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Extinction Efficiency and Electromagnetic Fields of
Isolated and Coupled Core-Shell Nanoparticles

André F. S. da Cruz and Karlo Q. da Costa

Abstract—The study of metallic nanoparticles fed by optical
fields has great interest in nanophotonics, for example in sensing
devices. This paper presents a theoretical study of the interaction
between electromagnetic waves and gold nanostructures with
spherical geometries, which have a thin dielectric layer of silica.
It is considered that the particle’s size is much smaller than
the operating wavelength, characterizing the Rayleigh scattering
regime. Using an analytical model through the Laplace equation,
the interaction between an oscillating uniform electric field and
a core-shell nanosphere is presented. Then, using a numerical
model, the scattering of two interacting core-shell nanospheres
is also analyzed, as a function of the distance between them. For
the isolated particle case, the efficiency parameters of scattering,
absorption and extinction cross sections were calculated and
compared with experimental data of absorbance curves. The
results were obtained in the range of wavelengths from 450nm
to 750nm. Some conclusions about the range of validity of the
model in functions of the particle’s dimensions are presented.

Index Terms—Rayleigh Scattering, Gold Nanoparticles, Core-
Shell, Analytical Modeling, Finite Element Method.

I. INTRODUCTION

CURRENTLY , the study of metallic nanoparticles
and their optical response has been of great interest

in different areas, such as biochemistry, engineering and
nanomedicine, with applications, for example, in cancer treat-
ments and diagnostics through bio-imaging, phototherapy and
circulating biomarkers in blood fluids [1,2], as well as the
design of photonic sensing structures for chemical process
analyzes [3], this is mainly due to its plasmonic effects [4].

Several techniques for the production of metallic nanopar-
ticles (NPM) have made it possible to obtain different sizes
and geometric shapes, from cylinders to triangular shapes, in
addition to spherical shape approximations. Recently, chemical
reactions in liquid solutions have been commonly used as a
low cost procedure for NPM production. From this process,
the presence of the surfactant agent, in general, a polymer that
binds to the surface of the nanoparticle during the chemical
reaction, controlling the growth rate and providing stability to
the sample [5-6] is highlighted. The result is a type of metal
particle covered with a thin superficial dielectric layer, which
is called core-shell.

In this method of manufacture the dispersion, or variation,
of size and shape of the nanoparticles in a sample is common.
This dispersion makes it difficult to interpret characterization
and identification measures, since its optical properties are
strongly related to the NPM dimensions, besides the intrinsic
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characteristics of the medium where they are included. In this
context, it’s important to study the effect of small variations in
particle size and core-shell on their resonant optical responses,
in order to obtain more precise theoretical results.

The theoretical study of electromagnetic scattering can offer
satisfactory results on the sensing of these NPMs [5]. The
interaction between metals and waves in the optical range
produces an oscillatory behavior of the free electrons cloud
at the opposite phase of the incident field, such an effect
is directly related to the negative real part of the complex
metal dielectric function. The result of this interaction is
known as plasmon wave [7]. Plasmonic effects on metals
suggest differences between microwave (RF) and optical wave
regimes, since, in the optical regime, metals are considered to
be imperfect conductors [8].

Recently, gold nanoparticles used as molecular optical
probes have shown wide application and great prospects; this
is due to the resonant plasmon characteristic of gold. These
studies have contributed significantly to the development of
biosensors, molecular images and photothermal treatments of
diseases [1,9]. Gold nanoparticles, which are excited by laser
source of wavelength close to the SPR band, can efficiently
convert photon energy into thermal energy, leading to the
destruction of biological cells such as tumors and bacteria
[9,10]. When a sample of material, solid or liquid, contains
a dispersion of nanometric particles, the medium is defined
as colloid [5]. The absorbance is a parameter that associates
the extinction coefficient of a set of nanoparticles with the
characteristics of the colloid, this parameter is related to the
phenomenon of localized surface plasmon resonance. The
SPR absorption band analysis can provide information on
the dimensions and structure of the metal nanoparticle. The
geometric and constituent characteristics of the particles and
the medium directly influence the plasmon resonance band-
width [9.10]. The presence of the dielectric layer changes the
spectral position, and in this way, it must be considered in the
mathematical models, making the analysis more precise in the
development of optical equipment.

