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Abstract—This paper studies the impact of the payload size
in the energy efficiency of a point-to-point link in a wireless
sensor network using convolutional codes. Two channel models
are considered to represent distinct conditions with respect to
the severity of the fading: AWGN, which only accounts for the
large-scale effects; and Rayleigh, encompassing both small-scale
and large-scale effects in a scenario without line-of-sight. In this
context, signal-to-noise ratio, code rate and the payload size are
optimized. The numeric results obtained through simulations
show that there is an optimal payload size, which depends
on the transmission range, and provides gains in the overall
energy efficiency. More importantly, these energy efficiency gains
obtained by the optimization of the payload size are higher
than those observed by the optimization of the SNR and code
rate, and more present in shorter transmission distances. Finally,
results also show that different optimal values are obtained
if the optimization problem focus on minimizing the energy
consumption or maximizing the energy efficiency.

Index Terms—Convolutional coding, energy efficiency, payload
size, wireless sensor networks.

I. INTRODUCTION

Typically, the development of wireless communication sys-
tems over the past years focused on performance improve-
ments based on increasing the data transmission rate, at
the cost of higher energy consumption [1]. Wireless sensor
networks (WSNs), as well as the growing development of the
Internet of Things (IoT), have significantly contributed to bring
the energy efficiency as one of the main focus in modern com-
munication solutions, given that environmental and economic
motivations converge in these scenarios dominated by battery-
powered devices [2].

Moreover, most wireless sensor devices employ some for-
ward error correction (FEC) technique, which brings reliability
gains at the cost of higher energy consumption. As a matter
of fact, the choice for a given coding technique directly
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impacts the energy efficiency [3]. One of the most common
FEC schemes is the BCH code, which is a generalization
of the Hamming code and is flexible enough to provide a
large set of code rates [4]. For instance, [3] analyzes the
energy consumption of WSNs by taking the transmit power,
RF circuitry and baseband operations for coding and decoding
into account. Then, the BCH encoding is employed to allow
the optimization of the code rate in conjunction with the proper
adaptation of the signal-to-noise ratio (SNR). In addition, an
energy efficiency analysis can be found in [5], which also
employs BCH codes, but with fixed code rate, once the goal
is to optimize the payload size. However, the analysis in [5] did
not consider the power consumption of the circuits to transmit
and receive.

Convolutional codes are also widely employed in practical
communication devices due to their capability of improving
reliability, with affordable encoding/decoding complexity [4].
For instance, many commercial solutions already implement
hard-decision convolutional encoders [6]–[8], which offer a
good compromise between complexity and error correction
efficiency [9], especially in WSNs for which low energy
consumption and low computational complexity are highly
desirable. Then, an optimization goal similar to [3], [5] can be
found in [10] employing convolutional codes, further extended
in [11] in order to consider multiple hops. Moreover, the study
in [10], [11] focus on an underwater transmission context,
which brings several different characteristics when compared
to the wireless terrestrial transmission, leading to different
results in terms of the system optimization. However, let us
remark that the focus of [3], [10], [11] is on the minimization
of the energy consumption, which is not necessarily the same
as to maximize the energy efficiency, which balances energy
and throughput in a single metric.

In addition, the correction capability of the employed FEC
is often not enough, and it becomes necessary to combine
retransmission techniques to the FEC codes, usually known
as hybrid automatic repeat request (HARQ) schemes [12]. In
the literature, some examples studying the energy efficiency of
HARQ employing convolutional codes can be found in [13]–
[15]. However, the RF circuitry energy consumption and
the baseband processing are not considered by these works.
Furthermore, the energy efficiency of some different HARQ
techniques are studied in [16] in the Nakagami-m channel,
which shows that code rate optimization is critical to maximize
the energy efficiency, while the use of HARQ substantially
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extends the communication range.
However, we observe that little has been devoted to the in-

