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Resumo • Substitui~ao homofOnica de sequencias e o 
nome dado neste trabalho para a tecnica que consiste em 
substituir um-a-um uma dada seqUencia de sfmbolos, finita 
ou semi-infinita, por outra seqUencia, respectivamente finita 
ou semi-infinita, sobre o mesmo alfabeto, porem com uma 
taxa de entropia mais elevada. A sequencia de safda de uma 
dada fonte discreta, estacionana e erg6dica, e codificada com 
urn c6digo de fonte binano sem perdas C. Uma concatena
~ao de palavras c6digo de C e entiio convenientemente seg
mentada e recodificada com urn c6digo de fonte binano sem 
perdas Iterando urn certo mlmero de vezes o ultimo passo 
descrito acima, prova-se que a taxa de entropia da seqUencia 
na safda do ultimo codificador aproxima-se do valor 1, as
sintoticamente, e portanto realizando a substitui~ao homofO
nica 6tima A redundftncia remanescente, ap6s k codifi.ca~oes 
consecutivas, e 1-Hk ( S) bits por dfgito binano, onde Hk ( S) 
denota a taxa de entropia da sequencia resultante ap6s a k
esima codifi.ca~ao. Urn modelo de fonte de Markov e apre
sentado para descrever as seqUencias binanas codifi.cadas e 
para computar as respectivas taxas de entropia. 

Abstract- Homophonic sequence substitution is the name 
given in this paper to the technique which consists of substi
tuting one-to-one a given finite (or semi-infinite) sequence of 
symbols by another finite (or semi-infinite) sequence over the 
same alphabet but having a higher entropy rate. The output 
sequence of a given discrete stationary and ergodic source is 
encoded with a binary lossless source code C. A concate
nation of codeworda of C is then conveniently parsed and 
reencoded with a binary lossless source code. By iterating 
the latter step a number of times, it is proved that the entropy 
rate of the binary sequence at the output of the last encoder 
approaches the value 1 asymptotically, therefore performing 
optimum homophonic sequence substitution. The remaining 
redundancy, after k consecutive encodings, is 1- Hk(S) bits 
per binary digit, where Hk ( S) is the entropy rate of the binary 
sequence resulting after the k'h encoding. A Markov source 
model is presented to describe the binary encoded sequences 
and to compute their entropy rate. 

Keywords:source coding, homophonic substitution, 
Markov sources, Huffman coding. 

1. INTRODUCTION 

Source coding is a technique whose aim is to represent the 
output of an information source with as few code digits per 
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source symbol as possible. ln this paper we will consider only 
lossless source coding in which case it is possible to recon
struct exactly the source output from its encoded representa
tion. We will concentrate our attention on binary coding both 
for its practical importance and because the generalizations to 
higher order alphabets are immediate. We will consider the 
problem of removing redundancy of a message sequence with 
an alternative, and perhaps complementary, approach to that 
in [1]. The distinguishing feature of our approach is that we 
neither resort to intentional plaintext expansion, as in conven
tional (symbol) homophonic substitution [1], nor to coding 
extensions of the original source, as suggested by Shannon's 
lossless source coding theorem [2, p.69]. ln Section 2 we 
present basic notions of source coding and briefly review the 
main properties of uniquely decodable codes. ln Section 3 we 
define the Markov source associated with a rooted tree with 
probabilities [3] and consider encoding the output of such a 
source with a Huffman code. ln Section 4 we introduce al
ternate Huffman codes and give an example. Following [1] 
we will call a sequence of D-ary random variables completely 
random if each of its digits is statistically independent of the 
preceding digits and is equally likely to take on any of the D 
possible values. Finally, in Section 5 we show how to per
form homophonic sequence substitution and prove that a cas
cade consisting ofMarkov sources encoded by lossless source 
codes produces in the limit a completely random sequence. 
The decoding operation is simple and consists of applying 
the received encoded binary sequence through a cascade of k 
look-up tables (corresponding to the number k of iterations 
used for encoding), where the i'h, 1 ~ i ~ k, look-up ta
ble in the cascade is a decoder for the (k + 1 - i)'h code. 
Contrasting with coding extensions of a source, where there 
is no control at all on the implementation complexity, our ap
proach gives more flexibility in controlling both the redun
dancy and the implementation complexity. Furthermore, con
trasting with conventional homophonic substitution, in our 
approach there is no cleattext expansion caused by the iter
ations. Of course the binary sequence after the k'h encoding 
will still have some redundancy (measured in bits) which is 
equal to 1- Hk(S) bits per binary digit, where Hk(S) is the 
entropy rate of the binary sequence after the k'h encoding. 