The interaction between a particle of effective radius r
and an optical beam can be analyzed using a quasi-static
approximation, provided that the particle’s dimensions are
much smaller than the wavelength of the field in focus, i.e.
r � λ, in this case the phase of harmonic electromagnetic
field is practically constant nearly the particle, besides making
possible the calculation of the total space field distribution by
a simplified electrostatic problem [8]. This method is known
as quasi-static problem or Rayleigh scattering.

In this work an analytical study of the interaction between
a core-shell type particle, having a spherical core of gold
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covered by a layer of silica, and an electromagnetic field using
the quasi-static model of Rayleigh, which is an approximation
of the Mie scattering. The objective is to analyze the total
field, in the internal and external regions of the NPM, and
to carry out a parametric analyzes of the transversal sections
of scattering, absorption and extinction. Also, we investigate
the effects of the presence and absence of a layer dielectric,
and compare the absorbance data obtained analytically with
experimental data available in [12]. A second analysis is
presented to verify the electromagnetic coupling between two
core-shell NPMs. For this case, a software based on the finite
element method was used [11].

II. ANALYTICAL MODELING

A. Description of the Problem and General Solution of the
Laplace Equation in Spherical Coordinates with Azimuthal
Symmetry

The core-shell geometry is characterized by two concentric
spheres at the origin, where the inner sphere has a radius r1

and the outer radius r2 (Fig. 1). This particle is constituted by
an internal core with a dielectric constant ε1 coated by a layer
of thickness ∆ = r2 − r1 with dielectric constant ε2, where
both materials are homogeneous and isotropic. The particle is
immersed in an external medium with permittivity εm, and a
plane wave illuminates it in the quasi-static regime. This plane
wave produces a oscillating uniform electric field that interact
with the particle.

Fig. 1. Core-Shell particle in the presence of an oscillating uniform field.

To determine the total electric field resulting from the
interaction between the plane wave and core-shell particle,
it is necessary to find the solution of the Laplace boundary
value problem (BVP) given by (1). This differential equation
of potential is in terms of spatial variables, and the harmonic
dependence with temporal variable can be introduced in the
final solution as suggested by the Rayleigh method.
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We can solve this partial differential equation (PDE) using

the method of separation of variables. This is a well-known
technique in the literature, where the solution of (1) is given
in the form of a product solution V (r, θ, φ) = R(r)Θ(θ)Φ(φ)
obtained from three ordinary differential equations (ODE).
For the proposed problem, the ordinary differential equations
are:
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where (3) and (4) are known as differential equations of
Cauchy-Euler and Legendre, respectively [18], with m and γ
being the separation constants.

For problems with azimuth symmetry, the electric potential
does not present variation with φ coordinate, therefore m = 0,
reducing the solution of (2) to an arbitrary constant. Equations
(3) and (4) can be solved from the Frobenius series method
and for (3), due to the finiteness condition in the origin, the
solution is converted into Legendre polynomials of the first
type [19, 20].

A stronger consideration for this solution is that a combina-
tion of Legendre polynomials may better satisfies the boundary
conditions that the spherical problem may present [21], so the
general solution obtained is:

V (r, θ) =

∞∑
n=0

(anr
n + bnr

−(n+1))Pn(cosθ) (5)

B. Solution of the Rayleigh Problem for a Core-Shell Particle

The electric field must exist in three regions: in the core, in
the region of the dielectric layer and in the external medium
to the particle, each with the potential defined by:

V1(r, θ) =
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It is observed that the (6) has singularity at the origin, which
is undesirable, however, such problem can easily be solved
by doing bn = 0. The constants in (6)-(8) are obtained by
applying the following boundary conditions at the boundaries
r = r1, r = r2 and r →∞:
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where E0 is the electric field of the plane wave. Substituting
(6)-(8) into (9)-(13), it is found that the conditions are satisfied
only for n = 1, so the constants are obtained:

a1 = −3εm
3ε2

f(ε1−ε2)(2ε2−2εm)+(2ε2+ε1)(ε2+2εm)
E0 (14)

c1 = −3εm
(2ε2 + ε1)

f(ε1−ε2)(2ε2−2εm)+(2ε2+ε1)(ε2+2εm)
E0 (15)

d1 = r3
1

3εm(ε1 − ε2)

f(ε1−ε2)(2ε2−2εm)+(2ε2+ε1)(ε2+2εm)
E0 (16)

e1 = −E0 (17)

f1 = r3
2

(
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f(ε1−ε2)(2ε2−2εm)+(2ε2+ε1)(ε2+2εm)

)
E0 (18)

where f = r3
1/r

3
2 is the fraction of the total volume of the

particle occupied by the inner sphere.
Thus, the electric potential is determined in the regions:
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being ζ =
f(ε1−ε2)(2ε2−2εm)+(2ε2+ε1)(ε2+2εm)

3εm
.