vestigation of an optimal payload size in order to maximize the
energy efficiency. In the literature, we can find some examples
devoted to specific scenarios, as in [17]–[20]. For instance,
[17] considers a wireless body area network (WBAN) and
optimizes the payload size in order to maximize the energy ef-
ficiency of cooperative and non-cooperative techniques, given
the specific channel characteristics of WBANs. Moreover, a
cognitive radio (CR) network for IoT is investigated in [18],
focusing on more specific challenges such as the overhead
energy consumption due to channel sensing and channel
handoff. Then, the authors propose low complexity algorithms
in order to find the optimal packet size that maximizes the
energy efficiency in such context. In a smart grid scenario,
the work in [19] optimizes the packet size focusing on a
prolonged network lifetime and energy efficiency. In addition,
the authors in [20] study a slotted IEEE 802.15.4 network,
addressing multiple access issues to optimize the payload size.
Common to these works is that the energy consumption is
modeled according to the channel capacity, which implies
in theoretical capacity-achieving FEC codes. Nevertheless, as
previously discussed, the encoding/decoding processing costs
should not be left out of the energy consumption budget, as
in [17]–[20].

In this paper we study HARQ techniques employing convo-
lutional codes in a WSN. Unlike previous works (e.g., [3], [5],
[10], [13]–[16]), the focus is to optimize the payload size in
order to maximize the energy efficiency, in a scenario that also
allows optimizing the code rate of the convolutional codes, as
well as the SNR of the transmission link. Moreover, unlike [5],
[17]–[20], the energy consumption model used here considers
the transmission cost of the RF electronic circuits, the cost
of encoding and decoding the frames using practical FEC
codes, as well as the possibility of retransmissions. In addition,
trying to represent scenarios with different characteristics
regarding the severity of the communication link, two models
are considered for the channel: AWGN and Rayleigh.

Our results show that there is an optimal payload size that
maximizes energy efficiency, which depends on the transmis-
sion range of the link. Moreover, larger optimum payload sizes
are observed for AWGN channels compared to Rayleigh. In
addition, we also show that the optimization of the payload
size plays a major role into the energy efficiency optimization,
with the increase in the energy efficiency of the system being
higher than that observed by the optimization of the SNR
and the code rate, and more relevant in shorter transmission
distances, typical for the WSNs taken in consideration. Finally,
we also compare two optimization goals: i.) to maximize the
energy efficiency; and ii.) to minimize the average energy
consumption. As a result, different optimal values are obtained
for these two cases, since the energy efficiency metric also
takes the data rate into account, so that there is a trade-
off between increasing power to increase the throughput, and
decreasing power to decrease the energy consumption.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model, while the energy con-
sumption is discussed in Section III. Section IV presents the

proposed joint optimization of the SNR, code rate and payload
size, and Section V brings some simulation results. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL

In this section we discuss the wireless communication
model, as well as the employed FEC codes. Moreover, two
channel models are considered: i.) AWGN, which describes
a virtually static communication scenario in which fading is
actually disregarded; and ii.) fast-fading Rayleigh distribution,
in which the channel randomly changes for each information
symbol of the transmitted frame. The fast-fading assumption
is motivated by frequency hopping techniques [21], which are
typical in, e.g., ZigBee devices [22].

A. Wireless Communication Model

Let us consider a point-to-point communication between
two nodes through a wireless link. The frame received by the
destination can be written as [21]

y =
√
Pκhx + w, (1)

where P denotes the transmit power, κ is the path-loss, x
is the unit variance vector of transmitted symbols, and w is
the additive white Gaussian noise. Moreover, h denotes the
channel fading coefficient, with zero-mean and unit variance;
in which h = 1 for the case of the AWGN channel, or follows
a Rayleigh distribution otherwise.

Following a log-distance path-loss model, κ is given by [21]

κ =
Gλ2

(4π)2dαMlNf
=

1

A0dα
, (2)

where d is the distance between the transmitter and the
receiver, α is the path-loss exponent, and A0 is a constant
that encompasses the total antenna gain G, the wavelength
λ = 3 · 108/fc, with fc being the carrier frequency, the link
margin Ml and the noise figure at the receiver Nf.

