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On Multiplicative Matrix Channels
over Finite Chain Rings

Roberto W. Nébrega, Chen Feng, Danilo Silva, and Bartolomeu F. Uchoa-Filho

Abstract—Motivated by physical-layer network coding, this
paper considers communication in multiplicative matrix channels
over finite chain rings. Such channels are defined by the law
Y = AX, where X and Y are the input and output matrices,
respectively, and A is called the transfer matrix. It is assumed a
coherent scenario in which the instances of the transfer matrix
are unknown to the transmitter, but available to the receiver.
It is also assumed a memoryless channel, and that A and X
are independent. Besides that, no restrictions on the statistics
of A are imposed. As contributions, a closed-form expression
for the channel capacity is obtained, and a coding scheme for
the channel is proposed. It is then shown that the scheme can
achieve the capacity with polynomial time complexity and can
provide correcting guarantees under a worst-case channel model.
The results in the paper extend the corresponding ones for finite
fields.

Index Terms—Channel capacity, discrete memoryless channel,
finite chain ring, multiplicative matrix channel, physical-layer
network coding.

I. INTRODUCTION

A multiplicative matrix channel (MMC) over a finite
field I, is a communication channel in which the input
X e nge and the output Y € IF‘;”XE are related by

Y = AX, )]

where A € F;"*" is called the transfer matri Such channels
turn out to be suitable models for the end-to-end commu-
nication channel between a source node and a sink node
in an error-free, erasure-prone network performing random
linear network coding [3]]-[5]]. In this context, X is the matrix
whose rows are the n packets (of length ¢) transmitted by the
source node, Y is the matrix whose rows are the m packets
received by the sink node, and A is a matrix whose entries
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'Throughout this paper, bold symbols are used to represent random entities,
while regular symbols are used for their samples.

are determined by factors such as the network topology and
the random choices of the network coding coefficients. Note
that each packet can be viewed as an element of the packet
space W = F!, a finite vector space.

The present work considers MMCs over finite chain rings
(of which finite fields are a special case). The motivation
comes from physical-layer network coding [6]. Indeed, the
results in [7] show that the modulation employed at the
physical layer induces a “matched choice” for the ring to
be used in the linear network coding layer. For instance
(see [7]), if uncoded quaternary phase-shift keying (QPSK)
is employed, then the underlying ring should be chosen as
R = Zs[i] = {0,1,4,1 + 4}, which is not a finite field, but a
finite chain ring. More generally, this is also true for wireless
networks employing compute-and-forward [§] over arbitrary
nested lattices: in this case, the underlying ring happens to
be a principal ideal domain T (typically the integers, Z,
the Gaussian integers, Z[i], or the Eisenstein integers, Z[w]),
with the corresponding message space W being a finite T-
module [7]. As such,

W 2 T/(dy) x T/{ds) x -+ x T/{dy), )

where dy,ds,...,d; € T are non-zero non-unit elements
satisfying dq | da | --- | dp. A special situation commonly
found in practice is when the d;s are all powers of a given
prime of 7. In this case, the underlying ring can be taken as
the finite chain ring R = T'/(d,), while the message space W
can be seen as a finite R-module.

Finite-field MMCs have been studied under an information-
theoretic approach according to different assumptions on the
probability distribution of the transfer matrix [9]-[14]. In
this work, following parts of [11]], [12], we consider finite-
chain-ring MMCs under a coherent scenario, meaning that we
assume that the instances of the transfer matrix A are available
to the receiver (but unknown to the transmitter). Besides that,
we impose no restrictions on the statistics of A, except that A
must be independent of X . Furthermore, we are also interested
in codes that guarantee reliable communication with a single
use of the channel, in the same fashion as [[15]], [|16].

As a first contribution, we obtain a closed-form expression
for the channel capacity, which depends on the transfer matrix
A only through the expected value of its rank (or, rather, its
“shape”—see Section [[I). We then propose a coding scheme
that combines several codes over a finite field to obtain an
overall code over a finite chain ring, and show that it can
achieve the channel capacity with polynomial time complexity.
We also present a necessary and sufficient condition under
which a code can correct shape deficiencies of the transfer
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matrix, and we show that the proposed coding scheme can
also yield codes with suitable shape-deficiency correction
guarantees. Finally, we adapt the coding scheme to the non-
coherent scenario, in which the instances of the transfer
matrix are unknown to both the transmitter and receiver. Our
results extend (and make use of) some of those obtained by
Yang et al. in [11]-[13]] and Silva et al. in [15], [[16]], which
address the finite field case. It is also worth mentioning that a
generalization of the results in [[10] from finite fields to finite
chain rings is presented in [17].

The remainder of this paper is organized as follows. Sec-
tion [l reviews basic concepts on finite chain rings, as well
as modules and matrices over them. Section [II] motivates
the study of MMCs over finite chain rings, while Section
formalizes the channel model. Section [V] reviews some of the
existing results on MMCs over finite fields, and Section
contains our contributions about MMCs over finite chain rings.
Finally, Section [VII] concludes the paper.

II. BACKGROUND ON FINITE CHAIN RINGS

We start by presenting some basic results on finite chain
rings, followed by a brief review of modules and matrices
over them. For more details, we refer the reader to [18[|-[21]].
By the term ring we always mean a commutative ring with
identity 1 # 0.

A. Finite Chain Rings

A ring R is called a chain ring if, for any two ideals I, .J
of R, either I C J or J C I. It is known that a finite ring R
is a chain ring if and only if R is both principal (i.e., all of its
ideals are generated by a single element) and local (i.e., the
ring has a unique maximal ideal). Let 7 € R be any generator
for the maximal ideal of R, and let s be the nilpotency index
of 7 (i.e., the smallest integer s such that 7° = 0). Then, R
has precisely s + 1 ideals, namely,

R=(m" > @@Ho--- 2@ H o) ={0}, (3
where (x) denotes the ideal generated by x € R. Furthermore,
it is also known that the quotient R/(r) is a field, called the
residue field of R. If ¢ = |R/(r)|, then the size of each ideal
of Ris [(m")] = ¢°¢, for 0 < i < s; in particular, |R| = ¢°.
Note that s = 1 (so that m# = 0) if and only if R is a finite
field.

