This systems are
also subject to the effects of the wireless channel. Therefore,
this work proposes an LS channel estimation technique for
ANC systems using an SC modulation over frequency-selective
fading channels. The works in [6], [7], [9] also develop specific
training sequences to minimize the MSE of the estimator.
However, it is shown that there is no significant reduction on
the MSE when compared to a random training sequence.

This work improves the work in [16] presenting a detailed
system modeling and derivation of the estimator, its MSE
expression, and the design of an optimal training sequence.
Furthermore, it also presents results with some modifications
in the scenarios presented, and a more detailed discussion and
insights on the obtained the results.

The remainder of this paper is organized as follows: Section
II presents the system model that is used in this work; Section
III develops the proposed least squares channel estimator,
while simulation results are presented in Section IV; finally,
conclusions are made in Section V.

II. SYSTEM MODEL

A simple TWRN typically has two source nodes (1 and
2), also referred to as user nodes, and one relay node (R), as
shown in Figure 1, where node 1 sends information to node 2,
and vice-versa, using node R to assist their communications.

The traditional network using Time-Division Multiple Access
(TDMA) would need four transmission stages to exchange data
between nodes 1 and 2, as shown in Figure 1: the first stage is
used to send data from node 1 to node R; the second, to send
this data from node R to node 2; the third, to send data from
node 2 to node R; and the fourth one to send data from node
R to node 1.

1 R 2

Interval 2Interval 1

Interval 3 Interval 4

Fig. 1. Transmission stages in a TWRN with TDMA.

By applying the Network Coding (NC) concepts [17], it is
possible to reduce to three the number of time intervals needed

to exchange data between nodes 1 and 2, as shown in Figure
2. The relay node detects the signals from both user nodes
separately, and performs the NC of the bits of each one of
them before transmission.

1 R 2

Interval 2Interval 1

Interval 3

Fig. 2. Transmission stages in a TWRN with NC.

To illustrate how NC could be implemented in a TWRN
consider, for instance, that node 1 transmits bit s1 and the
node 2 transmits bit s2. The simplest way to do NC is to
perform a bitwise XOR operation sR = s1 ⊕ s2 at the relay.
It will then transmit the bit sR to both users, each of which
will perform this same operation on the received bit and the
bit itself transmitted. At node 1, for example, the information
transmitted by node 2 can be estimated as:

ŝ2 = s1 ⊕ sR
= s1 ⊕ s1 ⊕ s2

= s2.

(1)

Therefore, node 1 is able to recover the bit sent by node 2
from the bit sR sent by the relay.

Finally, when applying the PNC technique, it only takes two
transmission stages to exchange data between the two user
nodes, as shown in Figure 3. In this case, nodes 1 and 2 send
their information simultaneously to node R. This stage is called
Multiple Access (MAC). In the next stage, R amplifies the
signal by a factor α and forwards the resulting signal to both
nodes 1 and 2. This factor can be used to adjust the power of
transmitted signal at the relay. This stage is called Broadcast
(BC).

1 R 2

BC StageMAC Stage

Fig. 3. Transmission stages in a TWRN with PNC.

The relay protocol presented above is called AF, and the
user nodes just need to remove their self-information to obtain
the information sent by the other user. The AF protocol is
also called ANC, as discussed before. This works will focus
specifically on this protocol.

The signal model used in this work is shown in Figure 4. Let
xi(n) be the baseband symbol sent by the node i at the discrete
time instant n, hiR(n) be the CIR between the nodes i and R,
and wR(n) be the additive white Gaussian noise (AWGN) with
distribution N(0, σ2

w) at node R, and ∗ denotes the convolution
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Fig. 4. Scheme for the signal model of a PNC system.

operation. The discrete-time baseband signal received at R can
be written as:

yR(n) = x1(n) ∗ h1R(n) + x2(n) ∗ h2R(n) + wR(n). (2)