Then, the instantaneous SNR at the receiver can be written
as

γ = |h|2 · κP
σ2
w

, (3)

such that γ̄ = κP
σ2
w

represents the average SNR, where σ2
w =

N0B is the noise power, with N0 being the thermal noise
unilateral power spectral density and B the system bandwidth.

Moreover, since many existing RF devices targeting low-
power and low data rate applications employ binary modula-
tions [8], [23], [24], we focus our analysis to the case of binary
phase-shift keying (BPSK) in order to write the bit error rate
(BER) of the system. Then, in the AWGN channel the BER
is given by [25]

Pb =
1

2
erfc

(√
γ̄
)
, (4)

in which erfc represents the complementary error function,
defined as erfc(z) = 2√

π

∫∞
z
e−t

2

dt [26].
In addition, as we also consider that h may follow a

Rayleigh distribution, the instantaneous SNR γ becomes a
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H bits L bits

Overhead (O bits)

Header Payload

Fig. 1. Frame structure with O bits of overhead, H bits of header and L
payload bits.

function of |h|2 and has an exponential distribution [27] with
average γ̄ and probability density function (pdf) defined by

fγ(x) =


1
γ̄ e
− xγ̄ , if γ ≥ 0

0, if γ < 0
(5)

Thus, the BER in Rayleigh fast-fading considering a BPSK
modulation is given by [25]

Pb =
1

2

(
1−

√
γ̄

1 + γ̄

)
. (6)

B. Forward Error Correcting (FEC) Codes

In order to improve performance in the wireless communi-
cation link, it is common to employ FEC codes to reduce
the BER. As in commercial devices such as [8], [23], we
employ convolutional encoding. Thus, we define r = k/n
as the code rate, representing that k information bits are
encoded into n coded bits, with n−k representing the number
of redundant bits. Moreover, we assume that each frame is
modeled according to Fig. 1, being composed of an overhead
for control and synchronization that lasts the equivalent of O
bits periods, of H bits of header, and of L bits of payload. In
addition, since the header is usually very small compared to
the payload, we follow [3] and consider that only the payload
is encoded, being divided into rL bits of data and additional
(1− r)L bits due to encoding.

Therefore, following [25] we can write the frame error rate
(FER) of the communication using convolutional codes as

P̄f(γ̄) = 1−
[
1− Pb(γ̄)

]H[
1− Pe(γ̄)

]L
, (7)

where Pb(γ̄) is the BER of the uncoded transmission, given
by either (4) or (6), and Pe(γ̄) is the BER of the payload after
decoding, which can be bounded by [25]

Pe(γ̄) <
1

k

∞∑
δ=δfree

βδP2(δ), (8)

in which βδ is the information weight of the codewords that
are at a distance δ of the all zero codeword and δfree is

the minimum distance of the code. Finally, P2 is the error
probability of the maximum likelihood decoder, given by [25]

P2(δ) =



δ∑
j= δ+1

2

(
δ

j

)
Pb(γ̄)j

[
1− Pb(γ̄)

]δ−j
, if δ is odd,

1

2

(
δ
δ
2

)
Pb(γ̄)δ/2

[
1− Pb(γ̄)

]δ/2
+

δ∑
j= δ

2 +1

(
δ

j

)
Pb(γ̄)j

[
1− Pb(γ̄)

]δ−j
, if δ is even.

(9)
Moreover, we consider that each packet transmitted in the

forward direction is followed by a feedback packet composed
of F bits, informing whether the decoding was successful or
not, and which also allows the request for retransmissions [21].