2. SOURCE CODING FUNDAMEN
TALS 

Let ub u2, ... ' denote the output sequence of sym
bols of a discrete information source. This source is said to 
be stationary if, for every positive integer L and every se-

33 



Revista da Sociedade Brasileira de Telecomunica~oes 
Volume 12, numero 2, dezembro 1997 

quence u1 , u2, ... , UL ofletters from the source alphabet we 
have P(Ul, u2, c:. , UL = ul> u2, ... , uL) = P(Ui+l> 
ui+2) ... ' ui+L = U!, U2, ... ' U£), for all i ~ 0. A 
stationary source is said to be ergodic if the number of 
times that the sequence u1, u2, ... , UL occurs within the 
source output sequence ul, u2, ... , UN+L-1 of length 
N+L-1,whendividedbyN,equalsP(Ul, U2, ... , UL= 
u1 , u2, ... , uL) with probability 1 as N -. oo [4]. 1n 
the sequel we will considerer only discrete stationary and er
godic sources (DSES) since they are general enough to model 
any real information source. The source codes employed in 
lossless source coding are called uniquely decodable codes 
[5, p.48]. A sufficient condition for the unique decodability of 
a concatenation of codewords is that the encoding be prefix
free, i.e., that no codeword be the first part (prefix) of another 
codeword. This prefix-free condition is equivalent to the con
dition that a decoder be able to immediately recognize the end 
of a codeword without need to read the beginning of the next 
codeword. Codes with this property are called instantaneous 
codes [5, p.50]. A uniquely decodable code is further said to 
be a compact code [5, p.66] whenever its average codeword 
length is equal to or less than the average codeword length of 
all other uniquely decodable codes for the same source and 
the same code alphabet 

Shannon's lossless source coding theorem [2, p.69] implic
itly suggests that the way for reducing redundancy in ames
sage to be transmitted or stored is by performing data com
pression. As the cryptographic community very well knows 
that is not necessarily the case however, as exemplified by ho
mophonic substitution. Homophonic substitution is a crypto
graphic technique for reducing the redundancy of a message 
to be enciphered at the cost of plaintext expansion. This defi
nition concerns homophonic symbol substitution [1], however 
iterative source coding can be seen as a form of homophonic 
substitution (homophonic sequence substitution) and not nec
essarily leads to cleartext expansion. 

3. ROOTED TREES AND MARKOV 
SOURCES 

Very often we are interested in determirting the probability 
of single binary digits, or pairs of binary digits, etc., produced 
by a source code driven by a source. It tums out that the com
putation of these probabilities, directly from the code rooted 
tree with probabilities [3], is possible but becomes very com
plicated as the order of the statistics considered increases. 
We found a neater way for calculating these probabilities by 
defining a representation of the code rooted tree with prob
abilities by a Markov source. We define the Markov source 
whose states correspond one-to-one to the nodes of the code 
tree, whose branches are labeled with the same binary num
bers as those in the corresponding branches of the code tree 
and each state transition probability is given by the condi
tional probability of emitting a 0 (or a 1) given the current 
state (or node in the code tree). A retum to state cr1 oc
curs always after the last digit of a codeword is generated 
by the encoder. Let lSI denote the number of states in a given 
Markov source. The probability Pu;, i = 1, 2, ... , lSI, of 
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Figure 1: Huffman tree. 
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Figure 2: Markov source model. 

every state cr; is equal to the probability of the correspond
ing ttee node P; divided by the average codeword length [6]. 
We give next an example to clarify the above description of a 
Markov source, where the code employed is a Huffman code. 