Due to the symmetry of this network, the performance can
be analyzed just at node 1, since it is equivalent for the node
2. Let hRi(n) be the CIR between nodes R and i, and w1(n)
be AWGN at the node 1, also with distribution N(0, σ2

w). The
signal received at the node 1 at the BC stage can be written
as:

y1(n) = αyR(n) ∗ hR1(n) + w1(n). (3)

The cascaded channels can be defined as a(n) = h1R(n) ∗
hR1(n), and b(n) = h2R(n) ∗ hR1(n), and the equivalent noise as
w(n) = αwR(n) ∗ hR1(n) + w1(n), which will also be a random
variable with Gaussian distribution with zero mean and variance
that will depend upon the channel power profile of h1R(n) and
the variances of wR(N) and w1(n). Then, substituting (2) into
(3), the signal received at node 1 at the BC stage can be
rewritten as:

y1(n) = αx1(n) ∗ a(n) + αx2(n) ∗ b(n) + w(n). (4)

Detection at node 1 can be performed as [18]:

x̂2(n) = arg min
x2(n)

|y1(n) − αx1(n) ∗ a(n) − αx2(n) ∗ b(n)|2. (5)

It means that, given y1(n), x1(n), a(n) and b(n), it is possible to
obtain an estimate of x2(n) through maximum likelihood data
detection, which, in this case, turns out to be the value of x2
that minimizes the squared of the absolute difference between
the received signal y1(n) and a version of the transmitted signal
αyR(n) without noise.

A practical way of performing this at node 1 is to first extract
its self-information from y1(n), i. e:

x̃2(n) = y1(n) − αx1(n) ∗ a(n)
= αx2(n) ∗ b(n) + w(n).

(6)

Then, the signal x̃2 needs to be equalized. Linear equalizers
such as Zero-forcing (ZF) or algorithms such as the Maximum
Likelihood Sequence Estimation (MLSE) can be used for this
purpose [11].

The model described above shows the importance of estimat-
ing the cascaded CIR a(n) and b(n) at the end nodes for the
self-information extraction and equalization. It also shows one
advantage of the ANC scheme: it only needs the knowledge
of the CIR at the end nodes, and not at the relay node. Thus,
the next section is devoted to the development of a channel
estimator for PNC systems over frequency-selective fading
channels.

III. LEAST SQUARES CHANNEL ESTIMATION

As mentioned in Section I, most works on channel estimation
for PNC systems consider frequency-selective channels with
OFDM modulation. In this work, an LS estimator in time
domain is proposed to estimate frequency-selective and time
invariant CIR for PNC systems using SC transmission.

Assuming that the nodes 1 and 2 send N training symbols
x1(n) and x2(n), respectively, (4) can be interpreted as a linear
model that can be written in matrix form. To do so, a matrix
X can be defined as:

X = α [X1 X2] , (7)

where X1 and X2 are convolution matrices, which have the
structure shown in (8), containing the training symbols sent by
nodes 1 and 2, respectively.

Xi =



xi(0) 0 0 · · · 0
xi(1) xi(0) 0 · · · 0
xi(2) xi(1) xi(0) · · · 0
...

...
...

. . .
...

xi(N − 1) xi(N − 2) xi(N − 3) · · · xi(N − L)


.

(8)
In this matrix, the element xi(n) is the symbol sent by user
i at the discrete time n. Considering that the channels have
length NCH , the cascaded channels a(n) and b(n) have length
L = 2NCH−1. Therefore, X has dimension N×2L. Although it
has been considered that all channels have the same length, the
estimator can be easily generalized for channels with different
sizes.

Let h be the column vector that contains the coefficients of
both concatenated channels as:

h =
[
a
b

]
, (9)

where a = [a0 a1 · · · aL−1]T is a vector that contains the L
coefficients of a(n), and b = [b0 b1 · · · bL−1]T, is the vector
that contains the L coefficients of b(n). Furthermore, let
w = [w0 w1 · · · wN−1]T be a vector containing N samples
of w(n), and y = [y1(0) y1(1) · · · y1(N − 1)]T be a vector of
N samples from the received signal at node 1, where yi(n)
represents the received sample at instant n at node i.

