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1 modulo 6 if d = -3. These alphabets are isomorphic to 
the field GF(p), and both will be denoted by A. Associated 
to any two elements of G F (p) , there is a distance, which 
is called Mannheim distance between the corresponding ele­
ments in A. Four classes of codes are proposed. One class 
is designed to correct one Mannbeim error, another to correct 
errors of any Mannheim weight affecting one coordinate of 
a code vector, another to correct errors of Mannheim weight 
1 affecting two coordinates of a code vector, and another to 
correct errors of arbitrary Mannbeim weight affecting two co­
ordinates of a code vector. All codes in the present paper are 
constacyclic codes [2]. We present efficient syndrome decod­
ing algorithms for each class being proposed. Finally, the 
Berlekamp-Massey algorithm is used when multiple Ham-
ming errors occur. 

Resumo ·Neste trabalho c6digos sobre os inteiros algebri­
cos provenientes de duas extensoes do conjunto dos numerus 
racionais Q isto e, Q( i) e Q ( R) sao propostos. Estes c6-
digos sao projetados para a distancia de Mannbeim embora 
algumas propriedades com rela9ao a distancia de Hannning 
sao tambem apresentadas, isto e, mostramos que estes sao 
c6digos com a maxima distancia de sepra9li0, ou equivalen­
temente, sao c6digos MDS. Eficientes algoritrnos de deco­
difica9lio sao propostos para a decodifica9lio destes c6digos 
quando ate duas coordenadas da palavra-c6digo transmitida 
sao alteradas por erros com peso de Mannbeim arbitrano. 0 
algoritrno de Berlekamp-Mussey e utilizado na corr~ao de 
multiples erros. 0 interesse pratico destes c6digos sob a me­
trica de Mannheim esta relacionado com esquemas de modu­
Ia9lio baseado em constela96es do tipo QAM para as quais 
nem a metrica de Hannning nem a metrica de Lee sao apro-

ALGEBRAIC NUMBER FIELDS priadas. 2. 
Abstract - We propose codes over the algebraic inte- In this section we review the background material on the the­

gers of two quadratic extensions of Q, namely, <Q( i) and ory of algebraic number fields that is necessary for under­
Q( H). The codes being proposed are designed to the standing much of the remainder of this paper. The alphabets 
Mannbeim distance, although some properties regarding their of the codes (proposed in Sections N-A and N-B), denoted 
Hamming distances are also presented, e.g., we show that by A, are finite subsets of rings of algebraic integers A of a 
all presented codes are maximum distance separable MDS. quadratic extension lK = Q( Vii) of <Q, where d = -1 and 
Efficient decoding algorithms are proposed to decode the d = -3. In these cases, the ring A of the algebraic integers 
codes when when up to two coordinates of a transmitted code oflK is Z [w], wherew = i if d = -1 andw = (1 + H)/2 
vector are affected by errors of arbitrary Mannbeim weight if d = -3. In both cases, A is a principal ideal domain, and 
The Berlekarnp-Massey algorithm is used for multiple error in particular its prime ideals have the form 
correction. The practical interest in such Mannbeim-metric 
codes is. for their use in coded modulation schemes based 
on QAM~type constellations, for which neither Hannning nor 
Lee metric is appropriate. 

Keywords: Number fielda, lattices, signal sets matched to 
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1. INTRODUCTION 
In [1], Huber proposed codes over the ring Z[i], the algebraic 
integers of <Q( H). 1\vo classes have been considered, viz., 
the one Mannheim error correcting codes, and the codes with 
minimum Mannbeim distance greater than 3. In this work, 
we complete. the results in [1] and present new ones. For ex­
ample, all proposed codes are codes over the ring A, the alge­
braic integers of Q( ../d:), ford = -1 and d = -3. Such alge­
braic integers are Z [i] (Gaussian integers) and Z [w], where 
w = (1 + H) /2, respectively, and both will be denoted by 
A. 

The alphabets of the codes being proposed are actually sub­
sets of the ring A, having p elements, where p is a prime 
congment to 1 modulo 4 if d = -1, and p is congment to 

p=<1r>, 

where 1r = a + bw, a, b E Z. The prime ideals of Z that we 
consider decompose completely in A As the nonzero prime 
ideals p of A are maximal, the quotients A/ p are fields of 
order p, where pis a prime such that 

_ { 1 (mod4) ifd=-1 
P = 1 (mod 6) if d = -3. (1) 

From now on, p=< a + bw > will denote a prime ideal in 
A containing pZ , where p is as in (1), and N (a + bw) = p. 
The function N(·) is thenorrnandN(x+yVd) = x2 -dy2 , 