Examplel 
Let S denote a discrete source with a four symbol alphabet 
whose probabilities are .4, .3, .2 and .1, respectively. We 
show in Figure 1 the Huffman tree and in Figure 2 the corre
sponding Markov source for the given discrete source. 

3.1. Probability computation 

1n order to simplify the representation of the operations to 
be performed to compute probabilities in a Markov source, 
we will use matrices as follows. We will denote by P(l), l E 
{0, 1}, the lSI x lSI matrix whose (i,j)'h entry, denoted as 
P;;(l), is the branch probability of going fromstatecr; to state 
Uj. 

Example2 
Continuing with Example 1, we have the following matrix 
representation for the transition probabilities. 

[
0.4 0 OJ 

P(O) = 0.5 0 0 
2/3 0 0 

P(l) = [ ~ 
1/3 

0.6 
0 
0 
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The code average codeword length is 1. 9 and thus the states 
have the following probabilities: P(0"1) = 1/1.9, P("'2) = 
.6/1.9 and P(0'3 ) = .3/1.9. As an example we consider 
next the computation of P(01), i.e., the probability of a zero 
ocurring, followed by a one. 

P(01) = [Pu,Pu,Pu,]P(O)P(1)[11W 

P(O)P(1) = 

= 

Thus, 

P(Ol) = [ Pu1 

= [ .284 l 

[ 

0.4 
0.5 
2/3 

[ ~ 
0.24 
0.3 
0.4 

0.24 
0.3 
0.4 

0.6 
0 
0 

The probability P(ar,a2, ... ,a,.) of the binary n-tuple 
a1 , a2, . . . , an occurring is computed (in this example) from 
the following expression. 

The extension of the above expansion for the general case is 
immediate. 

4. ALTERNATE BINARY HUFFMAN 
CODES 

As far as source specific codes for source coding are con
cerned Huffman codes are compact in the sense that a Huff
man code for a specific DSES has an average codeword length 
equal to or less than the average codeword length among all 
instantaneous codes for that source [5, p.77] with the same 
code alphabet. We notice the well known fact that for a given 
DSES, in general, we can construct more than one Huffman 
code, but that all such codes have the same average codeword 
length. 

In the construction of a binary Huffman code, or equiva
lently, a binary Huffman tree, whenever two subtrees stem 
out from a node a decision has to be made as to which sub-

. tree we should label with a 0 and to which subtree we should 
label with a 1. Whenever that decision is arbitrary the result

two subtrees stemming out from the same node have identical 
probabilities we arbitrarily label one of them with a 0 and the 
other with a 1. At the first node whose two subtrees stemming 
out have different probabilities, we label with a 0 the subtree 
of higher probability and keep a record of that fact. At the 
next node whose two subtrees stemming out have different 
probabilities we label with a 1 the subtree of higher proba
bility. This procedure is applied over and over nntil the tree 
is traversed. Snnimarizing, this subtree labeling rule keeps 
a record of which label was given to the subtree of higher 
probability at the last node visited whose associated subtrees 
had different probabilities and alternates that labeling for the 
next node whose associated subtrees have different probabil
ities. We illustrate with a simple example the usefulness of 
alternate Huffman coding. 
Example3 
Consider the source of Example I. We present in Table I the 
alternate code and the 0-heavy code for this source. 

Probability Alternate code 0-heavy code 
.4 0 1 
.3 10 00 
.2 110 010 
.1 111 011 

Table 1: Alternate and 0-heavy codes for the source of Exam
ple I. 