In this paper, if R is a finite chain ring with s non-zero
ideals and residue field of order ¢, then we say that R is a
(g, 8) chain ring. For instance, Zg = {0,1,...,7}, the ring
of integers modulo 8, is a (2,3) chain ring. Its ideals are
(1) = Zs, (2) = 2Zs = {0,2,4,6}, (4) = 4Zs = {0,4},
and (0) = {0}, and its residue field is Zg/(2) = Fy. Note,
however, that two (g, s) chain rings need not be isomorphic.

Let R be a (g, s) chain ring. In addition, let € R be a fixed
generator for its maximal ideal, and let I' C R be a fixed set
of coset representatives for the residue field R/(r). Without

loss of generality, assume 0 € FEI Then, every element x € R
can be written uniquely as

z=Y a7 @)

where (9 € T, for 0 < 7 < s. The above expression is known
as the m-adic expansion of x (with respect to I'). For example,
the 2-adic expansion of 6 € Zg with respect to I' = {0,1} is
6=0-204+1-2"+1-22 ie., the standard binary expansion
of 6.

Note that the uniqueness of the m-adic expansion (given I")
allows us to define the maps (1)) : R — T, for 0 < i < s.
We also define

i—1
7t = Zx(j)ﬂ—j’ (5)
=0

for 0 < i < s. One can show that zt =_; z for all € R,
where =, denotes congruence modulo a (i.e., x =, y if and
only if z — y € (a)). In particular, (%)

= xl =5 T.

B. Modules over Finite Chain Rings

An s-shape p = (po,pt1,...,s—1) is simply a non-
decreasing sequence of s non-negative integers, that is, 0 <
o <y < -+ < pg—1. For convenience, we may write the
s-shape (m,m, ..., m) simply as m. Also, we set 1 = 0
whenever it appears on our expressions.

Let X and p be two s-shapes. We write A = p if A, < p;
for 0 < i < s; otherwise, we write A A . This yields a partial
ordering on the set of all s-shapes. Note that, according to our
convention, A = m means A\; < m for 0 < i < s.

We define the addition of s-shapes in a component-wise
fashion, that is, u+ A = (/,60 + Ao, 1 F A, o1 +)\3_1).
The subtraction of s-shapes in a component-wise fashion is not
always well-defined (because we can get negative elements,
or a sequence which is not non-decreasing). But we define
w—n= (o —n,u1 —n,...,4us—1 —n), provided n < puyg,
andn—p=(n— ps—1,...,n — p1,n — ip), provided n >
s—1, which clearly are well-defined s-shapes. Finally, we set
|\l = po + pa + -+ + prs—1.

Let pu = (po, f41,-- -, tis—1) be an s-shape. We define
RFE (1) x o x (1) X {7) X - X () X -+
) H1—Ho
6
X (m5Th) X x (et ©
Hs—1—Hs—2

Clearly, being a Cartesian product of ideals, R* is a finite R-
module. Conversely, every finite R-module U is isomorphic
to R for some unique s-shape p [20, Theorem 2.2]. We call
w the shape of U, and write 1 = shapeU. Thus, two finite
R-modules are isomorphic precisely when they have the same
shape. Also, from the fact that the size of the ideal (r?) is
given by ¢°~%, we conclude that

|RH| = gl*. (7)

2 A particularly nice, canonical choice for T'is T(R) = {z € R: 29 = z},
known as the Teichmiiller coordinate set of R.
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Example: Let R = Zg, which is a (¢ = = 3) chain
ring. Its s non-trivial ideals are Zg = (1), 2 = (2), and
4Zg = (4). Now, let U = Zg x 473 = (1) x (4 > which is a
finite R-module. We have

U = (1) x [empty product of (2)’s| x (4) x (4) x (4), (8)
—~—
po=1 1 —po=0 2 —p1=3
so that shape U = p = (1o, 1, 2) = (1,1, 4). Also,
U] = (1) x (&) x (&) x (4)] =8-2:2:2 =64, ()

which is the same as ¢l#l = 214144 = 26,

Note that, according to our convention that m = (m,m,

m), the notation R™ stands for the same object, whether

m is interpreted as an integer or as an s-shape. Also, in the

case where R is a finite field, R-modules are the same as

vector spaces; in this case, we have s = 1, so that a shape is

just a list with single number: shapeU = (m) = m, where
m is the vector space dimension of U.

C. Matrices over Finite Chain Rings

For any subset S C R, we denote by S"**" the set of all
m X n matrices with entries in S. The set of all invertible
n X n matrices over R is called the general linear group of
degree n over R, and is denoted by GL,(R).

Let A € R™*™, and set r = min{n, m}. A diagonal matrix
(not necessarily square)

D:diag(dl,dg,...,dr) e R (10)

is called a Smith normal form of A if there exist matrices
P € GL,,(R) and Q@ € GL,(R) (not necessarily unique)
such that A = PDQ and dy | dy | -+ | d,. It is known
that matrices over principal rings (in particular, finite chain
rings) always have a Smith normal form, which is unique up
to multiplication of the diagonal entries by units. In this work,
we shall require such entries to be powers of 7 € R; by doing
so, the Smith normal form becomes (absolutely) unique.

