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Resumo • Este artigo descreve a constru,ao de c6digos 
de bloco derivados da tennina,a:o da treli,a de urn codifi­
cador convolucional binano e catastr6fico. Dais metodos de 
constru,a:o sao considerados : o metodo Zero Tail (ZT) e urn 
metodo Tail Biting (TB) modificado. Esquemas de modula~;ao 
4 - PSK codificada de bloco foram projetados baseados nos 
c6digos construfdos. Estes esquemas demonstraram urn de­
sempenho melhor do que esquemas derivados dos melhores 
codificadores nao catastr6ficos. 

Abstract - This article describes the construction of block 
codes derived from trellis termination of a binary catastrophic 
convolutional encoder. Two construction methods are con­
sidered: the Zero Tail (ZT) method and a modified Tail Bit­
ing (TB) method. 4-PSK block coded modulation (BCM) 
schemes are designed based on the constructed codes. These 
schemes outperform similar schemes derived from the best 
non-catastrupltic encoder. 

Keywords: Catastropltic convolutional encoders, Trellis 
termination, Zero Tail and Tail Biting methods, Block Coded 
Modulation. 

1. INTRODUCTION 

Methods for convet:sion of convolutional codes into block 
codes have been considered in the literature [1, 2, 3). In 
all of these methods, non-catastrupltic convolutional encoders 
were considered Not all of these methods can be applied in 
a simple way to the case when the convolutional encoder is 
catastropltic. It is known that block codes derived from catas­
trupltic convolutional encoders may have row distance1 , d!', 
greater than that derived from the best non-catastropltic en­
coders (with the same rate and constraint length,m + 1). A 
couple of these catastropltic encoders of rate 1/2 are listed 
in Tab. 1 [4). Note that tltis table lists the catastrophic en­
coders for values of m for wltich there is no non-catastrophic 
encoder whose corresponding distance dr reaches the Heller 
bound (Form= 9, an exhaustive search·indicated that there 
are non-catastrophic encoders whose distance d!' reach the 
Heller bound, eg the encoder with generators in octal form 
4534 and 6364 has dtree = d!' = 13) . 

The fact that block codes derived from catastrophic en­
coders may have optimal row distances would justify a more 
detailed investigation on these encoders. There are also other 

1 Weight of the minimum weight path that diverges from the zero state 
and later reconverges to this state [ 4] 
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m Generators (in octal) d!' 
4 72 and 56 8 
5 no one 9 
7 no one 11 
11 6731 and 5237 16 

Table 1: Some catastrophic encoders of rate 1/2 whose row 
distance reaches the Heller bound. 

reasons that justifies such investigation: 1) The set of catas­
tropltic encoders should be ouly a small subset of the set of all 
convolutional encoders [5], p. 308. 2) It was recently shown 
[6), that the iterative construction of Reed-Muller (RM) codes 
[7) can be some times defined through trellis termination of a 
catastrophic convolutional encoder using the ZT method. 

It is worth to notice that any convolutional encoder with 
termination detennines a simple encoder for the derived block 
code and also suggests a maximum likelihood decoding al­
gorithm, which can be implemented by applying the Viterbi 
algorithm to the tenninated trellis [6). 

2. CATASTROPHIC ENCODERS 

A convolutional encoder is said to be catastropltic when the 
input sequence of infinite weight, generates an output se­
quence of finite weight (Hamming or Euclidian) [8). This 
means that a finite number of errors in a discrete output chan­
nel may cause an infinite number of errors in the decoded 
information bits. 

Consider the convolutional encoder (n,k,m), where the pa­
rameters represent, respectively, the number of outputs, of in­
puts and of memocy units of the encoder. An algebraic way 
to check if a (n, 1,m) encoder is catastropltic, is by otaining 
the Greatest Common Divisor (GCD) of its generator poly­
nomials [5). If the GCD is not a power of D, D1, where 1 is a 
natural number, then the encoder is catastrophic. 