In order to simplify the mathematical analysis, we consider
that retransmissions occur until a frame is successfully de-
coded1 and we denote the number of transmission attempts
by τ , which is a random variable whose average value can be
written as [3]

τ̄ =
1(

1− P̄f
) . (10)

Finally, the average transmit time for each bit sent in the
forward direction can be written as [3]

Tb =
O +H + L

rLRb
, (11)

where Rb denotes the bit rate, while the feedback time per
payload bit is

Tfb =
F

rLRb
. (12)

III. ENERGY CONSUMPTION

In this section we first start with the energy consumption as-
sociated with RF operations at the transmitter in Section III-A,
followed by the energy consumed by encoding/decoding oper-
ations in Section III-B. Moreover, Section III-C computes the
average total energy consumption, while the energy efficiency
is defined in Section III-D.

A. Energy Consumed at the Transmitter – RF

Initially, we assume that the transmitter is in a low energy
consumption mode and it has to be initialized prior to make
any transmission. Then, we denote by εst the total energy
spent at this step. Moreover, the energy spent by preprocessing
operations of each bit in the forward direction can be written
as a function of the average transmit time, so that

εel,tx = Pel,txTb, (13)

where Pel,tx denotes the power consumption of the RF elec-
tronic components at the transmitter.

1Despite considering that retransmissions are unlimited for simplifying the
mathematical formulation, an extensive simulation analysis shows that the
average number of retransmissions is small.
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Similarly, the electromagnetic radiation energy consumption
of each bit can be written as a function of the power con-
sumption of the power amplifier (PA), denoted by PPA, and
the average transmit time. Thus,

εPA = PPATb, (14)

where PPA = ξ/η P is a function of the transmit power (P ),
the peak-to-average power ratio (PAPR) at the PA output (ξ),
and the drain efficiency of the amplifier (η), typically in the
order of 35% for class-B PAs [28]. Then, in terms of the
average SNR at the decision stage of the receiver, we can
rewrite PPA as [3]

PPA(γ̄) =
ξA0σ

2
w

η
dαγ̄, (15)

recalling that A0 is a constant in (2).
Finally, each feedback frame lasts F/Rb seconds, during

which the RF electronic components of the transceiver con-
sume Pel,rx Watts, so that the energy per bit used to decode a
corresponding feedback frame is [3]

εfb,rx =
Pel,rxF

rLRb
= Pel,rxTfb. (16)

B. Energy Consumption for Encoding and Decoding

At the encoder side, each encoding procedure involves J
different types of arithmetic operations, consuming εj Joules
and being executed υenc

j (r) times during the employed encod-
ing algorithm. Considering that the encoding is performed for
the rL bits of data and that the calculations are executed by a
arithmetic processing unit (APU), the energy consumption of
the j-th operation is modeled by [29], so that

εj = Vdd I0 ∆tj (17)

in which Vdd is the operation voltage, I0 is the average current
during the execution of the arithmetic calculations, which
depends on the operation frequency fAPU, and ∆tj is the time
needed to execute the j-th operation, defined in terms of the
number of clock cycles (cj) as ∆tj = cj/fAPU, yielding [3]

εenc =
VddI0
rLfAPU

J∑
j=1

cjυ
enc
j (r). (18)

Similarly, the energy consumption for decoding, εdec, can be
obtained based on (18) simply replacing υenc

j (r) by υdec
j (r).

The operations required by the encoder usually involve a
set of binary additions. Then, denoting the memory order of
the convolutional encoder by ν we can write [4]

nbin-add = rL
[
nkν + n(k − 1)

]
, (19)

which is many times less than the order of magnitude of the
operations required for decoding [10], as follows.

At the decoder, we consider the hard-decision Viterbi
algorithm, which is a maximum likelihood algorithm with
low complexity [4]. The Viterbi algorithm requires a set of
binary comparisons, additions and integer comparisons, whose

number of operations, considering a conventional trellis, are
respectively given by [30]

nbin-comp = nadd = L 2k+ν , (20)

nint-comp = L
2ν(2k − 1)

n
. (21)

C. Average Total Energy Consumption

Considering the elements defined in Sections III-A
and III-B, here we define the average energy consumption of
the point-to-point communication, considering both transmitter
and receiver sides. Starting with the transmitter we have that

εtx = εst + εenc + (εel,tx + εPA + εfb,rx)τ

= εst + εenc +
[
(Pel,tx + PPA)Tb + Pel,rxTfb

]
τ,

(22)

which already takes the energy consumption to receive the
corresponding feedback frame into account. Moreover, notice
that start-up and encoding procedures are done only once
per information packet, while the energy consumption of the
electronic components, the PA and to process the feedback
frames depends on the number of transmission attempts.