Then, it is possible to write (4) in matrix form as:

y = Xh + w. (10)

The LS estimate of h can be obtained from [18]:

ĥ = arg min
h
|y − Xh|2. (11)
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Thus, the LS channel estimator may be obtained by mini-
mizing:

J(h) = |y − Xh|2 = (y − Xh)H(y − Xh). (12)

By applying the distributive property and Hermitian product
of matrices [18], the last equation can be rewritten as:

J(h) = yHy − yHXh − hHXHy + hHXHXh
= yHy − 2yHXh + hHXHXh.

(13)

Differentiating (13) with respect to h and setting it equal to
zero yields:

∂J(h)
∂h

= −2XHy + 2XHXh = 0. (14)

Thus, the solution to (11) is given by [18]:

ĥ = X†y, (15)

where ĥ contains the estimates of a and b and X† denotes the
pseudoinverse matrix of X, which is given by [19]

X† = (XHX)−1XH. (16)

It is worth noting that the estimated cascaded channels in (15)
will be used for self-extraction and equalization at the end
nodes.

It is also important to highlight that, although the estimator
(15) is based on classic equations, some adaptations in the
model, which were not previously reported in the literature,
were necessary to employ it with ANC system.

The relationship between the estimate ĥ and the real channel
h can be found by substituting (10) into (15), resulting in:

ĥ = (XHX)−1XHXh + (XHX)−1XHw, (17)

where (XHX)−1XHX = I, being I an identity matrix with
appropriated dimensions. Then, it is possible to write:

ĥ = h + (XHX)−1XHw. (18)

Defining the error vector as e = ĥ−h, the covariance matrix
of the estimation error is given by cov(e) = E

[
(ĥ − h)(ĥ − h)H

]
.

Substituting (18) into this equation gives:

cov(e) = E
[
(XHX)−1XHwwHX(XHX)−1] . (19)

The noise component is given by w = αHR1wR+w1 for node
1, where HR1 is convolution matrix associated with channel
hR1(n), wR and w1 are vectors containing the samples from
the noises received at nodes R and 1, respectively. As the
noises wR and w1 are independent, the error covariance matrix
becomes:

cov(e) =α2 E
[
(XHX)−1XHHR1wRwH

RHH
R1X(XHX)−1]

+ E
[
(XHX)−1XHw1wH

1 X(XHX)−1] . (20)

As X, HR1, wR and w1 are all independent, (20) can be
simplified to:

cov(e) =α2σ2
w(XHX)−1XHβR1X(XHX)−1

+ σ2
w(XHX)−1XHX(XHX)−1,

(21)

where:

βR1 =

NCH−1∑
l=0

σ2
R1,l, (22)

with σ2
R1,l being the variance of the l-th coefficient of the

channel between nodes R and 1.
Rearranging the terms in (21), the covariance matrix of the

estimation error is given by:

cov(e) = σ2
w

(
XHX

)−1
XH

(
α2βR1 + 1

)
X

(
XHX

)−1
. (23)

The MSE is given by MSE = tr{cov(e)}, where tr denotes
the trace operator, thus resulting in:

MSE = σ2
w(α2βR1 + 1) tr{(XHX)−1}. (24)

Therefore, it is clear that the MSE depends on the noise
variance, the channel power profile, and tr{(XHX)−1}. So, it
is possible to design a training sequence to minimize this last
term, which is the only term the designers can control, and
thus, minimizing the MSE.

