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Resumo - Neste trabatho c6digos sobre os inteiros algébri-
cos provenientes de duas extensdes do conjunto dos mimeros
racionais Q isto 6, Q(%) ¢ Q (+/—3) sdo propostos. Estes c6-
digos sdo projetados para a distincia de Mannheim embora
algumas propriedades com relagdo & distincia de Hamming
530 também apresentadas, isto €, mostramos que estes sdo
codigos com a méxima distincia de sepragio, ou equivalen-
terente, 530 c6digos MDS. Eficientes algoritmos de deco-
difica¢do 530 propostos para a decodificagio destes codigos
quando até duas coordenadas da palavra-c6digo transmitida
sio alteradas por erros com peso de Mannheim arbitrério. O
algoritmo de Berlekamp-Mussey é utilizado na correggo de
multiplos erros. O interesse préatico destes c6digos sob a mé-
trica de Mannheira est4 relacionado com esquemas de modu-
laggo baseado em constelages do tipo QAM para as quais
nem a rmétrica de Hamming nem a métrica de Lee s80 apro-
priadas. '

Abstract - We propose codes over the algebraic inte-
gers of two quadratic extensions of @, nargely, Q(Z) and
Q(+/—3). The codes being proposed are designed to the
Mannheim distance, although some properties regarding their
Hamming distances are also presented, e.g., we show that
all presented codes are maximum distance separable MDS,
Efficient decoding algorithms are proposed to decode the
codes when when up to two coordinates of a transmitted code
vector are affected by errors of arbitrary Mannheim weight.
The Berlekamp-Massey algorithmn is used for multiple error
correction. The practical interest in such Mannheim-metric
codes is for their use in coded modulation schemes based
on QAM-type constellations, for which neither Hamming nor
Lee metric is appropriate. .

Keywords: Number fields, lattices, sigﬁal sets matched to
groups, Mannhejm distance, linear codes, algebraic decoding,

1. INTRODUCTION
In [1], Huber proposed codes over the ring Z{}, the algebraic
integers of Q(+/—1). Two classes have been considered, viz.,
the one Mannheim error correcting codes, and the codes with
minimum Mannheim distance greater than 3. In this work,
we complete the results in [1] and present new ones. For ex-
ample, all proposed codes are codes over the ring A, the aige-
braic integers of Q(+/d), for d = —1 and d = —3. Such alge-
braic integers are Z [i] (Gaussian integers) and Z [w} , where
w = (1++/—8) /2, respectively, and both will be denoted by
A

The alphabets of the codes being proposed are actually sub-
sets of the ring A, having p elements, where p is a prime
congruent to 1 modulo 4 if 4 = -1, and p is congruent to

1 modulo 6 if 4 = —3. These alphabets are isomorphic to
the field GF(p), and both will be denoted by .A. Associated
to any two elements of GF (p), there is a distance, which
18 called Mannheim distance between the corresponding ele-
ments in A Four classes of codes are proposed. One class
is designed to correct one Mannheiro error, another to comect
errors of any Mannheim weight affecting one coordinate of
a code vector, another to correct errors of Mannheim weight
1 affecting two coordinates of a code vector, and another to
correct errors of arbitrary Mannheim weight affecting two co-
ordinates of a code vector. All codes in the present paper are
constacyclic codes [2]. We present efficient syndrome decod-
ing algorithms for each class being proposed. Finally, the
Berlekamp-Massey algorithm is used when multiple Ham-
ming errors Occur.

2. ALGEBRAIC NUMBER FIELDS

In this section we review the background material on the the-
ory of algebraic number fields that is necessary for under-
standing much of the rernainder of this paper. The alphabets
of the codes (proposed in Sections IV-A and IV-B), denoted
by A, are finite subsets of rings of algebraic integers A of a
quadratic extension K = Q(v/d) of Q, where d == —1 and
d = ~3. In these cases, the ring A of the algebraic integers
of Kis Z |w)], wherew = 1 if d= ~1 and w = (1+ +/=3)/2
if ¢ = —3. In both cases, A is a principal ideal domain, and
in particular its prime ideals have the form

p=< >,

where # = a + bw, a,b € Z. The prime ideals of Z that we
consider decompose completely in A. As the nonzero prime
ideals p of A are maximal, the quotients A/p are fields of
order p, where p is a prime such that

pE{ 1 (mod4) ifd=-1

1 (mod6) ifd=-3.