An analysis of the electric potential in the regions of the
particle reveals the appearance of a characteristic behavior
known in the electrostatic, the dipole, so it is useful to
define the term polarizability, which is directly related to the
amplitude of the induced dipole moment. The internal and
external dipole moments are defined by:

pin = αinE0 (20)

pout = αoutE0 (21)

where the internal and external polarizabilities are:
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Applying the gradient operation in spherical coordinates to

(19) and adding the temporal harmonic variation, we find the
electric field in the all regions:
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where âr is the unit vector normal to the surface of the
sphere.

From (24) it’s verified that the total field outside the particle
(r > r2) can be represented by the sum of the radiation of an
equivalent hertzian dipole and the incident plane wave field
E0. From this equation, we obtain through the Maxwell equa-
tions the field H(t) harmonically oscillating in the vicinity of
the particle [8,22,23]:

~H(r, θ, t)=Re
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Note that the magnetic field has no component in the

direction âz .

C. Efficiency of Scattering, Absorption and Extinction

The cross-sections of scattering and absorption are defined,
respectively, by [5]:

Csca =
k4

6π
|αout|2 (26)

Cabs = kIm[αout] (27)

being αout the equivalent polarizability of the particle.
The extinction cross section is defined by the ratio of the

extinction of light power through absorption and scattering to
incident light intensity [8,15]. In equation form we have:

Cext = Csca + Cabs (28)

The dispersion efficiency of scattering, absorption or ex-
tinction (total), is defined as the cross section of (26)-(27)
normalized to the sectional area of the particle (S).

Qsca =
Csca

S
(29)

Qabs =
Cabs

S
(30)

D. Relative Permittivity of Materials

The core of the nanoparticle is composed of gold, and
its complex permissiveness is defined by the Lorentz-Drude
model, which considers the effects of interband and intraband
[13]. However, the reduced size of the nanoparticles limits the
average path of the free electrons, resulting in a considerable
increase of the scattering rate. Thus, it is necessary to introduce
a dependence on the radius of the NPM, which represents in
an approximate way this phenomenon [5]. The permissiveness
of gold by the model used is:

εgold(ω)=ε∞−
ω2
p1

ω2+j
(

Γ+B
νm
R

)
ω

+
ω2
p2

ω2
0 − ω2 − jγω

(31)

where ε∞ is the relative permittivity for infinite frequency,
ωp1 and ωp1 are the plasma frequencies, γ and Γ are the
damping frequencies, νm is the Fermi velocity, ω0 = 2πc/λ0

is the angular frequency for the wavelength specific λ0 =
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450nm, R is the radius of the NPM and B is a stabilizing
constant of model experimentally defined [5,13].

We can verify the behavior of the dielectric function by
varying in frequency with the change of particle radius (Fig.
2).

Fig. 2. Relative Permittivity for three radius (a) Real Part, (b) Imaginary Part.

The stabilizing layer covering the nanoparticle is silica,
which has relative permittivity defined by the Sellmeier model.
This is an empirical relationship between the index of refrac-
tion and the wavelength for a particular transparent medium
[14]:

εsilica(λ) = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
(32)

where C1, C2, C3, B1, B2, and B3 are the Sellmeier coef-
ficients determined experimentally in [16]. The curve for the
model is shown in Fig. 3.

Fig. 3. Relative permittivity of silica.

The permittivity of the medium was similarly defined by the
Sellmeier model using the coefficients defined in [16], these
consider that the layer and the medium are non-absorbent,
having only real part in the dielectric function.