Assuming a power constraint P on the transmitted signals,
i.e:

| |X| |2F = P, (25)

where | | · | |2F denotes the Frobenius norm, the optimal training
sequence can be obtained by solving the following:

arg min
X

tr{(XHX)−1} subject to | |X| |2F = P . (26)

It is possible to show that the minimum is achieved when
[20]:

XHX =
P
2L

I. (27)

In other words, XHX must be a scaled identity matrix. This
is achieved for any matrix X with orthogonal lines, and with
norm

√
P/2L. There might be additional constraints on the

form of the training matrix Xi or on P. For instance, in OFDM
modulated systems [7], the training matrix must be circulant
and it is also desirable to choose a training matrix that reduces
the peak-to-average power ratio (PAPR) [8]. Since this work
considers an SC modulated system operating in frequency-
selective fading channels, the training sequence is restricted to
the form shown in (8).

To satisfy these requirements, the following training sequence
is proposed:

xi(n) =
√
P
2L

δ(n − (i − 1)L), i = 1, 2, (28)

recalling that i denotes the number of the user node and δ(n)
denotes the Kronecker delta function.

In order to properly compare the performance of this training
sequence against that of a sequence containing randomly
generated BPSK symbols, it is necessary to adjust P so that
the power of both sequences are equal. This can be done by
setting:

P = 2LN, (29)

and, by doing so, the factor that defines amplitude of the
symbols in the optimal training sequence becomes:√

P
2L
=
√

N . (30)

Although these sequences minimize the estimator MSE, they
do not improve significantly the MSE compared to that of a
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random training sequence. Consequently, the BER will not
have a perceptible reduction, as will be shown in section IV.
This result agrees with others already presented in the literature
for optimal training sequence design for OFDM modulated
PNC systems.

IV. SIMULATION RESULTS AND DISCUSSION

To evaluate the performance of the proposed LS channel
estimator, an ANC system is simulated using BPSK modulation.

The gain α is set in a way that the power of the received
signal at the relay is equal to the power received at nodes 1
and 2, so that the signal-to-noise ratio (SNR) is the same at
all channels. To do that, PR is set to PR = P1 + P2, being
PR the power of the signal transmitted by the relay, P1 and
P2 the powers of the signals transmitted by nodes 1 and 2,
respectively. Thus, the gain α can be set to:

α =

√
PR

β1RP1 + β2RP2 + σ
2
w

, (31)

where

βiR =

NCH−1∑
l=0

σ2
iR,l, (32)

with σ2
iR,l

being the variance of the l-th coefficient of the
channel between the nodes i and R. Then, the SNR can be
defined as SNR = PR/σ2

w , where σ2
w is the noise power.

In the simulations, whose results are presented in the sequel,
the channels have lengths NCH = 5 and their coefficients are
randomly generated in each realization. The coefficients are
independent and identically distributed zero mean and unit
variance complex Gaussian random variables. In other words,
the channel magnitudes follow a Rayleigh distribution and the
channel phases are uniformly distributed between 0 and 2π.
The cascaded channels a and b have length L = 9.

The MSE between the original and estimated channels â
and b̂, and the bit error rate (BER) when the system uses the
estimated CIR and when it has perfect knowledge of the CIR
are computed through Monte Carlo simulations for different
scenarios. Each realization simulates the transmission of 103

information bits. For each SNR, a total of 104 realizations are
performed for averaging. The training sequence, that consists
of N random BPSK symbols, is concatenated in the beginning
of the block of information bits. The estimate â is used to
compute the self-extraction operation shown in (6). Then, the
estimate b̂ is used to perform the equalization through an
MLSE equalizer. Both estimates were obtained from (15). The
estimation MSE is computed in each realization by:

MSE(â) = 1
L

L−1∑
n=0
|an − ân |2, (33)

and, at the end of the simulation, it is averaged by the number
of trials. A similar expression can be used to compute the MSE
for channel b̂.

In the first scenario the MSE and BER performances of the
proposed LS estimator are evaluated for different lengths of
the training sequence. Figure 5 shows the MSE performance.
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Fig. 5. MSE of â for different training sequence lenghts.
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Fig. 6. BER for different training sequence lengths at the LS estimator.