From now on, p=< & + bw > will denote a prime ideal in
A containing pZ , where p is asin (1), and f/\fja+ ko) = p.
The function N () is the norm and N(z + yv'd) = 22 — dy?,
Y,y € Z. Since w € A, we have that w belongs to some
cosetF € Af/p,where 0 < s < p— 1. Thsz+yw =
T+yo=Z+ys=ztys=£L€ {0,1,...,p— 1}. Now,
T+ ys =8 < x+ys —1 € pNZ = pZ. In summary,

1)

rt+yw =2~ (modp)@x+ysz£ (mod p), (@)

where s is a representative of the coset containing w. We
define A as {ag, e, ..., %1}, which is a complete set of



Revista da Sociedade Brasileira de Telecomunicactes

VYolume 13, namero 1, junho 1998

repreentatives of p in A, satisfying oy = £ (mod p) and
N{c.¢) minimum. The fact that each «; is unique is guaran-
teed Ty the next

Theorem 1 Let p € Z be an odd prime, which factors into
the paduct of twe conjugate primes ™ = a+ pb and T (where
p carzbe either /=L or (1++/=3)/2)) in the ring Z{p), that
is, p = w&. Then in each coset £ + p, where p = () and
£ = 0,...,p — 1, there is a unique element g = £+ uw
havirzy minimum Euclidean norm.

Proof: Let N = min{N(a);a € £+ p} be the min-
imum value of the norm of the elements in £ + p. Since
{ul’%l, ....—1,0,1,..., zgl} is a complete set of represen-
tatives of p in Z[p], the Euclidean distance between any two
coset representatives of minimum norm is always less than p.
Now suppose that ey, = £+ py 7 and oy, = £ + o7 are two
glements in £ + p having the same minimum norm, that is,
N{caz,) = N{az,) = N;*. This implies that

4l 7+ T+ 7T = £+ LT+ BT+ oy,

and therefore,
(i — BT + (g — po)7) = (105 — pofBlr .

Since £, 7, and 7 are coprimes, and () and (%) are prime
principal ideals, then g, — pg € (7), thatis, oy, — oy, = pt,
for some ¢ in Z{p]. Now, o, and o, belong to the circle with
radius (p — 1)/2 and center at the origin. Hence ¢ = 0, and
therefore a, = oy,, which completes the proof. O

In this way, we obtain a labeling of the elements of the
set A ={ao,1,...,0p-1} C A by the additive group of
GF(p). Therefore, the following procedure can be used to
label each element of A by an element of the field GF(p).

1. Given a prime number p that decomposes completely in
A,letm = a + kv be a solution of N(a) = p,x € 4;

2. Lets € Z be the only solution (in r) of the equation
~ . a+br=0 (modp),where0<r<p-~1;

"3, The element £ € G'F(p) is the label of the point o =
x4 yw € Aifz 4+ ys = £ (mod p) and N(e) is
- minimum,

‘We can improve the above algorithm if before starting it,
the values of N(c) are sorted in increasing order, and next,
to each point & = = + yw of A, we assign the label £, where
£=z+ys (modp).

Definition 1 ) Given an element v = a + bw € A, the
Mannheim weight of -y is

w™(y) = la] + [pl.

i) The Mannheim distance between any two elements o and
BinAis
| d¥ (@, 6) = wne(6),
where§=a—f (mod p), §c A
o . .

This definition for the Mannheim distance generalizes the
one given by Huber in [1].

Theorem 2 [4] Let A = Z |w] be the ring of algebraic inte-
gers of Q(+/=3) and m = a + bw € A, such that N (7) =
a®+ab+b isaprimep=1 (mod 6). Then the maximum
Mannheim distance berween any two elements of A is given
by

drﬂfsx (A) = max“al 1 |bl 3 Ia' + bl} - 1.