V x, y E Z. Since w E A, we have that w belongs to some 
cosets E Ajp, where 0 :$ s :$ p -1. Thus x+yw = 
x+yw =x+ys = x+ys = £ E {0, 1, ... ,p-1}. Now, 
x+ys =£{'}X+ ys -l E pnZ =pZ. In summary, 

x+yw:£ (modp){'}x+ys:£ (modp), (2) 

where s is a representative of the coset containing w. We 
define A as { ao, a, ... , op-1 }, which is a complete set of 
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representatives of p in A, satisfying ae = £ (mod p) and 
N(a.~_) minimum,_ The fact that each ae is unique is guaran­
teed 1Jy the next 

Theorem 1 Let p E Z be an odd prime, which factors into 
the p 70duct of two conjugate primes 1r = a+ pb and 1t (where 
p can be either R or (1 + H)/2)) in the ring Z[p], that 
is, p = 1r1i. Then in each coset£+ p, where jJ = (1r) and 
£ = 0, ... ,p- 1, there is a unique element ae = £ + p.7r 
having minimum Euclidean nann. 

Proof: Let Nz* = min{N(a);a E £ + p} be the min­
imum value of the norm of the elements in £ + p. Since 
{-~, ... , -1, 0, 1, ... , ~} isacompletesetofrepresen­
tatives of jJ in Z[p], the Euclidean distance between any two 
coset representatives of minimum norm is always less than p. 
Now suppose that az, = £ + p.11r and az, = £ + J127r are two 
elements in £ + p having the same minimum norm, that is, 
N ( az,) = N ( az,) = Nz*. This implies that 

£2 +£[p.17r+ Jii fi] + P.1iii 7r1i = £2 +£[fL27r+ Ji21i] + J12Ji21r1i, 

and therefore, 

Since£, 1r, and 1i are coprimes, and (1r) and (fi) are prime 
principal ideals, then p.1 - p.2 E (1t), that is, az, - az, = pt, 
for some tin Z[p]. Now, az, and az, belong to the circle with 
radius (p- 1)/2 and center at the origin. Hence t = 0, and 
therefore az, = az,, which completes the proof. D 

In this way, we obtain a labeling of the elements of the 
set A ={ao, a1, ... , O!.p-1} c A by the additive group of 
G F(p). Therefore, the following procedure can be used to 
label each element of A by an element of the field G F(p). 

1. Given a prime number p that decomposes completely in 
.A, let 1r =a+ bw be a solution of N(a) = p, a E A; 

2. Let s E Z be the only solution (in r) of the equation 
a+ br = 0 (modp), whereO::; r ::;p -1; 

·3. The element£ E GF(p) is the label of the point a = 
x + yw E A if x + ys = £ (modp) and N(a) is 
minimum. 

We can inlprove the above algorithm if before starting it, 
the values of N (a) are sorted in increasing order, and next, 
to each point a = x + yw of A, we assign the label £, where 
R=x+ys (modp). 

Definition 1 i) Given an element 7 = a + bw E A, the 
Mannheim weight of 7 is 

ii) The Mannheim distance between any two elements a and 
(3 inA is 

dM (a,(3) = WM(O), 

where 6 =a- (3 (mod p), 8 EA. 
2 

This definition for the Mannheinl distance generalizes the 
one given by Huber in [1]. 

Theorem 2 [ 41 Let A = Z [w] be the ring of algebraic inte­
gers of<Q( R) and 1r =a+ bw E A, such that N (1r) = 
a2 +ab+b2 is aprimep = 1 (mod 6). Then the maximum 
Mannheim distance between any two elements of A is given 
by 

d{;;ax (A) = max{lal, lbl, Ia + bl}- 1. 

Theorem 3 [I] Let A = Z[i] be the ring of algebraic inte­
gers of<Q( ..;=T) and 1r = a+ bi E A, such that N(1r) = 
a2 + b2 is a prime p = 1 (mod 4 ). The the maximum 
Mannheim distance between any two elements of A is given 
by d;;{., (A) =max {Ia I, lbl} - 1. 

To save space we omit the proof of Theorem 2, however it 
can be found in [4]. 

3. CODES OVER ALGEBRAIC INTEGERS: 
PRELIMINARIES 

In this section our objective is to present some properties of 
codes over the rings of algebraic integers of <Q( H) and 
of <Q( ..;=T), from their parity-check matrices, as well as to 
present some of their basic properties. Initialy, we consider 
codes over Z[w], the ring of algebraic integers of <Q( ..;::3), 
where w = (1 + H) j2. Let (3 E A be an element of order 
6n = p- 1, (where pis a prime number, as in (1)), such that 
(3n = w. LetC be the code defined by the parity-check matrix 

[ 

1 (3 
1 (37 

H= 

~ ~6t+1 
where 0 ::; t ::; n - 1. 