Similarly, we can write the energy consumption at the
receiver as

εrx = εst +
[
εdec + Pel,rxTb + (Pel,tx + PPA)Tfb

]
τ, (23)

where baseband processing is required at each transmission
attempt, so that all terms except εst are multiplied by τ .

Then, defining Pel = Pel,tx + Pel,rx as the total power
consumption of the electronic components to simplify the
notation, we can write total energy consumption εb = εtx +εrx
as being

εb = 2εst + εenc + [εdec + (Pel + PPA) (Tb + Tfb)] τ, (24)

whose average value depends on the average of τ , given
by (10), so that the average total energy consumption yields

ε̄b = 2εst + εenc +
εdec + (Pel + PPA)(Tb + Tfb)(

1− P̄f
) . (25)

D. Energy Efficiency

We define the energy efficiency as the ratio between the
system throughput, in bps/Hz, and the average total energy
consumption, in J [2]. Thus,

ηEE =
T
ε̄b
, (26)

written in terms of bits/J/Hz.
The system throughput is associated with the effective

transmission rate of information (corresponding to the rL bits
of information of the payload). Therefore, we define

T =
rLRb

(H +O + L+ F )τ̄
=

1

(Tb + Tfb) τ̄
. (27)

Then, combining (25) and (27), after a few algebraic ma-
nipulations, we have that

ηEE =
(1− P̄f)(Tb + Tfb)−1

2εst + εenc + rεdec+(Pel+PPA)(Tb+Tfb)

r(1−P̄f)

. (28)
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Algorithm 1 Optimization of the SNR, Code Rate and Payload
Size

Input: Rn,L, γ̄max, d
1: l← 1 . index for the set of payload sizes
2: while l ≤ |L| do
3: L← Ll

4: cod← 1 . Codes from [31]
5: while cod ≤ |Rn| do
6: Input: r, ν
7: Compute P̄f(γ̄), using (7)
8: Compute εb using (13)-(28)
9: i← 1; γ̄i ← 0; η?EE ← 0 . initialization

10: while (γ̄i ≤ γ̄max) do
11: if ηEEi > η?EE then
12: ηEEi ← ηEEi(γ̄i, r, L, d) using (29)
13: γ̄? ← γ̄i
14: end if
15: γ̄i−1 ← γ̄i
16: i+ +
17: γ̄i ← γ̄i + SNRstep . e.g., 0.2 dB step
18: end while
19: Compute τ̄ using (10)
20: Compute ε̄b using (25)
21: end while . Optimized SNR
22: while d ≤ dmax do
23: j ← 1
24: r?(L, d)← arg max

rj∈Rn
ηEE(γ̄?, rj , L, d), using (34)

25: if r? < rj then
26: r?(L, d)← arg max

rj∈Rn
ηEE(γ̄?, rj , L, d)

27: r? ← rj
28: end if
29: j + +
30: end while
31: cod+ +
32: end while . SNR and code rate optimized
33: while L ≤ Lmax do
34: while d ≤ dmax do
35: if L? < L then
36: m← 1
37: L?(d)← arg max

Lm∈L
ηEE(γ̄?, r?, Lm, d), using (35)

38: L? ← Lm

39: end if
40: m+ +
41: end while
42: end while . SNR, code rate and payload size optimized

IV. OPTIMIZATION OF THE SNR, CODE RATE AND
PAYLOAD SIZE

Our main goal is to maximize the energy efficiency of
the system. To that end, we jointly optimize three system
parameters: the SNR, the code rate and the payload size. Let
us remark that the optimization of the energy efficiency is
different from previous works in the literature, as e.g. [3],
[10], which focus on the minimization of the average total
consumed energy. In order to investigate the impact of the
differences between both approaches, we propose an algorithm
to maximize ηEE in Section IV-A, while for comparison
purposes we formalize the minimization of ε̄b in Section IV-B.