Values used in (31) and (32) are shown in Table I, all
according to SI:

TABLE I
VALUES USED IN (31) AND (32)

Symbol Quantity Value
ε∞ Relative permittivity

for infinite frequency 7
ωp1 Plasma frequency 1

1.3579×1016 rad/s
ωp2 Plasma frequency 2

4.4910×1015 rad/s
ω0 Angular frequency for

λ0 =450nm 4.1888×1015 rad/s
Γ Damping frequency –

interbanda 9.9909×1013 rad/s
4γ Damping frequency –

intrabanda 8.9516×1014 rad/s
νm Fermi velocity for gold

1.4 ×1016m/s
B Stabilizing constant of

model experimentally
defined [2,10]

(0.85 + 0.35j)rad

j Complex number √
−1

B1 Sellmeier coefficients
for silica 0.6961663

B2 Sellmeier coefficients
for silica 0.4079426

B3 Sellmeier coefficients
for silica 0.8974794

C1 Sellmeier coefficients
for silica 0.0684042 × 1012

C2 Sellmeier coefficients
for silica 0.1162412 × 1012

C3 Sellmeier coefficients
for silica 9.8961612 × 1012

III. NUMERICAL MODELING

In real sample of particles there are large numbers of NPMs
distributed randomly, which a mutually interacting with each
other. In the case of low density of NPMs, the interactions
between particles can be reduced to an isolated particle. But if
the NPM density is high, the interaction between them must be
considered. In these cases, a numerical method based in Finite
Element Method (FEM) with periodicity boundary condition
can be used to analyze a set of two NPMs separated by a
distance z∆ (Fig. 4).

Fig. 4. Cells geometries of two NPM separated by a distance z∆.
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In this model, each periodic cell possesses two nanoparticles
and the cell walls are far away from the particles enough so
that there is no interaction between the cells, but only between
the two NPM of the cell . From this point view, we are
interested in the case where the distance z∆ is relatively small,
allowing the interaction between the fields scattered by the
particles. For this case of two coupled nanoparticles, we used
the Comsol Multiphysics software, which possesses the RF
module with the Frequency Domain subgroup for frequency
electromagnetic studies. The geometry of the problem was
defined in a three-dimensional model, where two core-shell
particles of internal radius r1, effective radius r2 and thickness
of the silica layer ∆ were arranged laterally at a distance z∆

between them (Fig. 5).

Fig. 5. Geometry of two coupled nanoparticles in FEM modeling.

The system mesh was defined according to the Physics -
Controlled Mesh function, where the software considers the
refractive indices of the materials to obtain a model of the
distribution of the electromagnetic field in the structure. The
field type, Scattered Field, and Linearly Polarized Plane Wave,
with data defined for normalized amplitude at 1V/m, with
wavelength λ =632.8nm, were defined in the ”The Electro-
magnetic Waves, Frequency Domain Interface”. This source
is equivalent to an example of laser equipment generally
experiments. The domain of the model has a prismatic ge-
ometry, where the upper and lower faces were used Scattering
Boundary Condition, which simulates the propagation of the
polarized field in the direction âx, and in the lateral faces were
used Periodic Boundary Conditions, which simulate a periodic
array of nanoparticles.

Fig. 6. Mesh discretization used in the Finite Element Method.

IV. RESULTS AND DISCUSSIONS

With the aid of the theoretical and experimental data
available in literature [12], it was analyzed the parameters of
scattering, absorption, extinction, absorbance and the electric
field for spherical particles with different thickness of the shell.

The study was carried out using particles where the core
radius ranges from 5nm to 50nm, and cover layer with
thickness ranging from 0nm to 10nm, interacting with an

electromagnetic wave of amplitude E0 in aqueous medium
(ethanol). The results were obtained in the wavelength range
of 450nm to 750nm, and the electric field distributions were
calculated for wavelength 632.8nm, which is an example value
generally used in practical experiments. We present some
results of electric field distributions between two particles, in
different arrangements, obtained by the FEM. We then analyze
the convergence characteristics of the quasi-static method.

A. Cross-Section Efficiency Analysis

Fig. 7 shows the results of the normalized cross-sections
of (29)-(30) of four core particles with radius of 5nm, 15nm,
35nm and 50nm, and layer thickness of 0nm, 5nm and 15nm.