+ 

-- -

.±>-

Figure 1: Convolutional encoder (2,1,1). 

Example 1: Consider the encoder (n,k,m)=(2,1,1). Its gener-
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ator polynomials are g<1l = 1 + D and g(2) = 1 + D (see 
Fig. 1). The G(;J) of g<1l and g(2) is 1 +D, which is not a 
power of D. Therefore, the encoder is catastrophic. 

Another way to check whether an encoder is catastrophic 
or not, is to analyze its state diagram. If is there any zero 
weight loop, with the exception of the zero state self-loop, 
then the encoder is catastrophic. 
Example 1 (continued): Consider the state diagram of the en­
coder of Example 1 represented in Fig. 2, where the con­
vention represents input bit/output bits. It is observed that 
there is a self-loop over state 1 and therefore the encoder is 
catastrophic. 

0/1 1111 

Figure 2: State diagram. 

3. TERMINATION OF TRELLIS DIA­
GRAMS 

In the following, two methods for deriving block codes from 
a convolutional encoder are described [3]: 

Zero Tail (ZI): The codewords of the binary linear code 
fom1ed by this method are all of the output sequences of the 
encoder when the encoder is initialized to the all-zero state 
and (K-m) arbitrary data bits are input into the encoder fol­
lowed by m k zeros, where K is greater than m. The rate of 
the resultant block code is k <;[.K:"'), where m is now defined 
as the maximum length of all k shift registers. 

The codewords of the derived block code can be repre­
sented by paths in the trellis diagram (the state diagram rep­
resentation in thne) of the encoder. The trellis termination of 
encoder of Example 1 for the zr method is shown in Fig. 3. 

~X/ 
Figure 3: Zero Tail or zr termination. 

Tail Biting (TB ): The codewords of the binary linear code 
fom1ed by this method are all output sequences of the encoder 
when the encoder is initialized to the corresponding last m k 
bits of an arbitrary K bits sequence and then those K bits are 
ioput into the encoder. The rate of the resultant block code is 
k 
n:· 

The trellis termination of encoder of Example 1 for the TB 
method is shown in Fig. 4. 

XXX 
Figure 4: Tail Biting or TB termination. 

Consider the encoder trellis of Example 1 with the cut as 
shown in Fig. 5. The resultant block code is a (N,K,dH) = 
(16,7,4), where N, K and dH are the block size, the number 
of information bits and the minimum Hamming distance, re­
spectively. On a similar way, varying only the instant of the 
cut, Tab. 2 is obtained. Note that the code rate gets closer 
to ! (which is the rate of the convolutional code) as the code 
size increaSes. 

00 00 00 00 00 00 00 ~00 -~~-'. 

\~\,/ 1 1 1 1 1 1 1 ' /\ 
' ' ' 

- ----'-'-----J. 

Figure 5: Trellis terminated. 

It is important to notice that the trellis termination breaks 
the catastrophic behavior, as it limits the number of error 
events [9]. 

A very useful tool in the analysis of trellis termination of 
convolutional encoders is the A matrix described as follows. 
Its a;; elements are given by Dh if is there an input that takes 
the encoder from state i to state j and that produces an output 
of weight h, otherwise they are considered to be zero [3]. 
Example 1 (continued): Fig. 6 shows the A matrix of the 
encoder. It is easy to check its elements through the state 
diagram of Fig. 2. 

The a{] element of the A K matrix represents the weight of 
codewords that start in state i and end in state j when K bits 
are input into the encoder. For the case of a two memory units 
convolutional encoder, the weight distributions of binary lin­
ear codes formed from the zr and TB methods, are given 
by the sum of checked terms of AK in Fig. 7 and Fig. 8, 
respectively [3]. 