A. Maximization of ηEE

First, let us denote the family of codes with the same n
by Rn, and the set of possible payload sizes by L. Then, the

optimal SNR for a given code with rate r ∈ Rn, payload size
L ∈ L, communicating at a distance d between the transmitter
and the receiver can be written as

γ̄?(r, L, d) = arg max
γ̄∈[0,γ̄max]

ηEE(γ̄, r, L, d), (29)

where we consider that the nodes are constrained by a peak
power limit denoted by Pmax, which implies in a maximal SNR

γ̄max =
ηPmaxd

−α

ξA0σ2
w

. (30)

Then, using the set of optimal SNRs given by (29), we can
obtain the optimal code rate for a codeword with payload size
L ∈ L as

r?(L, d) = arg max
r∈Rn

ηEE(γ̄?, r, L, d). (31)

Finally, the optimal payload size, which is a function of the
transmit distance d, is given by

L?(d) = arg max
L∈L

ηEE(γ̄?, r?, L, d). (32)

The detailed operation of the optimization can be found in
Algorithm 1. As we can observe, the optimization receives as
inputs Rn, L, γ̄max, and d, which is followed by the compu-
tation of the FER (line 7) and the total energy consumption
(line 8). Then, the first optimization loop is to compute the
energy efficiency as a function of the SNR, so that the optimal
γ̄? is obtained in line 13, which is a function of r, L and
d. Next, we compute the average number of transmission
attempts (line 19) and the average total consumed energy
(line 20), using the optimal SNRs set. In the sequence, the
optimal code rate r? is obtained in line 24, which is a function
of L and d. Finally, the optimal payload size L? is obtained
as a function of the transmit distance in line 38.

Notice that lines 22 and 33 establish the stop criteria dmax
and Lmax, which depend on the particular scenario of interest.
Finally, let us remark that the computational cost involved
in the proposed algorithm is very low, since in practice the
sets L and Rn are of small size. Therefore, the proposed
optimization may run in real-time in devices with limited
hardware resources.

B. Minimization of ε̄b

For the sake of performance comparison, let us consider the
optimization of the SNR, the code rate and the payload size in
order to minimize ε̄b, similar to the frameworks in [3], [10].
Then, we can first write the optimal SNR that minimizes the
energy consumption as

γ̄�(r, L, d) = arg min
γ̄∈[0,γ̄max]

ε̄b(γ̄, r, L, d), (33)

while the optimal code rate for a codeword with payload size
L ∈ L is

r�(L, d) = arg min
r∈Rn

ε̄b(γ̄�, r, L, d). (34)

Finally, the optimal payload size as a function of the
transmit distance is given by

L�(d) = arg min
L∈L

ε̄b(γ̄�, r�, L, d). (35)
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TABLE I
SIMULATION PARAMETERS

Parameter Description Value
H Header [32] 2 bytes
O Overhead [32] 5 bytes
F Feedback [32] 11 bytes
B Bandwidth [28] 10 kHz
Rb Symbol rate [28] 10 kbps
εst Initialization energy consumption [28] 0.125 nJ
α Path-loss exponent 3.2
A0 Free-space path-loss [28] 30 dB
η PA efficiency [28] 35%

Pel,tx TX electronic power consumption [28] 98.2 mW
Pel,rx RX electronic power consumption [28] 112.5mW
N0 Noise power spectral density -174 dBm/Hz
Nf Noise figure [28] 10 dB
Ml Link margin [28] 30 dB
fAPU APU frequency [33] 20 MHz
Vdd APU voltage [33] 3 V
I0 Average current [33] 6.37 mA
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Let us remark that the optimization procedure is similar to
that in Algorithm 1, replacing ηEE by ε̄b accordingly.