The entropy per binary digit of the associated Markov source 
model is identical for both codes and its value is 1.8565. In 
Table 2 we present first order and second order statistics for 
both codes. By computing the absolute value of the difference 
between each one of the statistics in the table and the cor-· 
responding value for a completely random source, and then 
adding the results we see that the alternate code produces 
a smaller sum and thus its digits are more random looking 
than those produced by the 0-heavy code. The divergence 
[7] could also be used as a convenient measure of the dis
tance between a given probability distribution and that of a 
completely random source. Again the results favor alternate 
codes versus 0-heavy codes. 

Alternate code 0-heavy code 
P(O) .474 .579 

P(OO) .189 .315 
P(01) .284 .263 
P(10) .284 .263 
P(ll) .242 .159 

Table 2: First order and second order statistics. 

Definition: A uniquely decodable code is optimum if it is 
both compact and its symbol statistics is the closest to that of 
a completely random sequence among all compact codes for 
that source. 

ITERATIVE PROCEDURE 
ing Huffman code is called an arbitrary Huffman code [8]. 
Whenever the subtree of higher total probability is always Ia- 5. 
beled with a 0, the resulting code is called a 0-heavy Huffman 
code. We introduce next a third case of interest that we call 
alternate Huffman coding. Starting from the root, whenever 

Let S denote a DSES encoded using a compact binary 
prefix-free code. We chose to use an alternate Huffman code 
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a, with average codeword length L1 for that purpose. The it
erative procedure for performing homophonic sequence sub
stitution consists of parsing a concatenation of codewords of 
a1 in blocks of r digits forming a source S1 with 2r symbols. 
S, is then encoded with an alternate binary Huffman code a2 
with average codeword length L2 • A concatenation of code
words of a2 is then parsed in blocks of r digits forming a 
source S2 with 2r symbols. This procedure is continued in a 
manner that at the i'h step, a concatenation of codewords of 
a, is parsed into blocks of r digits forming a source s, with 
2r symbols. As we prove in Theorem (5 .. 1), at each new step 
the entropy of the resulting binary sequence is increased, if 
not, the block size in the parsing is increased to r + 1 and 
the procedure is repeated. A stopping rule will specify for 
a given application that, starting with r = 2, the number of 
steps k is given by the smallest k for which 1 - H k ( S) :0:: <, 
where E « 1 is a small positive quantity. Our proof is more 
general then needed for the iterative procedure for it employs 
a general lossless code at no extra increase in difficulty. 

Theorem 5 .. 1 Let S denote an entropy H ( S) DSES wlwse 
output is encoded by a binary lossless code a, with aver
age codeword length L,. Let us parse a concatenation of 
codewords of a, in blocks of r digits forming a source s, 
with 2r symbols. We encode 81 with a lossless code a2, etc., 
and proceed as described above. The entropy rate Hk(S) 
of the coded sequence at step k is greater than or equal 
to the entropy rate Hk-1 (S) of the coded sequence at step 
k - 1, k = 2, 3, .... 

Proof. Let Hk(S) denote the entropy rate of the bi
nary sequence generated by a concatenation of codewords of 
ak, k = 1, 2, ... (starting with a, driven by S). It is well 
known that H 1(S) = H(S)/L1, Reference [11], and that 
H(S1) = r H1 (S). It follows that 

where the inequality follows from the observation that Li :0:: 
r is an upperbound for the average codeword length of a 
binary lossless code for a source with 2r symbols. Pro
ceeding with the iterations we obtain at the k'h step that 
Hk(S) ;:>: Hk-1(8), k = 2, 3, .... As we proceed with the 
iterations a step will be reached where the lossless code spec
ified for the source with r symbols will have all codewords 
with the same length. That source is no longer an ergodic 
Markov source but instead it is a periodic Markov source [2, 
p.65]. Whenever such a situation happens we may consider 
repeating that step, however parsing then wifh a block size of 
at least r + 1 symbols and proceed in the same manner or sim
ply to stop. Since the property of increasing entropy of coded 
sequences is valid for source extensions of any order, it fol
lows that the entropy rate Hk(S) of the k'h coded sequence 

· tends in the limit to 1 as the number k of iterations grows. 1111 
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