As the MSE for both concatenated channels are equal, only
the MSE for channel â is shown.

As expected, the estimator performance degrades as the
length of the training sequence decreases. For an SNR of
10 dB, the training sequence of length N = 50 has an MSE
performance of only 0.378, while for a length of N = 100
training symbols it is 0.132. For N = 500, the MSE is 0.022,
and for N = 1000 the system achieves an MSE of 0.011.

Figure 6 shows the BER for the same training sequence
lengths simulated in Figure 5. As observed in Figures 5 and 6,
although the MSE is better for a longer training sequence, it
does not always improve significantly the BER. For instance, for
N = 500, N = 1000 and perfect CIR, the BER are practically
the same, and the differences can be due to errors in numerical
simulation. For N = 50, N = 100 and N = 500, it is possible
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Fig. 7. BER considering different channel lengths at the estimator.

to see an improvement in the BER. However, using N = 500
instead of N = 100 saves less than 1 dB in SNR to achieve
almost the same BER. For an MSE of 10−2 there is a difference
of approximately 12 dB between the PNC system that uses
a N = 1000 (the block length) and the PNC system that
uses N = 100, i. e. 10 % of the block length. However, this
difference does not impact significantly the BER. Therefore,
the proposed estimator can be deployed without the need of a
high number of training symbols. Furthermore, it is possible to
see in Figure 6 that an error floor happens near the 20 dB SNR
region even for the perfect knowledge of CSI. This floor is
due to the depth of the traceback of the Viterbi algorithm used
to implement the MLSE equalizer, that was set to 5L. As the
length of transmitted symbols block is 103, the algorithm could
not remove all the intersymbol interference (ISI). In order to
reduce this BER floor, the length of the block of transmitted
symbols can be increased.

The second scenario evaluates the impact of erroneous
channel length L̂ at the estimator, i.e., when it considers a
channel length smaller (or greater) than the actual channel
length L. For this simulation, it was used a training sequence of
length N = 100. Figure 7 shows that the BER does not change
significantly when L̂ > L, since the extra coefficients given
by the estimator are nearly zero, but decreases considerably
when L̂ < L. For L̂ = 5, there are almost no reduction in
BER as the SNR increases. This happens because the ISI
generated by the frequency selective wireless channel are not
totally mitigated. First, the self removal given by (6) are not
performed correctly because the estimate â does not consider
all the channel coefficients. Second, as the equalizer uses the
information b̂, that was obtained considering less coefficients
than the actual cascaded channel, its output will have residual
ISI, which degrades the overall performance of the system.

In the third scenario, a comparison between the proposed
estimation technique with the LS estimator proposed in [7] for
OFDM-based PNC is done. Although it is an ANC based on
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Fig. 8. MSE comparison between the LS estimator for OFDM system and
the LS estimator for SC system.

OFDM modulation, the channel estimator estimates the CIR
after removing the Cyclic Prefix (CP) and before computing the
Discrete Fourier Transform, i. e., it works in the time domain,
making it a fair comparison for the MSE. The OFDM system
uses 64 carriers and CP length of 16. In this scenario, the
proposed technique uses N = 64 training symbols to match
with the length of the sequence used for the OFDM system,
once it uses one OFDM block as training sequence, i. e., 64
training symbols.

It can be seen from Figure 8 that the performances of both
estimators are equivalent, and minor differences are due to
numerical errors in simulation. Although these estimator are
based in the same criterion, they are distinct estimators, since
the construction of the matrix given by (7) is different. This is
because the estimator proposed here deals with SC modulation,
rather than OFDM as in [7].