(3) 

Theorem 4 The polynomial g( x) = ( x-(3) ( x- (37
) ••• ( x­

(36'+1) is the generator of code C, which is a principal ideal 
of the ring A[x]j < xn- w >. 

Proof: Ann-tuplec = (co,c1, ... ,Cn-1) E A;[w] 
is a codeword of C if and only if H d = .Q. Hence, if 
c( x) = I:~.;:i e;xi is the associated code polynomial, we 

_have c((36k+l) = 0, for k = 0, 1, ... , t. Let g(x) = 
(x- (3)(x- (37

) ... (x- ~'+1). Then the degree of g~x) is 
Elg = t + 1. The elements in the set S = {(3, (37

, ••• , (3 t+1} 
are all distinct elements of A,[w], and they are roots of c(x). 
Further, the set S is exactly the set of all the roots of g( x). 
Now, since ((36k+l)n- w = (36nk(3n- w = (3n- w = 0, for 
k = 0, 1, ... , t, then g(x) divides xn- w. D. 

Definition 2 w-cyclic codes (respectively -w-cyclic codes) 
are codes over A , whose codewords are multiples of the 

t 
generator polynomial g(x) = IT (x- (36'+1), that divides 

k=O 
f (x) = xn- w, (resp. xn + w). 

Code C defined by the matrix in (3) belong to the class of 
constacyclic codes, [2], or ±w-cyclic codes. Codes over Z[i] 
are defined in a similar way [1]. 
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4. CONSTRUTION OF CODES OVER Al-
GEBRAIC INTEGERS 

In this section we present linear codes over algebraic integers 
in terms of parity-check matrices. The corresponding decod­
ing algorithms follow from the proofs of Theorems 5, 6, 7, 
and 8 given next 

4.1. Codes over the Algebraic Integers of 
Zg [w] 

In this section we construct codes over the ring of algebraic 
integersofZ[w], wherew = (1 + H)/2. Let{3 E A bean 
element of order 6n = p- 1, such that {3n = w. 

4.1.1. Single-Error-Correcting Codes 
Theorem 5 Let C be the code defined by the parity-check ma­
trix 

H = [ 1 {3 . . . {3n-l ] . 

Then C can correct every error pattern of the form e ( x) = 
e;xi, where wM (e;) = 1 and the error patterns e (x) = 
ejxi, where wM ( e3) = 2, if e3 is a sixth root of unity. 

Proof: Recall that the elements of Mannheim weight 1 
of the alphabet A,[w] are ±1 and ±w, where w is a 6th 
root of unity. The other roots of unity, namely, ±w2 = 
± (w- 1), have Mannheim weight 2. Now, notice that 
the set {±1, ±w, ±w2 } can be represented as {!3n", u = 
1, 2, · · ·, 6}. Without loss of generality, we can suppose 
that the all zero codeword has been transmitted. Let r = 
(0, · · · , (3n", · · · , 0) denote the received vector. Then the syn­
drome 8 = H r' is given by 

8 = {3j+nu = (3L, where L,j E Z, 0::::; L,j::::; n- 1. 

By reducing L modulo n, we determine j, and next u is de­
termined by u = L;;i. Therefore, we have the location and 
the magnitude of the error. 0 

Theorem 6 Let C be the code defined by the parity-check ma­
trix 

[ 
1 {3 . . . (3n-l ] 

H = 1 (37 . . . {37(n-1) • 

Then C can correct every error pattern of the form e ( x) = 
e;xi, where 1 ::::; wM ( e;) ::::; d~ (A) , 0 ::::; i ::::; n - 1. 

Proof: Suppose that an error of magnitude {3k, 0 ::::; k ::::; 
6n - 1, has occurred in location j, 0 ::::; j ::::; n - 1. Let 
r = (0, 0, · · · , /3k, · • · , 0, 0) be the received vector. Then the 
syndrome 8 is given by 

S = Hr' = [ i~;:k ] = [ ~~ ] . 
Letting 8r = /3£1 and 87 = (3L2 , where L; is the logarithm 
of 8; to the base /3, i = 1, 7, we have 

(3i+k=Sr=>-j+k=:Lr (modp-1), 

f37i+k = 87 :;. 7j +k = ~ (modp-1). 