Theorem 3 [1] Let A = Z[i] be the ring of algebraic inte-
gers of Q(v—1) and m = a + bi € A, such that N(x) =
a?+b isaprimep = 1 (mod4). The the maximum
Mannheim distance berween any two elements of A is given
by dlfy (A) = max{ja|, |5} - 1.

To save space we omit the proof of Theorem 2, however it
can be found in [4]. '

3. CODES OVER ALGEBRAIC INTEGERS:
PRELIMINARIES
In this section our objective is to present some properties of
codes over the rings of algebraic integers of Q(/=3) and
of Q(+/=1), from their parity-check matrices, as well as t0
present some of their basic properiies. Inifialy, we consider
codes over Z{w), the ring of algebraic integers of Q(v/~3},
wherew = (1+ +/—3)/2. Let 8 € A be an element of order
6n = p — 1, (where p is a prime number, as in (1)), such that
" = w. LetC be the code defined by the parity-check matrix

1 ﬁ 671.--1 X
1 4 7\

H=|. :ﬁ #) ,®
.1 bea-;-l -(6e:+1)ﬂ—1

where 0 <t <n—1.

Theorem 4 The polynomial g(z) = (z—B)(z— L) (z-
ﬁst"'l) is the generator of code C, which is a principal ideal
of thering Alz]/ <z™ —w>.

Proof: An n-tuple ¢ = (co,c1,--+,¢n-1) € Ap[w]
is a codeword of € if and only if He® = 0. Hence, if
c(z) = ooy cia’ is the associated code polynomial, we

have (%) = 0, for k = 0,1,...,%. Let g(a) =

(z~B)(z—B7)...(z— F%T). Then the degree of gé&? is
8g=t+ 1. The elements in the set § = {8,8,...,8%"}
are all distinct elements of Ay jw], and they are roots of ¢(z).
Further, the set S is exactly the set of all the roots of g(z).
Now, since (56‘7“"1)" —w= %G =" —w=0,for
k=0,1,...,t, then g(z) divides x™ — w. O.

Definition 2 w-cyclic codes (respectively —w-cyclic codes)
are codes over A , whose codewords are multiples of the
:
generator polynomial g(z) = [] (x— %), that divides
k=0

f(z)=2" —w, (resp. 2™+ w)._

Code C defined by the matrix in (3) belong to the class of
constacyclic codes, [2], or zw—cyclic codes. Codes over Z{i]
are defined in a similar way [1].
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4. CONSTRUTION OF CODES OVER AL-
GEBRAIC INTEGERS

In this section we present linear codes over algebraic integers

in terms of parity-check matrices. The comesponding decod-

ing algorithms follow from the proofs of Theorems 5, 6, 7,

and 8 given next.

4.1. Codes over the Algebraic Integers of

Zglw}
In this section we construct codes over the ring of algebraic
integers of Zfw), where w = (1 ++/=3)/2.Let § € Abe an
element of order 6n = p — 1, such that 8™ = w.

4.1.1. Single-Error-Correcting Codes
Theorem 5 Let C be the code defined by the parity-check ma-
trix

H=[1 g gt .
Then C can correct every error pattern of the form e (z)
ez, where wM™ (e;) = 1 and the error patterns e (x)
e;27, where w™ (e;) = 2, if e; is a sixth root of unity.

i

Proof: Recall that the elements of Mannheim weight 1
of the alphabet Ap[w] are £1 and +w, where w is a 6th
root of unity. The other roots of unity, namely, +w? =
£ (w —1), have Mannheim weight 2. Now, notice that
the set {+1, +w,=w?} can be represented as {f™, v =
1,2,---,6}. Without loss of generality, we can suppose
that the all zero codeword has been transmitted. Let r =
0,---,5™,---,0) denote the received vector. Then the syn-
drome S = Hr? is given by

S=p"" =% whereL,j€Z, 0<L,j<n-—L

By reducing L modulo n, we determine §, and next » is de-
termined by u = £=2. Therefore, we have the location and
the magnitude of the error. O

Theorem 6 Let C be the code defined by the parity-check ma-
1 53
1 87 '

Then C can correct every error pattern of the form e{z) =
e;z, where 1. < wM (¢;) <dM_(A),0<i<n~1.