The reader may have already noticed in Fig. 4 that there 
is a problem with the use of TB method for a catastrophic en­
coder: distinct information bits sequences may result in the 
same codeword. The information sequence 1,1,1 generates 
the all zero codeword if the encoder was in state "1". And the 
information sequence 0,0,0 also generates the all zero code­
word if the encoder was in state "0". If we would exclude 
all codewords generated from state "1" we would not have 
this problem, but the resultant code would be the same one 

Code (N,K,dH) 
(16,7,4) 
(18,8,4) 
(20,9,4) 
(22,10,4) 

7/16=0,438 
8/18=0,444 
9/20=0,450 
10/22=0,455 

Table 2: Comparative table. 
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Jt dl] AlD 
Figure 6: A matrix of the encoder of Example 1. 

resulted from the use of zr method. This exclusion corre­
sponds in matrix A K to the exclusion of element a:i'i, of the 
main diagonal from the snm that results in the weight distri­
bution. Fortnnately, for encoders with m k > 1, it is possible 
to exclude some terms of the main diagonal of A K and the 
code resulted would not be the same as that obtained by us­
ing zr method. This exclusion of terms of the main diagonal 
is called modified TB. The Theorem in the Appendix shows 
that with an appropriate exclusion, the derived block code is 
linear. 

Figure 7: Terms that contribute to the weight distribution for 
the zr method, with m=2. 

4. SEARCH FOR GOOD CONVO­
LUTIONAL ENCODERS 

This and other Reed-Muller codes are the best block codes 
forfixedK,dH andN s 32 [7]. 

Figure 9: Encoder of the obtained code. 

Figure 10: Trellis of the obtained code. 
Based on the idea of getting catastrophic encoders, an ex­
haustive search has taken place form = 4 and rate 1/2. The 
algorithm proposed by Larsen [4], which calculates the d" of 
an (n,1,m) encoder, was used. In fact this algorithm is a cor­
rected version of the algorithm proposed by Bah! et al [10]. 

One of the two encoders that came out was the one with 5. 
generator polynomials g(1) = 1 + D + D2 + D4, g(2) = 

APPLICATIONS TO BCM 

Fig. 12 shows the BCM scheme used. The mapping of the c0, 

c1 bits is shown in Tab. 3. This mapping is chosen in such 
a way that the quadratic Euclidean distance, dE2 (S, S), be­
tween two 4-PSK signals SandS, is proportional to the Ham­
ming distance, dH(c, c), between the corresponding pairs 
of coded bits c=(c0,c1), C=(c0,c1). It is easy to show that 
dE2 (S, SJ=2EsdH (c,c), where E. is the average energy of 
the 4-PSK constellation's signals. This implies that obtain­
ing a code with the maximum distance d H is the same as 
obtaining a corresponding code in the Euclidean space with 
maximnm dmin (Euclidean minimnm distance). 

1 + D 2 + D3 + D 4 and d" = 8, which is the same code listed 
in [11]. The best non-catastrophic encoder, with the same rate 
and constraint length, has d" = 7. Excluding the codewords 
corresponding to the elements a{f, 9 s i s z<, the remaining 
codewords form a linear block code (the states of matrix A 
are in the following order: {0000,0001,· .. , 1110, 1111}). 

Fig. 9 shows the encoder and Fig. 10 the trellis rep­
resentation of the encoder. The termination of this trellis in 
instant 8 is shown in Fig. 11. Note that this terminated code 
is a (16,4,8) block code. With the use of a coset it is possi­
ble to obtain the (16,5,8) code, which is a Reed-Muller code. 

Figure 8: Terms that contribute to the weight distribution for 
the TB method, with m=2. 
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c"c" s 
00 So 
01 St 
10 Sa 
11 s2 

Table 3: Mapping of bits in signal space. 
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Figure 11: ZT terminated trellis with 8 intervals. 

With this bit mapping and the ZT terminated trellis as 
shown in Fig. 11, a BCM scheme with ct;,,n=l6E5 is ob­
tained. This scheme will be called Scheme I. The Euclidean 
weight distribution of the BCM scheme can be obtained by 
modifying the matrix method suggested in [3]. 