(a)

(b)

(c)

(d)

Fig. 7. Efficiency of scattering (Qsca), absorption (Qabs) and extinction
(Qext) of particles with (a) r1 = 5nm, (b) r1 = 15nm, (c) r1 = 35nm, (d)
r1 = 50nm.
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It is verified that with the increase of the thickness of
the dielectric layer there is a decrease in the cross-sections
parameters of scattering and absorption. This is due to the
increase in the geometric cross section area S of (29)-(30) of
the particle. This effect is more intense in the small particles,
since the metallic core of the particle is the greater responsible
for the dissipation of energy, and, for larger particles, the
presence of a thin layer becomes less significant.

For smaller particles, the total extinction efficiency is caused
predominantly by the absorbing characteristic, since the scat-
tering is minimal. However, with the increase of the NPM
is verified a greater contribution of the scattered energy.
And finally, a red shift of the resonance point of extinction
efficiency is observed for particles with larger layer thickness.
This shows that the dielectric layer also modifies the resonance
of the particles [24].

B. Absorbance

In this section, we are interested in the result of the
interaction between a light beam propagating in the direction
âz through a set of NPM (Fig. 4). Considering that the particles
are at a great distance from each other and that the individual
scattering is independent and does not interact with other
particles, we can approximate the Absorbance for two samples
containing NPM of 20nm,one without shell and the other with
shell of 10nm, analytically from the extinction efficiency and
compare with experimental results defined in [12]. The errors
between the analytical model and the experimental data were
calculated using (33).

error(%) =

(
Abreal −Abcalculated

Abreal

)
× 100% (33)

It was found that the spectral position of the resonance in the
result of Fig. 8.a is faithful to that observed in the extinction
efficiency for the particles without shell. This characteristic
effect is caused by the LSPR (Localized Surface Plasmon
Resonance) phenomenon, which in gold nanoparticles is cen-
tered near the wavelength of 520nm, and the characteristic
behavior for smaller length values correspond to the absorption
performed by electrons passing from the valence band to the
conduction band. For the adopted model it is not useful to
apply Fröhlich’s condition to estimate the resonance band of
the particle, since it would only be applicable if the imaginary
component of the Drude model was very small, indeed close to
zero in the frequency at which ε(ωR) = −2εm(ωR) .The result
in Fig. 8c shows good agreement with experimental data and
a considerable shift of the resonance point to 529nm, caused
by the presence of the shell. The errors for both cases, without
and with shell, respectively, are shown in Fig.8b and Fig.8d.

C. Electromagnetic Field Distributions

In Section II we defined the expressions of the electric
and magnetic fields resulting from the interaction between a
core-shell type particle and a uniform field. The magnitude
of electric field (Fig. 9) and magnetic field (Fig. 10), in
λ =632.8nm, were obtained for particles with core radius

(a)

(b)

(c)

(d)

Fig. 8. Particle Absorbance of diameter 20nm: (a) Magnitude, (b) Error; Par-
ticle Absorbance core-shell of internal diameter 20nm and shell of thickness
∆ = 10nm: (a) Magnitude, (b) Error.

a =5nm, 15nm, 35nm and 50nm, with dielectric shell of
thickness ∆ = 0nm, 5nm and 10nm, interacting with a uniform
field with unit amplitude. Due the azimuthal symmetry of the
problem, we can plot the fields in two-dimensional form, in the
spatial variables x and z. Such as, the color bars of the electric
field module graphs were normalized to vary in the range of
0 to 4V / m making the visualization better, Magnetic field
module plots have their color bars normalized to vary from 0
to 4mA/m.

In Fig. 9 two characteristics are perceptible, the fundamental
internal mode at the boundary where the particle is very small,
which corresponds to the uniform internal electric field, and
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Fig. 9. Distributions of electric field module for particles with radius: (a)
r1 = 5nm, ∆ =0nm, (b) r1 = 5nm, ∆ =5nm (c) r1 = 5nm, ∆ =10nm,
(d) r1 = 15nm, ∆ =0nm, (e) r1 = 15nm, ∆ =5nm (f) r1 = 15nm,
∆ =10nm, (g) r1 = 35nm, ∆ =0nm, (h) r1 = 35nm, ∆ =5nm (i) r1 =
35nm, ∆ =10nm, (j) r1 = 50nm, ∆ =0nm, (k) r1 = 50nm, ∆ =5nm (l)
r1 = 50nm, ∆ =10nm.

the uniform oscillation of the electrons throughout the NPM
volume, characterizing the dipolar oscillation of internal and
external dipole moments.