-1

H = [ ﬁ7(ﬂ—1)

Proof: Suppose that an error of magnitude 85,0 < k <
6n — 1, has occurred in Iocation 7, 0 < 7 < n— 1. Let
r=(0,0,---, B, 0, 0) be the received vecior. Then the
syndrome S is given by

ﬁj+k
ﬁ?’j+k ] = [ ] ‘

Letting Sy = @ and 7 = 572, where L; is the logarithm
of S; io the base 3,7 = 1,7, we have

S1

— i
§=Hr "[ e

Fr =8 = j+k=L (modp-1),
ﬁ7j+kt.5’7=>-7j+kEL2 {mod p—1).

The linear system of equations
j+k=I; (modp-1)
Tj+k=Ly (modp—1)°

has only one solution, namely,

ja-é-z-“s—l‘-’- (mod n)
k=L;—j (modp-—1)

Thus we can conclude that one error has occurred in location
L=l (mod n) and its magnitude is B*, where k = Ly ~—j
(modp—1). O

4.1.2. Double-Error-Correcting Codes
Theorem 7 LetC be the code defined by the parity-check ma-

1 6 n—1
H= 1 67 ‘B'f(ﬂ.—l) )
' {31}
Then C can correct every error paitern of the form e (z)

1 613
n C can (=) =
e:r’ + e;z?, where w™ () = wM(e;) = 1,0< i % 5 <
n— 1.

Proof: Let v € C be the nansmitted codeword, and e the
error pattern introduced by the channel. Suppose that two
errors each of Mannheim weight one, have occumred in Ioca-
tions Fand &, 0 < 7 < &k € n — 1, and that their magnitudes
are, respectively, 3" and 8", 0<u < v < 5. Let

18 e g* -
H = 1 ﬁ'?' 672 . ﬁ’ﬂc ﬁ?(n-—-l)

1 ﬁ13 ﬁlSj ﬁ13k ﬁ13(n—1)
be the parity-check moattix, and r =
(0,0,---,8%",---,8"",---,0) the received vector. Then,

ﬁj+un +ﬁk+m Sl
S = H‘l"t = ﬁ7j+un + ﬁ7k+vn = S’T
ﬁlsj-}-‘uﬂ_'_ﬁla'k'{'vn 513

is the syndrome. Since A% = 1, then g*" = F%*"g"" =

Tun ﬁlﬂun ﬁun — 6131.:7:. (similarly, ﬁm — ﬁ‘?"vn —
). Therefore, we have the following linear system of
equations

ﬁlSlm.

ﬁ?’(j—i-un) + ﬁ?’(k+m1,) = S’?
13(54un) +ﬁ13(k+0‘n) — 813

{ gty g = 5,
B

Leting # 1" = z, B = ¢, 8 = q, 57 = b, and
513 = ¢, we have
rt+y=a
o' +yT=b @)
18 f 18 = ¢

Code C is capable of correcting any error pattem of two Ham-
ming errors, each of Mannheim weight one if and only if the
system in (4) admits only two solutions.

Assuming that two Hamming errors have occurred, we will
show that:

a) a#l;
b) The system in (4) admits at least two solutions.
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a) I a = 0, then #/7" = —3*** This implies that
b= '87(3+':m) + ﬁ'?(k+vn.) _ 67(k+un) + 67(k+vn) 0.
Similarly, ¢ = 0. Hence, @ = b = ¢ = (. Therefore, no errors
have oceumred, which contradicts our hypothesis. So, a

b)Let (zo, ¥o) be a solution of (4); we shall show thal: T #
vo. If 3o = B77™ = 5™ = g, then gm0 = 1,
however, k—~j+n{v—u) <n—1+n-5 —6n—1 <
6n = 0(/3), a contradiction. Thus, zp # yo. Since the system
in (4) is symmetric in z and y, we have that {yg, 2o) is also
a solution. We can conclude, therefore, that the solutions of
(4) occur always in pairs. Now, we proceed to indicate how
to find them.