Let row A and col A denote the row and column span of
A € R™*™ respectively. Clearly, row A and col A are both R-
modules. Moreover, by using the Smith normal form, we can
easily prove that row A is isomorphic to col A. We define the
shape of A as shape A = shape(row A) = shape(col A). We
thus have that = shape A if and only if the Smith normal
form of A is given by

s—1

. -1
diag(1,..., 1,7, ...,7, ..., 7" ", ..., 0,...,0), (1)
——— —_———— ——
Ho H1—Ho Hs—1—Hs—2 T—Hs—1

where r = min{n, m}. For example, consider the matrix

4 3 6
A_[6 - 2} (12)
over Zg. Then, A = PD(Q, where
4 3 6
pe [V o= 0 el 2 ).
5 6 3
(13)

Layer 0 Layer 1

)
) NG NE
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Fig. 1: Wireless layered network with L = 3 layers and n = 3 relay nodes
per layer.

Layer 2
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so that shape A = (1,2,2). We also define the null space
of A as usual, that is, nulA = {x € R" : Az = 0}. From
the first isomorphism theorem [22, §10.2], col A = R™/nul A.
Also [20, Theorem 2.5],

shape A = n — shape(nul A). (14)

D. Matrices with Row Constraints

Let A be an s-shape. We denote by R™** the subset of
matrices in R™*¢ whose rows are elements of R*, where ¢ =
As—1. From (7), we have |RVA| = g™, For instance, let
R=17s,n=2,and A = (1,2,3), so that £ = 3. Then,

Rnx)\ — T11
T21

Note that the matrix A above does not belong to R while
D does.

Finally, we extend the 7-adic expansion map (-)® to
matrices over R in an element-wise fashion. Thus, A € R"**
if and only if A®) = [B; 0] € ">, for some B; € I,
for 0 <i <s.

4x13
45823

2.1312

o nx{
o ] Lx € R} C R, (15)

III. MOTIVATING EXAMPLES

A. MMCs as End-to-End Models for Physical-Layer Network
Coding

Figure [I] shows a wireless layered network with L = 3
layers and n = 3 relay nodes per layer. Suppose that the
network employs physical-layer network coding, with the
packets from the upper network layer being elements of some
R-module W = R*, where R is a (q,s) chain ring. Let
wi,we, w3 € R be the packets transmitted by the source
node s, and let wr, wg, w9 € R be the packets received by the
sink node t. Let s1, so, . . ., S be the physical signals (complex
vectors coming from a given lattice [7], [8]]) transmitted by
the nodes 1,2, ..., 6, respectively, and let 74,5, ..., 79 be the
physical signals received by the nodes 4, 5, .. ., 9, respectively,
as shown in the figure. Note that, in this example, for the sake
of simplicity, the nodes 1, 2, and 3 do not receive physical
signals from node s, but rather packets w;,ws,ws coming
directly from the upper network layer. Similarly, the nodes 7,
8, and 9 do not transmit physical signals to node ¢, but rather
packets wr, ws, wy through the upper network layer.
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From Layer 0 to Layer 1, the system works as fol-
lows. Nodes 1, 2, and 3 start by encoding the packets
w1, Wo, W3 € R into the signals s1, s2, 83, respectively. The
signals s1, So, s3 are then transmitted simultaneously, being
subject to independent block fading and superimposed in the
physical medium. Therefore, the signal received by node j, for
7 =4,5,6, is given by Ty = hljsl +h2j82+h3]‘83 +nj, where
hij,haj, hsj € C are fading coefficients and n; is a complex-
valued noise vector. From r; and (h1;, hej, hs;), by employing
the principles of physical-layer network coding, the node j, for
j =4,5,6, can inferﬂ a linear combination w; € R* of the
packets wy, w2, ws, that is, w; = byjwy + bajws + bajws, for
some blj, bgj, b3j € R.

The system operates similarly from Layer 1 to Layer 2, so
that, the node j, for j = 7, 8,9, can infer a linear combination
w; € R* of the packets wy, ws, we, which is finally delivered
to the sink node ¢.

By R-module linearity, it is not hard to check that the rela-
tionship between the transmitted packets X and the received
packets Y, where

w1 wy
X = |wy| € R and Y = |wsg| € R™**,  (16)
ws Wy
is given by
Y = AX, (17)
where
byr  bsy  ber bia bas b3y
A= bz bsg bes bis bes bgs | € R™*™.
bsg bsg  beg bis b b3g
(18)

In other words, the end-to-end communication between the
source node and the sink node is suitably modeled by an MMC
over a finite chain ring.

B. Communication via MMCs over Finite Chain Rings
Consider now an MMC over the chain ring R = Zg with

packet space given by W = Zg x 2Zg = R*, where \ =

(1,2,2). Assume that n = m = 4. Suppose that the receiver

observes (Y, A) € R™ A x R™*" where
7T 2 1000
4 4 0 2 0 0
Y = 6 ol and A= 00 2 0 (19)
4 0 0 0 0 4

What information can the receiver extract about the channel
input X = [z;;] € R"™* (1 <i <4, 1< <2)? From the
equation AX =Y we may conclude that

zi1 =7 $11=4+2+
2en =4 _ e = 4+2+@
231 = 6 x31—?~4+2+
dryy = 4 ZTa1 "~4+?2+1

(20)

3Note that any additive error introduced at the physical layer may be
avoided, at each relay node, by employing a linear error-detecting code over
the underlying ring.

and

Ty = 2 z1p = [0]-4 +[1]-2 + 0 -1

2y =4 _ Jam = 2 4+ [1]-2+ 01

2130 = 0 Z3 = 7 -4 +[0]-2 4 01

drgo = 0 Tgo = 744+ 7.2+ 0-1
2n

where “?” denotes unknown entries, the squared entries indi-
cates information that the receiver can extract about X, and
the non-squared entries (forced to 0) are due to the packet
space constraints. Note that the unknown entries are due to
p = shape A = (1, 3,4), while the entries forced to 0 are due
to A= (1,2,2) (see -

Therefore in the (non-realistic) situation in which both the
transmitter and the receiver know the transfer matrix, it is
clear that 4 + 6 + 2 = 12 bits of information can be sent
through the channel. (In general, it is not hard to check that
P20 + p1A1 + poA2 bits can be transmitted.) For such, the
squared bits of X should be set to information bits, while the
remaining bits cannot carry information.