For the adopted wavelength (λ =632.8nm), it is verified that
the internal field of the particle is very weak, in fact, smaller
than the incident field. This phenomenon indicates that the
metal for this frequency begins to gain dielectric properties,
allowing the propagation of a weak field inside. With the
increase of the particle radius there is a slight increase in the
electric field intensity. It is also verified that the dipole effect
on the surface of the silica layer has reduced amplitude in
relation to the internal; this is because the permittivity of the
medium and the silica layer are close, and in this way the field
tends to maintain continuity at the interface between shell and
medium.

We can note that the induced magnetic dipole have very
weak amplitude, in fact, it is in agreement with the established
in the theory for the quasi-static regime [9, 15]. Note also that
the dipole is induced from the core and presents continuity
at the interface between the dielectric and the non-magnetic

Fig. 10. Distributions of magnet field module for particles with radius: (a)
r1 = 5nm, ∆ =0nm, (b) r1 = 5nm, ∆ =5nm (c) r1 = 5nm, ∆ =10nm,
(d) r1 = 15nm, ∆ =0nm, (e) r1 = 15nm, ∆ =5nm (f) r1 = 15nm,
∆ =10nm, (g) r1 = 35nm, ∆ =0nm, (h) r1 = 35nm, ∆ =5nm (i) r1 =
35nm, ∆ =10nm, (j) r1 = 50nm, ∆ =0nm, (k) r1 = 50nm, ∆ =5nm (l)
r1 = 50nm, ∆ =10nm.

aqueous medium (µm = µ0). With these conclusions, we will
focus in analyzing the electric field in later topics.

From (19), we plot the electric potential in Fig. 11, with
reference in the origin, for three particles of radius r1 = 5nm
and dielectric shells ∆ = 0nm, 5nm and 10nm, in order to
observe the changes and interactions.

Fig. 11. Electric potential distributions V (r, θ): (a) r1 = 5nm, ∆ =0nm,
(b) r1 = 5nm, ∆ =5nm (c) r1 = 5nm, ∆ =10nm.

It is known that in a uniform field, the electric potential
varies almost linearly in the z direction, which is why we
observe the behavior of Fig. 11, where the electric potential
decreases in the direction of the electric field and rises in
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the opposite direction, characterizing the phase of the field
incident. However, we find that internally to the particle core,
there is an inversion of the field phase, which increases in
the direction of the incident electric field. We can verify this
phenomenon by generating graphs of the electric field phase
(Fig. 12) for the three particles previously used.

Fig. 12. Electric field phase: (a) r1 = 5nm, ∆ =0nm, (b) r1 = 5nm,
∆ =5nm (c) r1 = 5nm, ∆ =10nm.

Finally, we present in Fig. 13 the three-dimensional graphs
of electric and magnetic fields to demonstrate the dipolar
characteristic of the core-shell particles in a volumetric region.

Fig. 13. . Three dimensional distributions of the electromagnetic fields of
a core-shell nanoparticle with r1 = 15nm and ∆ =10nm: (a) Electric; (b)
Magnetic.

The internal field of the gold sphere has a phase delay in
relation to the incident field, this is the main characteristic
of the plasmon effect inside the particle, caused by the real
negative part of the dielectric function of metal. Note that
in regions distant from the particle, the field has zero phase.
we can verify a rotational characteristic of the magnetic field
around the NPM, expected behavior.

D. Maximum Electric Field Intensity at Core and Dielectric
Layers

Results were generated for four particles of internal radius
r1 = 5nm, 15nm, 35nm and 50nm in the verification of the
maximum electric field on the surfaces of the gold sphere and
the silica layer. These particles had the thickness of their layers
varied from 0 to 10nm, and were subjected to an incident field
with wavelength variation from 450nm to 750nm.

Fig. 14. Variation of the electric field intensity in function of wavelength (λ),
thickness of dielectric layer (∆) and radius of core (r1) at the points: (a) r =
r1 = 5nm (b) r = r2 =5nm +∆, (c) r = r1 =15nm, (d)r = r2 =15nm
+∆, (e) r = r1 =35nm (f) r = r2 =35nm +∆, (g)r = r1 =50nm, (h)
r = r2 =50nm +∆, with θ = φ = 0.
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The graphs were generated at r = r1 , on the surface of the
gold sphere, and r = r2 on the surface of the silica layer, with
θ = φ = 0 (Fig. 14), taking azimuth symmetry into account.
The color bars of graphs were normalized to vary in the range
of 1 to 6.18V/m making the visualization better.