Finally, the MSE obtained by using the optimal training
sequence, derived in this paper, is compared to the MSE
obtained by using a random training sequence in Figure 9.
This figure shows that the optimal training sequence provides
a better MSE. However, it can be seen that for N = 1000,
the impact is smaller than for N = 100. For an MSE of 10−2,
a random sequence of length N = 100 needs an SNR of
around 21 dB, while the optimal one needs around 19.7 dB. It
thus represents an 1.3 dB difference. However, for a training
sequence length of N = 1000, changing from the random
sequence to optimal sequence reduces the required MSE from
around 10.3 dB to near 9.7 dB, which consists in a reduction
of less than 1 dB.

The better performance of the optimal training sequence
happens because the squared Frobenius norm | |X| |2F = tr{XHX}
is smaller for the random sequence than for the optimal
sequence, although they have the same power. This happens
due to the structure of the convolution matrix in (8). As
the Frobenius norm is smaller for the random sequence,
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Fig. 9. MSE comparison between the random and the optimal training
sequences for different lengths.

tr{(XHX)−1} will be larger and, therefore, the MSE given
by (24) will be larger. For longer training sequences, this
difference is smaller and, therefore, the impact of the optimal
sequence in reducing the MSE is also smaller.

V. CONCLUSIONS

In this paper, a Least Squares channel estimation technique
is proposed for PNC communication systems that uses single
carrier modulation and operates under frequency-selective
fading channels.

It is shown that a longer training sequence yields a better
performance in terms of MSE. However, it is possible to see that
a highly accurate estimation does not necessary imply a better
BER performance and, therefore, shorter training sequences
can be used. It can be seen from the results shown in section IV
that with a training sequence of length N = 100, the proposed
estimator performs, in terms of BER, nearly as well as a system
considering the perfect knowledge of the CIR.

Furthermore, simulations considering channel lengths at the
estimator different from the real one shows that using a longer
channel length at the estimator does not bring any penalty
to the system performance when compared to the real length,
keeping an equivalent BER. On the other hand, by considering a
channel length smaller than the real one, the BER performance
degrades considerably. Hence, it is important to develop an
accurate estimator for the channel length at the end nodes.

The proposed estimator was also compared to the estimator
presented in [7]. Although the latter considers an OFDM system
and has different mathematical constructions, this estimator
works in time domain, so the MSE comparison is fair. It is
shown that both estimators have equivalent MSE performance.

Moreover, the design of an optimal training sequence,
in terms of the channel estimator MSE, is presented. It is
shown that it provides a better performance compared to
a random training sequence. However, for larger training

sequence lengths, the improvement is smaller than for shorter
sequences.
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BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, Santarém, 2016,
pp. 989–992.

[17] R. Ahlswede, Ning Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000,
doi:10.1109/18.850663.

[18] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[19] L. Trefethen and D. Bau, Numerical Linear Algebra. Society for
Industrial and Applied Mathematics, 1997.

[20] M. Biguesh and A. Gershman, “Training-based mimo channel estimation:
a study of estimator tradeoffs and optimal training signals,” IEEE
Trans. Signal Process., vol. 54, no. 3, pp. 884–893, Mar. 2006,
doi:10.1109/TSP.2005.863008.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 33, NO.1, 2018. 302

Pedro Ivo da Cruz is currently pursuing his PhD
in Information Engineering at Federal University
of ABC (UFABC). He received the MSc and the
BSc degrees in Information Engineering in 2017
and 2014, respectively, and the BSc in Science and
Technology in 2013, from the same university. His
research interests include wireless communications,
adaptive and statistical signal processing, Wireless
Physical-layer Network Coding systems and Wireless
Physical-layer Security.

Murilo Bellezoni Loiola received the titles of Electri-
cal Engineer (2002), Master in Electrical Engineering
(2005) and Doctor in Electrical Engineering (2009)
from the University of Campinas (UNICAMP), Brazil.
Currently, he is an Associate Professor at Federal
University of ABC (UFABC). His main research
interests lie in the areas of adaptive and statistical
signal processing, wireless communications, wireless
physical-layer security, and machine learning.