The linear system of equations 

{ 
j+k=L1 (modp-1) 
7j+k=~ (modp-1) ' 

has only one solution, namely, 

{ 
j = L,.;/' (mod n) · 
k=:£1-j (modp-1) 

Thus we can conclude that one error has occurred in location 
L'£/' (mod n) and its magnitude is (3k, where k = £1-j 
(modp-1). o 

4.1.2. Double-Error-Correcting Codes 
Theorem 7 Let C be the code defined by the parity-check rna-
trix 

[ 

1 (3 . . . (3n-1 ] 
H = 1 (37 . . . (37(n-1) . 

1 (313 . . . (313(n-1) 

Then C can correct every error pattern of the forme (x) = 
e;xi + ejxi, where wM (e;) = wM (ej) = 1, 0::::; i ;4 j ::::; 
n-1. 

Proof: Let v E C be the transmitted codeword, and e the 
error pattern introduced by the channel. Suppose that two 
errors each of Mannheim weight one, have occurred in loca­
tions j and k, 0 ::::; j < k ::::; n - 1, and that their magnitudes 
are, respectively, /3"n and /3"n, 0::::; u < v ::::; 5. Let 

be the parity-check matrix, and r = 
(0,0, ·· · ,(3"n, · · · ,(3"n, · · · ,0) the received vector. Then, 

is the syndrome. Since ffin = 1, then /3"n = f36"n f3"n = 
/37un = /312un /3"n = /313un (similarly, (3vn = /37vn = 

(313"n). Therefore, we have the following linear system of 
equations 

Letting (3j-tun = x, /3k+vn = y, 8r = a, 87 = b, and 
8rs = c, we have 

{ 

x+y=a 
x1+y7=b . 
x13+y13=c 

(4) 

Code C is capable of correcting any error pattern of two Ham­
ming errors, each of Mannheim weight one if and only if the 
system in (4) admits only two solutions. 

Assuming that two Hanrming errors have occurred, we will 
show that: 

a) a ;4 0; 

b) The system in (4) admits at least two solutions. 

3 
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a) If a = 0, then ;Ji+v.n = - {3k+vn. This implies that 
b = {31(j+vn) + {31(k+vn) = -{31(k+vn) + {31(k+vn) = 0. 
Similarly, c = 0. Hence, a = b = c = 0. Therefore, no errors 
have occurred, which contradicts our hypothesis. So, a oft 0; 

b) Let ( xo, Yo) be a solution of ( 4); we shall show that x0 oft 
YO· If Xo = {3j+v.n = {3k+vn = Yo, then {3k-j+n(v-v) = 1; 
however,k-j+n(v-u) :<:; n-l+n·5 = 6n-1 < 
6n = o ({3), a contradiction. Thus, x0 oft y0• Since the system 
in (4) is symmetric in x andy, we have that (yo, xo) is also 
a solution. We can conclude, therefore, that the solutions of 
(4) occur always in pairs. Now, we proceed to indicate how 
to find them. 

In (4), we have y =a-x; thus we can consider the poly­
nomials 

f (x) = x'3 +(a- x)'3- c, 

and 
g(x) =x1 +(a-x)7 -b, 

where f(x),g(x) E A,[w] [x]. Let x0 be a root off (x), 
that is, f (xo) = 0. Now, f (a- xo) = (a- xo/3 + 
(a- a+ xo)13 - c = x/;3 +(a- xo) 13 - c = f (xo) = 0. 
Therefore, f(xo) = Oifandonlyif f(a-x 0) = f(y0 ) = 0. 
Similarly, the same result holds for g( x) (notice that since we 
are assuming that two coordinates of r are in error, f ( x) and 
g(x) have at least two common roots). Considering then the 
polynomials f(x) and g(x ), and using Euclid's Algorithm, it 
follows that 

3 q(x), h(x) E A,[w] [x] 

such that f (x) = q (x) g (x) + h(x), with 8h :-:; 5 

(here and thereafter op denotes the degree of polynomial 
p( x )). After some calculations, we obtain 

a2 
h(x) = 7(b- a1 )(39x4

- 78ax3 + 65a2x2 - 26a3x) 

1 
+ 

49
a (-29a14 +65a7b+ 13b2 -49ac), 

(a oft 0, by a)). Thus either 8h = 0 or 8h = 4. Notice that 
the common roots to f(x) andg(x) are also roots of h(x). 

4 

1. If oh = 0, then h(x) must be the null polynomial (since 
f(x) and g(x) admit at least two solutions). However, 
h (x) = 0 if and ouly if b = a1 and c = a13. Now, if 
b = a7 and c = a13, we have 

g(x) = 

_ ( ) ( a(1 - iVS)) 
2 

( a __ ( ,1=-+:,:i__:_VS::..c3)) 
2 

-X x-a x- x--
2 2 

= x (x- a) (x -aw)2 (x+aw2)2. 