This idea can be generalized if A is not diagonal, but an
arbitrary matrix of shape p. In this case, we compute invertible
matrices P and (Q such that A = PD(, where D is the
Smith normal form of A, as given by (IT). We then set Yy £
P-lY and X 2 @ X, so that we can communicate using the
equivalent channel Y = DX by employing the same scheme
as before.

In this paper, we consider the problem of transmission of
information through finite-chain-ring MMCs in a situation
where the transfer matrix is unknown to the transmitter but
known to the receiver (i.e., the coherent scenario) and chosen
randomly according to some given probability distribution. It
is shown that we can transmit the same amount of information
as if the transmitter knew the transfer matrix, that is, at a rate
given by E[p2] Ao +E[p1]A\1+E[po] A2, where p = (po, p1, p2)
is the random variable representing the shape of the random
transfer matrix, and E[-] denotes expected value. To do so,
however, a non-trivial coding scheme (potentially using the
channel multiple times and allowing a non-zero but vanishing
probability of error) is needed. We also examine the problem
of reliable communication with a single use of the channel.
In this case, we show that, as long as Ao > n and the shape
deficiency of the transfer matrix is at most a given value, say (3,
we can have a one-shot zero-error coding scheme of rate given
by (n— Bo)Ao + (n — B1)A1 + (n — P2) A2, which is the best
rate one could achieve with zero error.

IV. CHANNEL MODEL

We next formalize the channel model. Let R be a (g, s)
chain ring, let n and m be positive integers, and let \ be
an s-shape. Also, let p4 be a probability distribution over
R™*™_ From these, we can define the coherent MMC over R
as a discrete memoryless channel (see, e.g., [23]) with input
alphabet X = R™ ™, output alphabet )) = R™** x R™*™,
and channel transition probability

pa(d), ifY = AX,

. (22)
0, otherwise.

pY,A\X(Yv A|X) = {
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In this work, we shall denote the channel just defined by
CMMC(n,m, A,pa), with the dependence on R being im-
plicit. We also make use of the random variable p = shape A,
distributed according to

pa(A), (23)

pp(p) =
A:shape A=p

Finally, we set £ = \;_; (interpreted as the packet length).
A matrix (block) code of length N is defined by a pair
(C,®), where C C (R"**)¥ is called the codebook, and ® :
(R™A x RN C is called the decoding function. We
sometimes abuse the notation and write C instead of (C, ®).
The rate of the code C is defined by R(C) = (log|C|)/N,
and its probability of error in the channel, denoted by P (C),
is defined as usual [23]]. When N = 1, we say that C is a
one-shot code; otherwise, we say that C is a multi-shot code.
The capacity of the channel is given by

C=maxI(X;Y,A),

px

(24)

where I(X;Y,A) is the mutual information between the
input X and the output (Y, A), and the maximization is over
all possible input distributions px.

From now on, all logarithms are to the base ¢, so that rates
and capacities will always be expressed in g-ary digits (per
channel use).

V. REVIEW OF THE MMC OVER A FINITE FIELD

In this section, we briefly review some of the existing results
about the coherent MMC over a finite field (i.e., R = IF;). Note
that, in this case, s =1, A = ¢, and p = rank A £

A. Finite-Field Coherent MMC
The following result is due to Yang et al. [11]].

Theorem 1. [|/1} Prop. 1] The capacity of CMMC(n,m, ¢,
pa) is given by

C = Elr]¢, (25)
and is achieved if the input is uniformly distributed over ]ngg.
In particular, the capacity depends on pa only through E[r].

Also in [11], [12], two multi-shot coding schemes for
MMCs over finite fields are proposed, which are able to
achieve the channel capacity given in Theorem [T} The first
scheme makes use of rank-distance codes (more on these later)
and requires ¢ > n in order to be capacity-achieving; the
second scheme is based on random coding and imposes no
restriction on /. Both schemes have polynomial time com-
plexity. Also important, both coding schemes are “universal”
in the sense that only the value of E[r] is taken into account in
the code construction (the full knowledge of pa, or even p,.,
is not required).

B. Rank Deficiency Correction Guarantees

We say that a one-shot matrix code C C F;“(Z is b-rank-
deficiency-correcting if it is possible to uniquely recover X
from (Y, A), where Y = AX, aslong as X € C and rank A >
n —b. In other words, C is b-rank-deficiency-correcting if and
only if, for every two distinct codewords X1, Xs € C, there is
no matrix A € IB‘;”X" such that rank A > n — b and AX; =
AXs.

Recall that the rank distance between two matrices
X1, X5 € IFZXE is defined as dg (X1, X2) = rank(Xs — X1).
For a code C C IFZILXE, define dg(C) = min{dr (X1, X2) :
X1,X5 € C, X1 # Xs}, called the minimum distance of the
code. The rank distance provides a necessary and sufficient
condition under which a code is b-rank-deficiency-correcting.
The following result is a special case of a result due to Silva
et al. [15]], [16].

Theorem 2. [I16| Thm. 2] A code C C FZXZ is b-rank-
deficiency-correcting if and only if dg(C) > b.

Rank-distance codes were studied by Gabidulin [24]], which
shows that any linear rank-distance code C C IFZXZ of
dimension k has rate given by

R(C) = k¢ (26)
and minimum distance satisfying
dr(C) <n—Fk+1. (27)

Codes achieving equality in the above are said to be maximum
rank distance (MRD) codes. A class of such codes for every
n, £, k, and ¢ such that ¢ > n was presented by Gabidulin.
Theorem [2] implies that any linear MRD code of dimension &
is (n — k)-rank-deficiency-correcting.