V. NUMERICAL RESULTS

In this section we present some numerical examples to show
the impact of the joint optimization of the SNR, code rate
and payload size in a WSN scenario. The employed system
parameters are listed in Table I, for which we emphasize that
additions and comparison operations, both integer and binary,
are assumed to use only one processor clock. Moreover, for
the cases where the payload is not optimized, we consider that
L = 1024 bits. In addition, we employ the set of convolutional
codes with ν = 6 listed in [31], which provides a wide range
of practical code rates.

A. Optimization of the SNR and Code Rate

First, Fig. 2 shows the energy efficiency as a function
of the SNR for AWGN and Rayleigh channels, without the
optimization of the code rate and payload size. Notice that, at
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low SNR, a higher number of transmission attempts becomes
necessary until decoding is successful, so that the energy
efficiency is very small. On the other hand, at high SNR,
the number of retransmissions is small; however, the energy
consumption is high due to the increased irradiated power. If
we look at the SNR that minimizes the energy consumption,
as in [3], we obtain slightly different optimal SNRs, as Fig. 3
shows for an identical scenario. To better visualize these
differences, Fig. 4 plots the optimal SNR that maximizes the
energy efficiency (γ̄?), in red, and that which minimizes the
energy consumption (γ̄�), in blue. As we can observe, γ̄?

is slightly higher than γ̄� due to the fact that the energy
efficiency also takes the data rate into account, so that there
is a trade-off between increasing power to increase T in (27),
and decreasing power to decrease ε̄b in (24). Moreover, we can
also observe that, for the same code rate, the optimal SNR is
lower for the AWGN channel than for Rayleigh.

The practical implication of the difference observed in
Fig. 4 is that increasing the transmit power a little bit beyond
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the point that is optimal in terms of energy consumption is
actually better, since it allows to transmit more bits with
the same amount of Joules, which may be counterintuitive.
Such conclusion is interesting since many approaches in the
literature rely on minimizing the energy consumption as a
means to increase the energy efficiency. However, Fig. 4 shows
that these two approaches are not the same.

Yet, it is also worth noting that the optimal SNR depends on
the employed code rate. For instance, Fig. 5 plots the optimal
SNR (considering both γ̄? and γ̄�) as a function of r for
AWGN (left) and Rayleigh (right). As the figure highlights,
there always exists a pair (γ̄, r) that must be jointly optimized
to either maximize ηEE or minimize ε̄b. Fig. 6 complements
this analysis by plotting γ̄? as a function of d for different fixed
code rates. Moreover, the cases with the joint optimization
of (γ?, r?) and (γ�, r�) are also shown. As we can observe,
as γ̄? decreases with d, r? also decreases to compensate a
higher average number of retransmissions, as we will show

in the following, which is an attempt to counterbalance the
costs associated with the irradiated power and the electronic
components power consumption.

The average number of retransmissions, τ̄ , is illustrated by
Fig. 7 in the case of the joint optimization of (γ?, r?) and
(γ�, r�). As we can observe, τ̄ increases with the transmit
range, but it remains lower than two up to d = 500 m, for
both optimization goals. It is worth noting that τ̄ is not a
strictly increasing function with respect to d since the system
conditions are not exactly the same for every point of Fig. 7,
which makes the analysis more complex since the optimal
code rate and SNR are constantly being adapted, which reflects
in different average number of retransmissions. For example,
looking at the optimization of ηEE in the Rayleigh channel
we observe a seemingly unexpected decrease in τ̄ when d
increases from 150 m to 200 m. This occurs because the
optimal SNR decreases smoothly from 5.8 dB to 5.2 dB in
this part of the curve, while the optimal code rate decreases
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more abruptly from r? = 2
3 to r? = 1

2 . Similarly, when d
increases from 350 m to 400 m, γ̄? decreases from 5 dB to
4.8 dB, while r? decreases from 1

2 to 1
3 . Therefore, we can

conclude that the oscillations in τ̄ are usually associated with
the choice for a new optimal code rate.