So, the distinct roots of g (x) are x = 0, x = a, x = 
a(l+;,/3) aw, and X = a(l-;,/3) -aw'. However, 

x = 0 implies that f3Hvn = 0, wlrich is impossible. 
Similarly, x = a implies that y = 0, that is, {3k+vn = 0, 
wltich is impossible too. It is easy to check that aw and 
-aw2 are also roots of f(x). Thus f(x) andg(x) have 
only two distinct common roots, namely, x1 = aw, and 
x2 = a(1-w); 

2. If oh = 4, then applying Euclid's algorithm to the poly­
nomialsg(x) andh(x), we have 

3 s(x),k(x) E A,[w][x] 

suchthatg(x) =s(x)h(x)+k(x), withok :<:;3. 

Now, since the roots of f (x) and g (x) (and conse­
quently, the roots h ( x) and k( x)) occur in pairs, we have 
either 8k = 0 or 8k = 2 (the polynomial expression for 
k(x) is of the form k(x) = ko + k1x + k2x2; for the 
sake of brevity, we omit the rather long expressions for 
the coefficients ko, kr, and k2l-

(a) Ifok = 2, theng(x) andh(x) (andalsof(x)) 
have two common roots, wlrich are exactly the two 
roots of k (x). 

(h) If ok = 0, then k (x) is identically null. Since 
k(x) = ko+k1x+k2x2, we have 

a14 + 26a 1b + 169b2 

ko = 0 => c = , (5) 
196a 

4a14 + 104a 1b + 39b2 

kr = 0 => c = 147 a , (6) 

4a14 + 104a 1b + 39b2 

k2=0=>c= (7) 
147a 

Upon equating (5) and (6), we get the following 
2nd degree equation in b 

m(b) = -17199b2 + 16562a7b+637a14 

Now, solving the equation m (b) = 0, we obtain 
the roots b = a1 and b = -;_f. -The case b = a1 

7 

has already been analysed in 1. If b = 2~ , then 
13 . • 

c = ~29 , and m this case the only common roots 

to f (x) andg (x) are xr = a(3+:v'3) ~ (1 + w) 

and x2 = a(3~v'3) ~ (2- w). Actually, in this 
case, 

g(x) = 

(x _a (3 ~iv's) r (X_ a (3~iv'3) r 
. (x _a (3-:v'39)) (x _a (3+

6
iv'39)). 

and 

since 

f (
a (3 ± iv'39)) = -a13 [a (3 ± iv'39)] 

13 

6 729 +2 6 

=a13{ -1 +2 [(3±iv'39)]13} =0{'}a=O 
729 6 , 
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(1312£ + !36'J3"1 + /3123)(S7 _ /361 Sr) = 819 _ !3'81 Sr. (13) 

Let /3"' + (361 = B, and {36' (361 = P. Then we have 

2 6" 18" (S -P)(S7-/3 'Sr) =Sr9-f3 'Sr. 

From (14), we conclude that 

P= SS7-Sr3. 
s, 

(14) 

(15) 

(16) 

(Sr # 0, since we are assuming that two coordinates of rare 
in error). From (15), we obtain 

Substituting (16) in (17), we get 

S (S2_ SS1-Sr3)-S 8 ss7-Sr3 -S 
7 s, 1 s, - 19> 

which implies that 

s = 81819 - 87813 
81813-8¥ 

(18) 

The term 81813 - S¥ # 0, unless only one coordinate of r is 
in error [4]. Substituting (18) in (16), we obtain 

p _ 81819 - Sj'3 
- 81813-8¥. 

After calculating the roots of the equation X 2- S X+ P = 0, 
namely, 

j. 
b) Using the first two equations of (8),_ we get 

{ 
x+y=S1 
{36ix + {363y = 87 ' 

wltich yields 

From x and y, we are able to detennine k and l, since 
x = {3i+k and y = 131+1• 

4. The transinitted codeword v E C is obtained by calcu­
lating the difference v = r - e. 

4.2. Codes over the Gaussian Integers 
For codes defined over the Gaussian integers Z[i], analogous 
theorems to the case Z[w] hold with appropriate modifica­
tions. 