Finally, note that if a code C C F** is (n — r)-rank-
deficiency-correcting for every r in the suppoﬂﬂ of r =
rank A, then C has P.(C) = 0 in CMMC(n,m,¢,pa). In
particular, if r is a constant, a zero-error capacity-achieving
coding scheme can be obtained by employing a linear MRD
code of dimension k = r.

VI. THE MMC OVER A FINITE CHAIN RING

This section contains the contributions of the paper, where
we consider again the case of a general (g, s) chain ring R.

A. Channel Capacity

We start by computing the channel capacity. The following
result generalizes Theorem [I]

Theorem 3. The capacity of CMMC(n, m, \,pa) is given by

s—1

C= Z E[ps—i—1]Ai,

=0

(28)

and is achieved if the input is uniformly distributed over R™**.
In particular, the capacity depends on pa only through E[p).

The following example illustrates the theorem.
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Fig. 2: (a) Shape distribution for n = 3 and s = 2. (b) Channel capacity (normalized by n|\|) as a function of n, for s = 2 and A = (Ao, 2)\o). (c) Channel

capacity (normalized by n|A|) as a function of s, for n = 3 and A = £.

Example: Let R = Zs-, which is a (2,s) chain ring. In
addition, suppose that the transfer matrix A € R™*"™ has
i.i.d. entries uniform over R, which is equivalent to say that
A is uniformly distributed over R™*"™ (this is analogous to
the transfer matrix distribution considered in [9]). Therefore,
the shape distribution of the transfer matrix can be expressed
as
_ [ To(rm )]

= 2
‘Rmxn| ’ ( 9)

Pp(p)
where 7,(R™*") denotes the set of matrices in R™*" whose
shape is p (its cardinality can be found in [17, Thm. 3]).
Suppose, for simplicity that n = m. Figure [2a] shows the
probability distribution of p when n = 3 and s 2.
Figure shows the channel capacity, normalized by n|A|,
as a function of n, for s 2 and packet space W = R,
where A = (Ao, 2)\g). Figure 2d shows the normalized channel
capacity as a function of s, for n = 3 and packet space
W = R".

In order to prove Theorem [3| we need the following lemma.

Lemma 4. Let X € R™> be a random matrix, let A €
R™*™ be any fixed matrix, and let p = shape A. Define Y =
AX € R™ . Then,

s—1
H(Y) <Y peicihi, (30)
=0

4Recall that the support of a discrete random entity « is the set of all z
such that py () is strictly positive.

where equality holds if X is uniformly distributed over R™ ™.

Proof. Note that X and Y can be expressed as

X = [Xo X,
€1y
Y=[¥% Vi
where X; € (r?)?*(Ai=Xi-1) and Y; € (n?)ym*Ai=Xi-1) | for
0 <14 < s. We have

Y, = AX;, (32)
so that the support of each of the columns of Y; is a subset
of col m A. We have shapen’A = (0,...,0,p0,...,Ps—i—1)s

so that, from (7), we have |col T A| = gPo+FPs=i-1_ There-
fore, the support of Y has size at most

s—1 s—1

H |COl?‘('iAlki_M*1 = H q(/)o+'~~+/)571:71)(>\i—/\7171)

i=0 =0 (33)
— qu;& psfifl)\i7

from which the inequality follows.

Now suppose X is uniformly distributed over R™**. This
means that X is uniformly distributed over (7)"*(Ai=Xi-1),
One may show that there exists X uniformly distributed over
Rn*(Xi=Ai-1) such that X; = 7' X/. Let y denote a column
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of Y;, whose support is col m* A. Since Y; = AX; = 1t AX],
we have, for every y € col A,

y] = {2z’ € R" : 7' Az’ = y}|

R
_ [nul7n* A
|R"|
B 1
~ |colmiA|’
that is, y is uniformly distributed over its support. Therefore,

Y itself is also uniformly distributed over its support. This
concludes the proof. O

Prly =

(34)

We can now prove Theorem

Proof of Theorem [3] The channel mutual information is given
by
I(X;Y,A)=I1I(X;Y|A)+I(X;A)
=H(Y|A)-HY|X,A)+I(X;A)
= H(Y|A),
where H(Y|X,A) =0since Y = AX, and I(X;A) =0

since X and A are independent. Thus,

I(X;Y,A)=H(Y|A)=> pa(AH(Y|A = A), (36)
A

(35)

and the result follows from Lemma O

B. Coding Scheme

Here we describe the proposed coding scheme. Before doing
so, we present two simple lemmas regarding the solution of
systems of linear equations over a finite chain ring, via the
m-adic expansion. These results will serve as a basis for the
coding scheme. From now on, let F = R/(m) = F,,.

1) Auxiliary Results: The first problem turns a system of
linear equations over the chain ring into multiple systems over
the residue field.

Lemma 5. Let y € R and A € GL,(R). Let x € R™ be the
(unique) solution of Ax = vy. Then, the T-adic expansion of x
can be obtained recursively from

A0z = @ _ (Az*) (i), 37
for 0 <i <s.
Proof. For 0 <1 < s, we have
i—1 ) ) . . s—1 ) .
y=Ax = AZQ:(])WJ + AzWDnt + A Z x(”?rj, (38)
J=0 j=i+1
so that, from Lemma [10]
y@ =, (A1) 4 (42)©. (39)

After simplifying and rearranging we get the equation dis-
played on the lemma. Since A(®) € GL,,(F), we can compute,
recursively, (0, () 2061, O

In the following example, the notation ()™ stands for matrix
transposition.