In (4), we have y =
nomials

a — x; thus we can consider the poly-

f@)=2"+(@-2)"-¢
and
9(@)=z"+(@-=z)"-b,

where f(z),g(z) € Aplw][z]. Let o be a root of 5 (z),
that is, f(z) = 0. Now, f(a—1zp) = (a—zo)*?
(a—a+29)"® —c =zl + (a—z)° —c= f(z0) = 0.
Therefore, f(zp) = 0'if and only if f(a — zo) = f(¥o) =
Similarly, the same result holds for g(x) (notice that since we
are assuming that two coordinates of r are in error, f(z) and
g(z) have at least two- common roots). Considering then the
polynomials f(z) and g(z), and using Euclid’s Algorithm, it

follows that
3 q(z), h(z) € Aplu] [4]

such that f (z) = g (z) g (z) + h(z), withdh < 5

" (here and thereafter 9p denotes the degree of polynomial
p(x)). After some calculations, we obtain
2

hz) = %(b — 07) (39:1:4 — T8ax® + 650222 — 260,3:1:)

i —(~200* + 65075 + 135" — 49a0),

(e # 0, by a)) Thus elrher Bh = 0 or 8h = 4. Notice that

the common roots to f(z) and g(z) are also roots of A(z).

© 1. I 0h =0, then h(z) must be the null polynonnial (since
f(z) and g(z) admit at least two solutions). However,
h(z) = Oif and only if b = o and ¢ = 3. Now, if
b= a7 and ¢ = a3, we have

g(z) =

o ot ~iv3)\ a(l+14V3) ’
=z(zx—a) T~ = T =

=z (z — a) (£ — aw)® (z + aw?)?.

So, the distinct roots of g(z) are s = 0,z = ¢,z =

20448) = g, and 7 = 2053 = 42, However,

z = 0 implies that 37t*® = 0, which is impossible.
Similarly, z = o implies that y = 0, that is, 85" = (),
which is impossible too. It is easy to check that ew and
—aw? are also roots of f(z). Thus f (z) and g(=) have
only two distinct coramon roots, namely, z; = aw, and
zp =a(l —w);

2. If 8k = 4, then applying Euclid’s algorithm to the poly-
nomials g(z) and h(z), we have

3 5(z), k(z) € Aplw]iz]
such that ¢ (z) = s(z) h(z) + k(z) , with 9k < 3.

Now, since the roots of f(z) and g(z) (and conse-
quently, the roots k () and k{z)) occur in pairs, we have
either 9k = () or 8k = 2 (the polynomial expression for
k(z) is of the form k(z) = ko + k12 + kaz?; for the
sake of brevity, we omit the rather long expressions for
the coefficients ko, k1, and k2).

(@ If 8k = 2, then g(z) and h({z) (and also f (x))
have two common roots, which are exactly the two

roots of & (z).
() If 8k = 0, then k(z) is identically null. Since
E(z)=k+kiz+ koz2, we have
al® + 26a7b + 1696°
= = 5
ko=0=c¢ 56a )]
4014 + 104a7b + 3007
=0=c= Ta (6
40 + 104a7b + 3017
ko=0=¢= 1272 . (7)
Upon equating (5) and (6), we get the following
2nd degree equation in b

m (b) = —17199b* + 165622"b + 637

Now, solving the equation m (b) = 0, we obtain
the roots b = a” and b = ‘T?; Thecaseb—a

has already been analysed in 1. If b = =2, then
¢ = &=, and in this case the only cornmon roots

725°
1o f (z)and g (z) are z; = i(si;\/—él =2(14+w)
— w). Actually, in this

andxzzi(iﬂ:%@

[
case,

(-
e
since ( (3:1:1\/_))

(555

—1
13 =
=a {7'29+

3+z\/_))
3+=J3_9))

2[a(3i;J3_9)]13

729

0 a=0,

)
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(8% + B 6% + §19)(8y — B 81) = S10— 51 (13)
Let 8% + 8% = 8, and 8% 8% = P. Then we have