5. SOME HAMMING DISTANCE PROPER­
TIES OF CODES OVER ALGEBRAIC IN­
TEGERS 

Letp = 1 (mod 6) andn = (p-1)/6. Suppose r,t E Z 
such that 0:::; r < n, t < p- 1 and (t,p- 1) :::; 6. Consider 
the matrix 

{3n-l l (/3'+1 )n-1 

~{3rt+1 )n-1 ' 

6i 6. 
X1 = /3 , X2 = /3 3

, where {3 is a priinitive element of A, as defined previously. 

we can find i and j, the error locations. Now, using the first Then we have the following 
two equations of (8), we get 

6' 6' 87 - /3 J 81 87 - /3 's, 
x = !36' _ (361 , and Y = (361 _ !3"' · 

. rlt this way, we are able tO detennine k and l, since X = {3i+k 
andy=f3H1.o 

Next, we outline an error correction procedure for the 
codes defined in Theorem 8. 

• Decoding Procedure for the Codes Defined in Theorem 
8 

6 

1. If 81 = 0, then no errors have occurred; set v = r. 

2. If 81813 - 8'# = 0, then only one error of magnitude 
{3k has occurred at location i. We determine i and k as 
in the decoding procedure for the codes in Theorem 8. 

3. If 81813 - 8¥ # 0, then two errors have occurred, and 
we must proceed as follows: 
a) Solve the equation X 2 - SX + P = 0, where S = 
s, s12 SzSJ3 and p = Srsl9-s~, whose roots are X = 

S1S1a s¥ B1S1a 8 7 ' 1 

{36i and X 2 = {361. This yields the error locations i and 

Proposition 1 Any r + 2 columns of H are linearly depen­
dent. 

Proof: Straightforward. 

Proposition 2 Any r + 1 columns of H are linearly indepen­
dent. 

Proof: Let h£; denote the j-th column of H, that is, 

h;; = [ {3i; ({3'+1 )'; .. . ({3rt+1 )i; JT, 

j = 1, 2, ... , r + 1. Further, let L be the matrix formed by 
the columns ir, ... , ir+1 of H, that is, 

[ ~ !3'' 

~] L= 
(/3'~1)'' (/3'+1 )'' (/3'+t+l , 

(/3rt+1)it (!3rt+l)i, ({3rt+! )ir+t 

Proving that the r + 1 columns of H are linearly independent 
is equivalent to proving that det L of 0. Now, 
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which is impossible. 

Now supposetlratanerrorpatternoftheforme(x) = ejxj, 
where wM ( ej) = 1, and 0 s j s n - 1, has occurred. Thus, 
8 1 # 0. Then from (4), we have 

{ 

x={3j+un=a 
x1 = {37(j+un) = b = a7 
x13 = {313(j+un) = c = a13 

From b = a7 and c = a13, we have that h (x) is identically 
null. Then, as in Case 1., the common roots off (x) and 
g(x) arex = O,x = a,x = aw,x = a(1-w) = -aw2• 

Therefore, the solutions of (4) are (a, 0), (0, a), (aw, -aw2), 

and (-aw2 ,aw). 
a) If x = 0, then y = a = [3Hun = fJL1 ; therefore, 

j + un = L1 = j (mod n). Thus one error has occurred at 
locationj. 

b) If x = a, then y = 0; therefore, x = fJHun = fJL 1 • 

Hence, j + un = L1 = j (mod n). Thus one error has 
occurred at location j. 

C) If X = aw, then X = {3j+'"n{3n = {3Hn(u+l) = {3L'' 
hence j + n (u + 1) = L2 = j (mod n). Thus one error 
has occurred at location j. 

d) If X = -aw2 , We have that X = fJ3n {3j+un (32n = 
{3Hn(u+5) = {3L'; hence j + n (u + 5) = La = j 
(mod n). Thus one error has occurred at position j. 

So, if b = a 7 , then one error has occurred at position j. D 

Remark: Code C defined by the parity-check matrix H of 
Theorem 7 can also correct every error pattern of the form 
e(x) = e;x' + ejxj, where wM (e;) s 2, wM (ej) s 2, 
0 s i < j s n - 1, and e; and ej are 6th roots of unity. 

Next, we outline an error correction procedure for the 
codes defined in Theorem 7. 

• Decoding Procedure for the Codes Defined in Theorem 
7 

1. If a= 0, then no errors have occurred; set r = v. 

2. If b = a7, and c = a13, then only one error has occurred, 
and we proceed as follows. The location j of the error 
isj = L1 (mod n), where L1 is such that 81 = fJL 1 , 

and its magnitude is Y = {3L1 -j. ' 

3. If b ;f a7 or c # a13, then two coordinates are affected, 
each one by a Mannheim error of weight one. Then we 
must proceed as follows. 

• Solving k(x) = 0 (or h(x) = 0, or g(x) = 0), 
we get the roots x1 = fJL', and x2 = {3L'. Since 
x1 = {3j+un and x2 = {3k+vn, we have 

{ 
j = L1 (mod n) 
k::~ (modn) 

and this gives the error locations. 