2017. 96

Example: Let R = Z4, withT' = {0, 1} and 7 = 2. Also, let

A:ﬁ g}, and y:B]zl[(ﬂ—i—Q[ﬂ. (40)
<~ =~

0!
Since 2 =[0 0]T, from with i = 0, we have
A0 —, O

bol=bl

Solving this equation for z(9) in the residue field F = Fy, we
get 2(0) = [0 1]T. From this, we conclude that 2> = 202(%) =
[0 1]T. Next, from (37) with i = 1, we get

A0) (1) = y(l) _ (A:Jcl)(l),

y

41
that is,
42)

43)
that is,

b= 3R
-11]- B]( - -] - [ =[]

Solving for z(!) in the residue field, we get () = [1 1]T.
Therefore,

_ (0 1 _ |0 L _ |2
r=a® 2t = [ w2 f] < ]

which indeed satisfies Az = y.

(45)

The second problem deals with the solution of diagonal
systems of linear equations. Let Mj.;» denote the sub-matrix
of M consisting of rows j up to, but not including, j', where,
for convenience, we now index the matrix entries starting
from 0.

Lemma 6. Let Y € R™** and D € R™*™, where D is in
Smith normal form and has shape p. If Y = DX, then

(@)
YOZPO
Yp(qi-;n
7 0:P1
Xézl)Js—i—l = . ’ (46)
its1
Yp(s—i—2:/)’s—i—1
for 0 <i <s.
Proof. Note that Y = DX is equivalent to
YO:po XO:poa
Ypo:m TrXPo P11
(47)
Yps—23p3—1 = TrSilXps—fps—l'
From Lemma this implies
X =Yg, 0<i<s,
i) _ v+l .
Xf(m)ipl - Y,O(o:m)’ 0<i<s—1, (48)
7 _ 1+s—1 -
Xf(’s)—‘z:ps—l - Yp(.e—23p5217 0 S 1< 1’
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from which the result follows. O

Example: 1In this example we go back to the situation in
Subsection Let R = Zs, with T' = {0,1} and = = 2.
Following the notation of Lemma [6] let A = (1,2,2), p =
(1,3,4), and n = m = 4. Suppose that

7 2 1 0 1 1 1 0
|4 4 0 0 0 0 11 X
Y_60_100+210+410€R,
4 0 0 0 0 0 1 0
Y (0) Y@ Y (2)
49)
and D = diag(1,2,2,4) € R™*"™. Let
Zoo Xo1
X = 10 T11 (50)
T20 T21
T30 I31
Then, Y = DX implies
Z0oo o1 7 2
21‘10 2]}11 4 4
21720 21‘21 o 6 O (5])
4%30 41’31 4 0
which is equivalent to
Too =7, To1 = 2,
2 2
Z10 S { 76}7 11 € { 36}3 (52)
oo € {377}7 o1 € {0,4},
3o € {1,3,5, 7}, xr31 € {0,2,4,6}.

On the other hand, Lemma [f] says that, if Y = DX, then

M+-(0) M -(0 1 0
0 _ | 2o (©) YOEHI; 0 0
XO:p2: Ypoz:m = Xoy = Yl(:é’)) {1 ol
Yp(1 )pz _Y3:4 1 0
[ (D) ] [v(1) L1
1 Y, 1 Y,
X((]:;zli Yv(()Ql))O = X(()?2: YP(QI) =11 ’
L~ Poip1 L7 1:3 1 0
2 2
X = Y] = x@=]@|= 0 o,
(53)

which is precisely the same information conveyed by (52).

We are finally ready to present the coding scheme, which is
based on the ideas of the two previous lemmas. For simplicity
of exposition, we first address the particular case of one-shot
codes. The general case will be discussed afterwards.

2) Codebook: We start with the codebook construction. Let
Co,C1,...,Cs_1, where C; C F™ i for 0 < i < s, be a
sequence of one-shot matrix codes over the residue field F'. We
will combine these component codes to obtain a matrix code
C C R™* over the chain ring R. We refer to Cy,Cq,...,Cs—1
to as the component codes, and to C as the composite code.

Denote by ¢ : R — F' the natural projection map from R
onto F. Also, denote by ¢ : F' — I the coset representative

selector map, with the property that ¢(@(x)) = « for all x €
F. The codebook C C R™** is defined by

s—1
c:{ZX“)wi:Xieci,ong}, (54)

=0

where _
X0 = [p(X;) 0] e ™" (55)

It should be clear that the codewords in C indeed satisfy the
row constraints of R™** (see §II-D). In addition, from the
uniqueness of the m-adic expansion,

R(C) = R(Co) + R(C1) +--- + R(Cs-1). (56)

3) Decoding: We now describe the decoding procedure.
Intuitively, the decoder decomposes a single MMC over the
chain ring into multiple MMCs over the residue field. In the

following, M denotes the upper-left j x k sub-matrix of M.

Step 1. The decoder, which knows the transfer matrix A,
starts by computing its Smith normal form D € R™*", It
also computes P € GL,,(R) and Q € GL,(R) such that
A= PDQ.