Next, Fig. 8 shows the throughput (T ) and the average
energy consumption (ε̄b) as a function of d for AWGN and
Rayleigh channels. In both cases, γ̄ and r are optimized, while
the payload size is fixed at L = 1024 bits. As the figure shows,
the throughput decreases faster for the Rayleigh channel than
for AWGN, while the average energy consumption increases
similarly for both channels. Therefore, we observe that there
are two simultaneous drawbacks in terms of energy efficiency
in the Rayleigh channel, once both the transmit power and the
number of retransmissions increase with the distance, while τ̄
is more or less constant for the AWGN channel, and only the
transmit power increases with d.
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B. Optimization of the Payload Size

Fig. 9 illustrates the effect of the payload size in the
energy efficiency of the system, with d = {100, 300, 500} m.
As it can be observed, there exists an optimal payload size
for each transmit distance, which changes depending on the
channel severity (AWGN or Rayleigh). The average energy
consumption as a function of the payload size displays a
similar shape, with an optimal payload size for each transmit
distance, whose curves we omit here for the sake of brevity.
Instead, we plot in Fig. 10 the optimal payload size that
maximizes the energy efficiency, L?, as well as the optimal
payload size that minimizes the average energy consumption,
L�, as a function of the transmit range. As we can notice,
both L? and L� decrease while d increases in case of the
AWGN channel, while the optimal payload sizes have a more
complex interaction with the SNR and the code rate in the
case of the Rayleigh channel. It can be also noticed that ηEE
is maximized for larger values of L in the AWGN than in the
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Rayleigh channel, which is due to the less severe environment
which makes retransmissions less often. When d > 250 m, L?

becomes approximately constant, with 448 bits for Rayleigh
and 1728 bits for AWGN, while for the same transmit range
L� is much larger for Rayleigh but is the same 1728 bits the
for AWGN channel. It becomes clear that the optimization
objective plays a great role in the optimum payload size
determination in the case of a Rayleigh fading channel.

Finally, Fig. 11 plots the energy efficiency as a function
of the distance between the transmitter and the receiver for
AWGN (top) and Rayleigh (bottom) considering three opti-
mization scenarios: i.) full optimization of ηEE, choosing the
best SNR, code rate and payload size; ii.) optimization of the
SNR and code rate, with fixed payload size at L = 128 bits;
iii.) optimization of the SNR only, with code rate fixed at
r = 2/3 and payload size fixed at L = 128 bits. The payload
size of 128 bits is considered here based on the IEEE 802.15.4
standard [32]. As we can notice from the figures, the optimiza-
tion of the code rate is more significant to improve the energy
efficiency for shorter transmission distances, especially in the

Rayleigh channel where such improvements are significant up
to a link distance of d = 100 m. Nevertheless, the optimization
of the payload size can be observed as even more important in
terms of the energy efficiency, and for relatively short transmit
ranges for both channels. Moreover, it is also important to
highlight the difference between the scales of both figures,
given that the energy efficiency in Rayleigh is considerably
smaller than in AWGN.

VI. CONCLUSIONS

This paper studied the impact of the payload size optimiza-
tion in a WSN scenario. The employed simulation framework
considers the power consumption for packet transmission, of
the electronic circuits associated with RF signals, and the
baseband energy consumption for coding and decoding. In
addition, different scenarios were considered in which SNR
and convolutional code rate optimization, combined with the
adaptation of the payload size, are allowed. The results show
that there is an optimum payload size that maximizes energy
efficiency, which depends on the transmit range and the chan-
nel model, where ηEE is maximized with larger values for L in
the AWGN compared with the Rayleigh channel. Moreover,
the optimization of L brings an expressive increase in the
energy efficiency of the system, higher than that observed by
SNR optimization and code rate, and more relevant in shorter
transmission distances, which are the typical ranges of WSNs.
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