It would be interesting now to compare the ZT termina­
tion obtained bere for a catastrophic encoder with the termi­
nation of the best non-catastrophic encoder with n = 2 and 
m = 4, for which dr = 7 [5]. For K = 8, the BCM scheme 
derived from trellis termination of this encoder (here called 
Scheme 11) has cJ;,,n=14E5 • Therefore, an asymptotic gain 
of !Olog10 i! = 0.58 dB of Scheme I over Scheme II is ex­
pected. 

Fig. 13 shows the performance of the two schemes as 
a function of the signal-to-noise ratio t; (E& is the energy 
per bit and No/2 is the bilateral power density of the AWGN 
noise). In Fig. 13, the block error probability P(e) is given 
by the approximation 

) 1 (dmin) P(e) ""N(dmin .-
2

.erfc n;r , 
2vNo 

where er f c(.) is the complementary error function, and 
N(dmin) is the number of sequences with distance dmin· 
From Fig. 13, a gain of almost 0.5 dB for P(e) = 10-8 

of Scheme I over Scheme II can be expected. 
Using the same procedures described before, four schemes 

forK = 12 were analyzed: 

• Scheme ill - uses ZT method with the non-catastrophic 
encoder of dr = 7. 

• Scheme IV - uses ZT method with the catastrophic en­
coder of dr = 8. 

• Scheme V - uses TB method with the non-catastrophic 
encoder of d" = 7. 

s 

Fignre 12: BCM ~cheme used. 
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Figure 13: Error performance of Schemes I and II on an 
AWGN channel. 

o Scheme VI - uses the modified TB method with the 
catastrophic encoder dr = 8. 

Fig. 14 shows the performance of Schemes ill, IV, V 
and VI as a function of l. It can be seen in Fig. 14 that 
Scheme IV behaves almost like Scheme V. It can also be seen 
in Fig. 14 that the modified TB method (Scheme VI) shows 
a better performance than the traditional TB method (Scheme 
V) for 15:- > 5.0 dB. It is worth to notice that Scheme V 
has a rat.;' of 1 bit per 4 - PSK symbol while Scheme VI has 
a rate of 11/12 bit per 4- PSK symbol. The Theorem in the 
Appendix shows that applying the modified TB method to a 
class of binary catastrophic encoders of rate ~ results in a 
block code of rate k{;i(1. 

g 
j1o1 

m 

10' 

10' 

_Scheme Ill 

. .....• Schema IV 

xxxSchemeV 

ooo Scheme VI 

1 o''i-,--,s"'.s~"*s-..,s;,_s~-<;7,-.,7;-,.s,..--;a;--"'a-t;.s.--,s!>---;;g_so--!1 o 
Eb/No [dBJ 

Figure 14: Error performance of Schemes ill, IV, V and VI 
on an AWGN channel. 

For the sake of completeness Tab. 4 shows the weight dis­
tribution for Schemes I and II and Tab. 5 shows the weight 
distribution for Schemes ill, IV, V and VI. Performance re-
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sults in a Rayleigh fading channel for the schemes given here 7. APPENDIX 
are described in [12]. 

Scheme 
I 
II 

Weight Enumerator 
1+13D 0 +2D 

1 + 5 D 14 + 3 D 1s + 2 D 18 + 4 D 2o+ 
+D22 

Table 4: Euclidean distance weight enumerators of schemes 
with K=8. 

Scheme 
ill 

IV 
v 

VI 

Weight Enumerator 
1 + 13 D14 + 12 Di6 + 12 D!S + ... + 

+6 D34 + 2 D3s + D3s 
1 + 50 D 1s + 152 D 24 + 53 D32 

1 + 12 D10 + 30 D 12 + 84 D 14 + ... + 
+84 D34 + 38 D3s + 12 D38 

1 + 375 D1s + 1296 D24 + 375 D32 + D4B 

Table 5: Euclidean distance weigh enumerators of schemes 
withK = 12. 