Step 2. Let p = shape A = shape D. Define X2QX e
R™X (which is unknown to the receiver) and Y £ P~1Y €
R™*X (which is calculated at the receiver), so that Y = AX
is equivalent to

Y = DX. (57)
From this equation, the decoder can obtain partlal information
about X. More precisely, it can compute X XA for 0 <
i < s, according to Lemma [6]

Step 3. In possession of Xp XA for 0 < ¢ < s, the
decoder will then try to decode X based on the equation

X = QX, (58)

in a multistage fashion. Indeed, similarly to Lemma [5] we
have, for 0 <17 < s,

x @) _ (QXi)(i)

Considering only the p_;_1 topmost rows (since the remain-
ing rows are unknown), and keeping only the \; leftmost
columns (since the remaining columns are already known to
be zero), we get

Xﬁz)ﬂ-,lx)\i - (st—iflx'ﬂX;LXA )(1 =n Qpa i 1><an(1>)<)\

(60)
Finally, projecting into F' (that is, applying ¢ to both sides),
and appending enough zero rows (in order to obtain an m X n
system) gives

=, QX (59)

Y, = A X,
where Y; € F™** and A; € F™ " are defined by

SO(XEZ)—7—1X)‘7) - @((()stilx'n,XnX)\ )( )>‘| 7 (62)

(61)

}/;:

and

A= [‘P@Psoﬂx")} : (63)
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Note that Y; can only be calculated after X, X1,...,X;1
are known. Therefore, in this step the decoder obtains, suc-
cessively, estimates of X, X7,..., X_; from (6I). Finally,
it computes an estimate of X according to (53) and the 7-adic
expansion.

4) Extension to the Multi-Shot Case: We finally consider
the multi-shot case. Let Cy,Cy,...,Cs_1 be a sequence of
N-shot matrix codes (the component codes), where C; C
(FA)N_ for 0 < i < s. The codewords of the com-
posite code C are then given by (X (1), X(2),...,X(N)) €
(RN where X () is obtained from the j-th coordinates
of the codewords of the component codes, similarly to the
one-shot case.

Proceeding similarly to Steps 1 and 2 above, the de-
coder obtains X;(zi)_i_lei(j)’ for 0 < i < s and
j = 1,...,N, and Q(j), for j = 1,...,N. Step 3 is
also similar, with the important detail that the whole se-
quence (X;(1),X;(2),...,X;(N)) € C; is decoded from
(Yi(1), Yi(2), ... Ya(N)) and (A;(1), 4,(2),..., A;,(N)) by
using the decoder of C;, before proceeding to stage ¢ + 1.

5) Computational Complexity: The computational com-
plexity of the scheme is simply the sum of the individual
computational complexities of each component code, plus the
cost of calculating the Smith normal form of A (which can
be done with O(nmmin{n, m}) operations in R), the cost
of calculating Y (taking O(m?(m + £)) operations), and the
cost of s — 1 matrix multiplications and additions in (62)
(taking O(n?() operations each). As a consequence, if each
component code has polynomial time complexity, then the
composite code will also have polynomial time complexity.

C. Achieving the Channel Capacity

From the proposed coding scheme, it is now clear that the
i-th component code C; should be aimed at CMMC(n, m,
i, DA, ), where A; € F™*™ js defined in (63). In principle,
we could compute the probability distribution of A;, provided
we have access to the probability distribution of A. Neverthe-
less, if we employ a universal coding scheme (see Section [V)),
then the particular probability distribution of A; becomes
unimportant once we know the expected value of its rank.
From (63), we have rank A; = ps_;_1, so that, in this case,
only the knowledge of E[p] is needed. Thus, the proposed
coding scheme is “universal”, provided the component codes
are also universal. We next show that the scheme is able to
achieve the channel capacity.

Proposition 7. Let C; C F™"**¢ be a capacity-achieving code
in CMMC(n,m, A, pa,), for 0 < i < s, where A; € F™*"
is defined in (63). Let C C R™** be the composite code ob-
tained from Cy,Cy,...,Cs_1. Then, C is a capacity-achieving
code in CMMC(n, m, \,pa).

Proof. Since each C; is capacity-achieving in CMMC(n,m,
Ai,pa,), and since rank A; = ps_;_1 [see (63)], we have
R(C;) arbitrarily close to E[ps—;—1]A;. Thus, from (G6), we
have R(C) arbitrarily close to ), E[ps_;—1]\;, which is the

channel capacity. Now, from the union bound, the probability
of error of C in CMMC(n,m, A\, pa) is upper-bounded by

Po(C) < Po(Co) + Pe(Cy) 4 -+ Po(Cs_1),

where P, (C;) is the probability of error of C; in CMMC(n, m,
Ai,Da,)- Since each C; is capacity-achieving, we have P.(C;)
arbitrarily close to zero. Therefore, P.(C) is also arbitrarily
close to zero. O

(64)

Recall that the two coding schemes proposed in [11]],
[12] (see Section [V) are universal and have polynomial time
complexity. Consequently, by using them as component codes,
we can obtain a universal, capacity-achieving composite code
with polynomial time complexity.

D. One-Shot Reliable Communication

Our last result is concerned with codes that guarantee reli-
able communication with a single use of the MMC, supposing
that the “(row) shape deficiency” of the transfer matrix is
bounded by a given value. In this paper, a one-shot matrix
code C C R™* is said to be [B-shape-deficiency-correcting
if it is possible to uniquely recover X from (Y, A), where
Y = AX, as long as X € C and shape A = n — 3. In other
words, C is [-shape-deficiency-correcting if and only if, for
every two distinct codewords X7, Xo € C, there is no matrix
A € R™*™ such that shape A = n — 8 and AX; = AX,.
The following result generalizes Theorem

Theorem 8. A code C C R"™* is [-shape-deficiency-
correcting if and only if there are no distinct X1,Xo € C
such that shape(Xs — X1) < B.

Proof. Assume first that C is [-shape-deficiency-correcting.
Suppose, for the sake of contradiction, that there exist distinct
X1, X5 € C such that shape(Xs — X;) < 8. Let A € R™*"
be any matrix such that row A = nul(Xy — X;)T. Then,
A(X9 — X1) =0 so that AX; = AXs. Also,

shape A = shapenul(X, — X;)T =

=n —shape(Xs — X3) =n— 3, (65)

where we made use of (I4). This is a contradiction.