88 —p%6%8 - f¥S1 = S13— IS, (14)
(8%~ P)(Sr = B%81) = 19— f'¥51. (1)
From (14), we conclude that
P= M (16)
51

(51 # O, since we are assumning that two coordinates of + are
in error). From (15), we obtain

5¢(82 —~ P) — PS5; = S1g. (17)
Substituting (16) in (17), we get
Sysr— S = Ssy o o851 -5 _ o
5 51
which imaplies that
51519 — 57513
== = 18
51513 ~ 52 1%
The term 1513 — 5% # 0, unless only one coordinate of  is
in error [4]. Substituting (18) in (16), we obtain
_ 57519 — 5%
51513~ 5%

After calculating the roots of the equation X2 —S$X + P =0,

namely, _ '
= )661'1 X2 = BGJ

‘we can find 4 and j, the error locations. Now, using the first
two equations of (3), we get

X1

— g% _ [6i
376_ B 51, andy St : B -Sil-
%~ B pY - g~
"Inrlusway, we are able to determmekandl since z = g+t
andy=4*. 0

--Next, we outline an error correction procedure for the
codes defined in Theorem 8,

¢ Decoding Procedure for the Codes Defined in Theorem
8

1. ¥ 5; = 0, then no errors have occurred; set v = r.

2. If S1513 — S% = (, then only one error of magnitude
S* has occun'cd at location . We determine 7 and k as
in the decoding procedure for the codes in Theorem 8.

3. If $1513 — 5% # 0, then two errors have occurred, and
we must proceed as follows:
a) Solve the equation X2 — §X + P = 0, where § =

=1 and P = i’f—gg—%g,whosemotsa:exl
B% and X5 = 8%, This yields the error locations { and

7.
b) Using the fizst two equations of (8), we get
T+y=251
B+ Ty =8
which yields
— 59 — g%
S‘r S =75 andy = Sz 5531_
ﬁ‘GJ‘ ! ﬁ BG:

From z and y, we are able to determine k and I, since
z =4 and y = gt

4, The transmitted codeword v € C is obtained by calcu-
lating the difference v = r — e.

4,2. Codes over the Gaussian Integers

For codes defined over the Gaussian integers Zii], analogous
theorems to the case Z[w] hold with appropriate modifica-
tions,

5. SOME HAMMING DISTANCE PROPER-
TIES OF CODES OVER ALGEBRAIC IN-
TEGERS

Letp=1 (mod6)andn = (p—1)/6. Suppose 7, € Z

sachthat 0 < r < n,t < p—1and ({,p — 1) < 6. Consider

the matrix

1 ﬁ n—1
[ gt . (gt
El ‘:611+1 o :(‘B‘r‘f+1)n-1

where [ is a primitive element of .4, as defined previously.
Then we have the following

Proposition 1 Ary r + 2 columns of H are linearly depen-
dent.

Proof: Straightforward.

Proposition 2 Any v + 1 columns of H are linearly indepen-
dent.

Proof: Let k;,; denote the j-th column of f, that is,

hij — [ ﬁij (ﬁt+1)ij (ﬁft'i'l)ij ]T’
i=1,2,...,7 + 1. Further, let L be the matrix formed by
the colurans 4y, . . ., 4r41 of H, that is,

g gz ... g
L (ﬁ1+1)i1 (ﬁt+1)z‘z . (,BH.I)'."'H'
- : : : ’
(B (Y L (Y

Proving that the 7 4 1 columns of H are linearly independent
is equivalent to proving that det L 7 0. Now,

det L= 2472 .. o+ det I = f=i=1% det L,
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which is impossible.

Now suppose that an error pattem of the form e(z) = e;z7,
where w™ (e;) = 1, and 0 < j < n — 1, has occurred. Thus,
51 % 0. Then from (4), we have

z= [t =g
27 = GO = g7

13 _ Lps(a‘+«w) =c=g’3

From b = a” and ¢ = 43, we have that k () is identically
null. Then, as in Case 1., the common roots of f (z) and

(x)areo:—O:J:._az=awm_a(1—w)——aw2
Therefore, the solutions of (4) are (a,0), (0, 2), (aw, —aw?),
and (—aw?, aw). _

a)Ifz =0, theny = ¢ = FT¥" = gl therefore,
jt+un=Li=j (mod n). Thus one error has occurred at
location 7.

b) If £ = g, then y = 0; therefore, z = 1" = glr,
Hence, j + un = I; = j (mod n). Thus one error has
occurred at location 7.