6. FINAL REMARKS AND CON­
CLUSIONS 

In [13], a trellis coded modulation (TCM) scheme with rate 
equal to 1 bit per 4-PSK symbol is given, whose constituent 
non-catastrophic binary convolutional code has dfree= 8 and 
rate 2 J 4. Other TCM schemes with the same rate and d free 

given in the recent literature are also referenced in [13) (two 
of them utilize time-invariant convolutional encoders with 
rates 2/4 and 4/8 and one of them a time-varying encoder 
with rate 1/2). 4-PSK BCM schemes derived from these en­
coders should also have rate equal to 1 bit per symbol. ill 
described in Section 4 for the (16, 4, 8) code, we believe that 
it is possible to add an appropiate coset to the code of Scheme 
VI in order to obtain a scheme with rate equal to 1 bit per 
4-PSK symbol. The decoding process for this new scheme 
could be implemented with two identical trellises by applying 
the same algorithm to bnth trellises in parallel. This property 
can be advantageous if a fast decoding process is needed. 

The article considered two construction methods for ob­
taining lioear block codes derived from a catastrophic con­
volutional encoder: the ZT method and the TB method. In 
contrast to the ZT method, the TB method cannot be ap­
plied in a simple way to the case when the convolutional en­
coder is catastrophic. A modified TB construction method 
was then suggested. The performance of several4-PSK BCM 
schemes constructed from block codes formed from convolu­
tional encoders were analysed. The schemes formed from 
catastrophic encoders have a better performance when com­
pared with schemes formed from non-catastrophic encoders. 
For this reason, catastrophic encoders deserve consideration 
in the design of these schemes. A better study on the modified 
TB method is under development. 
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Theorem: Consider the class of binary catastrophic convolu­
tional encoders whose augmented state diagram has only one 
zero Hamming weight loop: the self-loop around the all-one 
state. The code words corresponding to the sum of half of the 
main diagonal elements a{f of A K, form a linear block code 
with rate k!: J<1. 

Proof: 
In the following, we consider a model for the encoder with 

k feedback-free shift registers of equal length m. We assume 
that some of the tap gains can be equal to zero. Let u denote 
the input sequence of length K k = ( L + m) k. u is of the 
form: 

where so, s1, . . . , Smk-l represents the initial state of the en­
coder. We form the extended input sequence u 0, 

which takes the encoder from all-zero state so = s, = 
... = Smk-1 = 0, at time -m to state so, s1, ... , Smk-1 at 
timeL+m, passing through thesamestateso, s1, ... , Smk-1 

at time zero. 
Let G be the generator matrix of the convolutional code. 

The output sequences v generated by the TB method are ob­
tained from the sequences v 0 , 

by deleting the first ( mk )n components. Therefore, the se­
quences generated by the TB method are the union of 2mk 

cosets. The code generated by the ZT method is the zero coset 
(obtained by setting the encoder state to the all-zero state). 

Let u' denote the complementary sequence of u, i.e., u; = 
u, + 1, where + is a modnio 2 sum. Since u and u' deter­
mine two complementary sequences of encoder states and the 
encoder has a self-loop around the all-one state (as stated in 
theorem), then, 

v(= uG) +v'(= u'G) = 0, 

which implies that v = v'. This means that the cosets 
generated by representatives of two initial complementary 
states are the same. However, there is oniy one zero 
weight loop. Therefore, if one of the two identical cosets 
corresponding to each pair of complementary states, is 
excluded, then, the remaining set form a block code with 
only one information bit less than a block code formed 
from the conventional TB method. By choosing the code 
words corresponding to the sum of half of the main diago­
nal elements a{f of A K, whose initial states are labeled by 
so = 0, s1, ... , Smk-l· then, the derived block code is linear. 

Q.E.D-
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