4. The error magnitudes are given by 

{ 
Yj_ = {3L,-j 
}'2 = {3L,-j 

5. The transmitted codeword v E C is obtained by calcu­
lating the difference v = r - e. 

Theorem 8 Let C be the code defined by the parity-checkma-
trix 

Then C can corr~ct eve'?' error pattern of the 
form e (x) = e;x' + ejx1, where 1 s wM (e;), 
wM (ej) S di1..x (A), 0 S i # j S n -1. 

Proof: Let v E C be the transmitted codeword, and e the 
error pattern introduced by the channel. Suppose that two 
errors have occurred in locations i and j, 0 s i < j s n - 1, 
and that their magnitudes are, respectively, !3" and {11

, where 
0 s k sp-1, andO s l sp-1 = 6n.Let 

be the parity check matrix, and r = 
(0, 0, ·. ·, flk, · · ·, {11

, • • ·, 0) the received vector. Then, 

is the syndrome. Letting x = rf+k and y = fJH1, we obtain 
the following linear system of equations 

(8) 

Code C can correct two errors if and only if the system in (8) 
admits only one solution. Since we are assuming that two 
coordinates of r are in error, the system in (8) admits at least 
one solution. We will show that there is exactly one solution. 
From x + y = 81, the system in (8) becomes 

{ 

(!36i- {36j)x = 87- {36j 81 
({312'- fJ12j)x = 813- fJ12j 81 
({3l8i- fll8j)x = 819- fJ18j 81 

which implies that 

c~· - fJ6j)x = 87 - {36j 81> (9) 

c~· - ~j) c~· + fJ6j)x = 813 - fJ12j 81, (10) 

(fJ6i _ {36j) (f312i + {36i{J6j + {312j) X= 319 _ (318j 31. 

(11) 
Now, substituting (9) in (10), and in (11), we get: 

(~' + {36j)(81- {36j 81) = 813- {312j81, (12) 

5 
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where 

1 ;. 1 ' l f3ti' (3tir 
L1 = . 

(3r~ir • 
/3"ti' {3rti2 

Thus det L = 0 if and only if det L1 = 0. Since det L1 is a 
Vandermonde determinant, it follows that 

detL1 = ± II c13ti, _ 13ti. l. 
O~j<k~r+l 

Hence, det L1 = 0 if and only if there exists j, k E Z with 
j < k such that f3ti' = f3ti•. Now, 

f3"' = f3"• ...., f3'(i;-i•) = 1...., t(ij- ik) = 0 (mod 6n). 

However, gcd( t, 6n) = s ::::; 6 implies that gcd( ~, 6_;') = 1. 
Suppose thatt(i1-ik) = 0 (mod 6n). Thus6n I t(i1-ik)· 
Hence, 6

_;' I Hij - ik), and then, 6_;' I (ij - ik), because 
gcd(~, 6_;') =l.Since6~ sand(i;-ik) :::;n-1,then 6_;' ~ 
n,andtherefore 6_;' > (i1-ik), that is, 6_;' cannotdivide(ij­
ik)· Hence, t(i1- ik) iE 0 (mod 6n), which implies that 
/3'' ¥ f3'•, for i < k. Thus det L1 ¥ 0, and consequently, 
the r + 1 columns of H are linearly independent. D 

The following two corollaries are immediate consequences 
of Propositions 1 and 2. 

Corollary 1 Let C be the code defined by the parity-check 
matrix 

[ 

1 f3 
1 !3'+1 

H= .. 

1 13"'+1 

f3n-1 l (,B'+l)n-1 

:(,6rt+1 )n-1 , 

(19) 

with (t,p- 1) ::::; 6, 0 ::::; r < (p- 1) /6, t < p- 1. Then 
the minimum Hamming distance of C is dH (C) = r + 2. 
Therefore code C can correct up to L(r + 1)/2J (Hamming) 
errors. 

Corollary 2 Code C defined by the parity-check matrix H in 
5, under the hypotheses of Corollary 1, are MDS with respect 
to the Hamming distance. 

All the results in this section hold if we consider the prime 
number p = 1 (mod 4), n = (p- 1)/4, (t,p -1) ::::; 4 
and ,6 replaced by a, where a is an element of A of order 
4n = p- 1, such that an= i and A= Z(i]. 

6. MULTIPLE ERROR CORRECTION 
The purpose of this section is to show how to make use of the 
Berlekamp-Massey algorithm [2], [7], and of Forney's proce­
dure [5] to decode codes over algebraic integers when multi­
ple Hamming errors occur. We focus mainly on codes over 
the algebraic integers of <Q!( .J-=3). However, it is straightfor­
ward to adapt the results to <Q!( v'=I). 