As previously noted, for particles with the inner radius
very small relative to the shell, the field in the shell region
becomes less intense as its thickness is increased, but in
contrast the core field is amplified. This effect is extended
to larger particles. We also observe that the resonances in
these figures are in agreement to those Qabs presented in
Fig. 7, because these near field produce the absorptions of
the particles.

E. Electric Field Distributions of Two Coupled NPMs

Using the Comsol software, the electric field distributions
of two coupled core-shell nanoparticles were calculated in
functions of the distance between them. The particles possess
internal diameter of 10nm and shell with thickness of 10nm.
The particles were positioned parallel to each other by varying
the gap (z∆) between them in 5nm and 20nm, with the
amplitude field E0 = 1V/m in the directions of z and x.
The results are shown in Fig. 15.

Fig. 15. Distributions of electric field module for two coupled core-shell
particle for different distances z∆ and polarization of the incident field: (a)
z∆ =5nm,û = âx, (b) z∆ =20nm, û = âx, (c) z∆ =5nm, û = âz , (d)
z∆ =20nm,û = âz .

In Figs. 15a and b the incident field is perpendicular to the
axis of the two particles, and Figs. 15 c and d, the incident
electric field is parallel to the axis of the particles.

We observe that the electric field between the particles is
higher for the cases of Figs. 15c and d than the cases of Figs.
15a and b. This is due because there is strong dipolar coupling
between the particles in Figs. c and d, as can be noted by the
electric field distributions, and this coupling is increased for
smaller z∆.

F. Validity of the Quasi- Static Model

The method used here has a convergence region as a
function of particle size, and as defined above, it is based on
the assumption that the nanoparticle has a radius much smaller
than the wavelength of the incident field, r � λ, however, only
this statement is not able to define a region of convergence of
the method.

The Mie scattering is the exact solution for the interaction
between a spherical particle of radius R and an electromag-
netic wave for all electrical size R/λ [15]. In this model, the
field resulting from the interaction is a superposition of normal
modes, called spherical harmonics, describing a multipolar
expansion. The Mie model can be reduced to a dipole behavior
when the approximation are used in the Rayleigh model,
r � λ, which for the model of Mie represents x� 1, where:

x = 2π
R

λ

√
εm (34)

Fig. 16 shows a plot of (34) in function of wavelength
lambda and radius R.

Fig. 16. Plot of the convergence parameter x(R, λ) of (33). The convergence
of the method is better when x� 1.

From Fig. 16, we see that the convergence of the method
decreases with the increase of the frequency and radius of
the NPM, that is, when x approaches values close to 1. This
relation provides a numerical range of validity for the almost
static model. It is important to remember that the dielectric
function used also has a convergence region, and even in the
general Mie model, the modeling tends to diverge outside the
convergence region of the Lorentz Drude model.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 33, NO.1, 2018. 21

V. CONCLUSION

This work presented a theoretical study of the resonant
response of gold nanospheres covered by dielectric layers
(core-shell). In the case of isolated particles, the quasi-static
approximation was used for analysis, i.e., Rayleigh scatter-
ing, and for the case of coupled particles the finite element
method was used for numerical analysis. It was observed
that for greater thickness of the dielectric layer, keeping the
internal radius constant, the resonant wavelength increases.
This result shows that, in precision experiments, this dielectric
layer should be considered in the analysis to avoid errors
of calculations of the resonant response. It was verified that
the magnet field has low intensity, which is given by the
intrinsic impedance of the medium, defined by the constitutive
parameters of the materials. It was also observed that the
scattering of the particle increases with the size of the internal
radius, and that the quasi-static model is suitable for particles
with mean radius approximately smaller than 50nm, where
for larger particles the Mie scattering model should be used.
In the case of coupled particles, preliminary results of the
interaction between core-shell particles were presented for
different polarizations of the incident field, however, a more
detailed analysis on the extinction efficiency becomes neces-
sary, and it is proposed as future works. Another proposal may
be the using of the polarizabilities presented here to obtain an
effective permittivity of an array of core-shell particles through
the Clausius-Mossotti model.
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