Assume now that there are no distinct X1, Xo € C such
that shape(Xs — X1) < . Suppose, for the sake of contra-
diction, that C is [-shape-deficiency-correcting. Then, there
exist distinct X7, X5 € C and a matrix A € R™*™ such that
AX, = AX; and shape A = n—f. We have A(Xy—X;) =0,
so that col(X2 — X7) must be a submodule of nul A. Thus,

shape(Xs — X7) < shape(nul A) = n — shape A < 3, (66)
where we again made use of (T4). This is a contradiction. [J

We next show that the coding scheme proposed by this work
can also provide shape deficiency correction guarantees. For
such, the component codes are chosen to be MRD codes with
suitable dimensions.

Proposition 9. Suppose \g > n. Let C; C F™**i be a linear
MRD code of dimension n— f3;, for 0 < i < s. Let C C R™**
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be the composite code obtained from Cy,Cq,...,Cs_1. Then,
R(C) = > ,(n—Pi)\;, and C is [3-shape-deficiency-correcting.

Proof. We have R(C;) = (n — ;)\, so that the expression
for R(C) follows from (36). We now show that C is (-
shape-deficiency-correcting. Suppose not. Then, according to
Theorem [3] there exists two distinct codewords X7, X> such
that § = shape(X2 — X1) < §. On the other hand, we have
X = Zj_é ¢(X1,;)m, for some X, ; € Cj, and likewise
Xy = ZFO @(Xa2,j)m?, for some X5 ; € Cj. Let i such that
0 <7 < s be the smallest integer satisfying Xl,i # Xo,;. We
then have

s—1
Xo—X1=)_ ¢(Xa;— Xy )m) =
j=0
s—1 s—i—1
=Y o(Xo ;=X m =7 Y @(Xajpi— X ).
=i =0

(67)

From Lemma [T1] of Appendix [A] and from the fact that the
0-th entry of shape A is rank ¢(A), we conclude that

0; = rank(Xo ; — X1;) = dr(X1,4, Xo,:) >

>dR( ) Bz+1>6za

where we also used the fact that C; is MRD. This contradicts
the fact that 0 = shape(Xs — X7) =< §, so that C must be
[-shape-deficiency-correcting. O

(68)

Similarly to the finite-field case, if C C R"™** is (n — p)-
shape-deficiency-correcting for every p in the support of
p = shape A, then C is a zero-error coding scheme for
CMMC(n,m, A, pa). In particular, if the channel is such that
p = p is a constant, the above construction yields a one-
shot zero-error capacity-achieving code whose encoding and
decoding procedures have polynomial time complexity.

E. Extension to the Non-Coherent Scenario

So far, we have only considered the coherent scenario, in
which the instances of the transfer matrix are available to the
receiver. Nevertheless, we can reuse the coding scheme pro-
posed in this work even in a non-coherent scenario, by means
of channel sounding (also known as channel training). In this
technique, the instances of A are provided to the receiver by
introducing headers in the transmitted matrix X € R™**, that
is, by setting X = [I X’l , where I € R™*" is the identity
matrix, and X’ € R"*(*~") is a payload matrix coming from
a matrix code. For this to work, we clearly need \y > n. Note
that channel sounding introduces an overhead of n? symbols.
Nevertheless, the overhead can be made negligible if we are
allowed to arbitrarily increase the packet length, that is, the
proposed scheme can be capacity-achieving in this asymptotic
scenario.

VII. CONCLUSION

In this work, we investigated coherent multiplicative matrix
channels over finite chain rings, which have practical appli-
cations in physical-layer network coding. As contributions,

we computed the channel capacity, and we determined a
necessary and sufficient condition under which a one-shot code
can provide shape deficiency correction guarantees. These
results naturally generalize the corresponding ones for finite
fields. Furthermore, a coding scheme was proposed, combining
several component codes over the residue field to obtain a
new composite code over the chain ring. It was shown that if
the component codes are suitably chosen, then the composite
code is able to achieve the channel capacity and provide shape
correction guarantees, both with polynomial time complexity.

Several points are still open. The capacity of the non-
coherent MMC, a problem addressed in [[13]], [[14] for the case
of finite fields, still needs to be generalized for the case of
finite chain rings. Also, designing capacity-achieving coding
schemes for the non-coherent MMC with small A is still an
open problem, even in the finite-field case.

APPENDIX A
AUXILIARY RESULTS

In this appendix, we mention a few basic results that help
us compute with m-adic expansions.

Lemma 10. Let z,y,z € R. Then, for every i, 0 <1 < s, we
have

D (an 29, for 0 < j < s —i; and

) (i+5) _
2) (x+ynt + z7r’+1)(i) =, (0 4 y(0),

Proof. The first claim follows from the uniqueness of the -
adic expansion. For the second claim, we have

(z +miy +712) 0 =

s—1 s—1 s—1
= Z P L) Z riyld) 4 il Z e
=0 7=0 =0

(®

(@)

@ (Z ) 4 miy©
(7)
— (Z i () + 7t (i) + y(o))

(2)
@ (7r (2 4y )
© (x@ ) =, 2 O
(69)
where (a) follows because factors of 71 do not contribute to

the Value of the i-th term of the m-adic expansion, (b) is true
from the uniqueness of the 7-adic expansion, and (c) follows
from the first claim with 57 = 0. O

Lemma 11. Let A € R™*"™, and let p = shape A. Then,

Shapeﬂ-iA: (07~-~707P0apl7~-~>P57i71)- (70)
——



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 32, NO. 1, 2017. 100

Proof. Let P € GL,,(R), Q € GL,(R), and D € R™*"
such that A = PDQ and D is the Smith normal form of A.
Recall that shape D = shape A = p. Then,

shape 7' A = shape 7* PDQ = shape Pr'DQ =

:Shapeﬂ-iD: (07'"a07p0ap17"'aps—i—1)a (71)
——

i

completing the proof. O
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