Let C be the code defined by the parity-check matrix, 

,62 ,Bn-1 l 
,614 (,67)n-1 

,62(6t+l) ,B(n-1l{6t+l) ' 

where ,6 E A e; GF(p),p = 1 (mod 6) is a prime number, 
o(,B) = 6n, and t < n. 

Let e(x) = ej, xi• + ej,xi2 + ... + ej.x1• be the error 
pattern, where 11 ::::; L(t + 1)/2 J represents the number of 
symbols in error in the received codeword. The syndromes 
T; are given by 

(20) 

= ej, (f36i-5)j' + ei2 (f36i-5)i2 + ... + ej. (~'-5)1•, (21) 

fori = 1, 2, ... , t + 1. 
Let 

and 
xi = 131 .. , i = 1, 2, . .. , v. 

Then 

v 

T; = l):J ·XJ'-5
, i = 1,2, ... , t+ 1. (22) 

j=l 

Now let o-(X) be the error locator polynomial, defined by 

v 

o-(X) =II (X -XJ) = xv+o-1xv-1+ ... +O"v-lX+o-v, 
j=l 

(23) 
where a1,u2, ... ,uv are the elementary symmet­
ric functions of the error location numbers Xf, X~, 
... ,~. . 

Multiplying the equation in (23) by Yj XJ'-5 and substi­
tuting XJ for X in the same equation, we get 

y;.xB(i+v)-5 + y;.xB(i+v-1)-5 + 
1 J 0'1 :J 3 ... (24) 

y; X s(iHJ-5 y; xs'-5 1 < · < (2S) +av-1 j j + O'v j j 1 _ J _ V. 

Now sutuming the equations in (24) for 1 ::::; j ::::; 11 and 
making use of equation (22) yield 

Tills is a set of linear equations that relates the syndromes 
to the coefficients of o-(X). The first 11 equations can be writ­
ten in matrix form as 

Tv l [ O"v l [ -Tv+l l Tvt1 O"v=-1 = -T~+2 > 

T2v-l 0"1 - T2v 
(26) 

where T; = s6i-5 

Tills equation has a unique solution if and ouly if the syn­
drome matrix (T;)vxv is nonsingular. 

Proposition 3 The syndrome matrix 

7 
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equivalently, 

86!'-5 1 
861'+1 

. ' 

812~-11 
is nonsingular if J1- = v. If JI- > v then M is singular. 

Proof: Consider the matrices 

[ ' 1 ' l x6 X~ x6 
A= 1 

I' . , 

• x~~-6 X~"-6 x~-6 

and 

B=[T 
0 

Y.u 
Y2X2 

0 

where Y; = Xj = 0 if j > v. Using the equations in (22), 
it is easy to verify that M =ABA', where A' denotes trans­
pose of A. Thus 

detM = detA · detB- detA'. 

If JI- = v, then det B = IT~=1 Y;X; is nonzero for the ele­
ments Y; and X;, i = 1,2, ... ,v, are nonzero. Also, detA 
is nonzero for A is a Vandermonde matrix and the elements 
X;, i = 1, 2, ... , v, are distinct pairwise. Hence, det M =1 0, 
and therefore, M is nonsingular. On the other hand, if J1- > v, 
then det B = 0, which implies that det M = 0, and therefore 
M is singular. o 

Thus, whenever the Hanmting weight of the error pattern 
is less than or equal to v, it is possible to determine the po­
sitions in error in the received vector, by solving the linear 
system of equations in (26). This set of equations can be effi­
ciently solved in the unknowns cr1 , •.. , CT v by the Berlekamp­
·Massey algorithm [2],[7]. Then, knowing CT1, ••• , CT v enables 
us to determine the error locator polynomial whose roots are 
Xf,X~, · · · ,xz (where X;= (3i<, i = 1,2,-- · ,v are the er­
ror locator numbers), and they can be found by Chien search 
[3]. From these roots, the error positions are easily deter­
mined. 

Finally, the error values are determined from the equations 
in (20), which can be solved by Forney's procedure [5]. By 
using standard methods, see for example, [5], [6], it is not 
difficult to show that each error magnitude Y;, 1 :::; j :::; v, 
can be determined by 

v-1 
I; CTJZ • Tv-l 

y;.- Z=O 
J- vl ' 

xj-5. I: CTjz • X~(v-l) 
l=O 

3 

(27) 

where 1:::; j:::; v, and the coefficients CTJZ can be recursively 
calculated by 

U'ji = Ui + XJ · CTj,i-1· 
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