)Xz = aw, then z = gFHengn = gi+n(stl) = glz
hence j +n(u+1) =Ly =3 (mod n). Thus one error
has occurred at Iocauon 7.

d) If z = —aw?, we have that z = Frgitengn =
FIuts) o ﬁL3 hence j + n(u+5) = Lz = j
(mod n). Thus one error has occurred at position 7.

So, if b = a7, then one error has occurred at position 7. O

Remark: Code C defined by the parity-check matrix H of
Theorern 7 can also comect every error pattern of the form
e(x) = e’ + e;z?, where wM (&;) < 2, w™ () < 2,
0<t<j<n~1,ande; and e; are 6th roots of unity,

Next, we outline an error correction procedure for the
codes defined in Theorern 7.

¢ Decoding Procedure for the Codes Defined in Theorem
7

1. If @ = 0, then no exrors have occurred; set 7= v.

2. Ifb=a", and ¢ = a3, then only one error has occurred,
and we proceed as follows. The location 7 of the error
is7=L; (modn), where Ly is such that 5; = g=,
and its magnitude is ¥ = g7,

3. If b # a7 or ¢ # a'3, then two coordinates are affected,
each one by a Mannheim error of weight one. Then we

must proceed as follows,
o Solving k(z) = 0 (or éx) =, or g(x) = 0),
we get the roots z; = , and 7o = 3%, Since
z1=FT"" and zo = ﬁk""’“, we have

j=L; (modn)
k=Ls; (modn)
and this gives the error locations.

4. The error magnitudes are given by

Y=g
{ Yp=phe

5. The transmiited codeword v € € is obtained by calcu-
lating the difference v = r— e.

Theorem 8 Let C be the code defined by the parity~checkma-
trix

1 57 ... ﬁﬂT—l 3
H= 1 gm B Ig)n—-l
1 ﬁlg (ﬁlg)n—l

Then C can correct every error pattem of the
form e(z) ezt + e;z?, where 1 < wM(e),
Me;) <dM . (A),0<i#£j<n—1

Proof; Let v & C be the transmitted codeword, and e the
eor pattern introduced by the channel. Suppose that two
errors have occurred in locations i and 7,0 <1 < 7 <n—1,
and that their magnitudes are, respectively, 3 and 3, where
0<k<p—1,and0<I<p~1=6n Let

18 F g
e |1 B B Y. (T
R e
1 ﬁlQ (ﬁlg)i (ﬂlg)j (ﬂlg)n—l
be the panty check  matrx, and =
(0,0,---, g, 8- -, 0) the received vector. Then,
peas ] T
+ g
S=Hr ﬁ132:+.'= 4 13_1:+z 313
ﬁlg‘b-l-k 4 ﬁlQJ-H SlQ

is the syndrome. Letting z = #* and y = #7*, we obtain
the following linear system of equations

z+y =5

8%z + 8%y =5,
ﬁlEtm_l_ ﬁl2jy - Sl3
ﬁlai:l:-l- ﬁlSjy — 319

®

Code € can correct two errors if and only if the system in (8)
admits only one solution. Since we are assuming that two
coordinates of  are in erroz, the system in (8) admits at least
one solution. We will show that there is exactly one solution.
From z + y = 51, the system in (8) becomes

(8% — %)z = 87 — 66".5'1
{ (B — g1 ¥)g = Gy3 — f2 J‘5’1 ,
(ﬁlSz ﬂlBJ)SG =5 19 —ﬁl _751
which implies that
(8% — f¥)z = 57 — 8% 34, 9
(8% - B (B% + )z =513 - %S,  (10)

(8% - Jeh) (ﬁui + 585 4 ﬁlzj) T =89 — 0%3,.
(11)
Now, substituting (9) in (10), and in (11), we get:

(12)
5

(8% + %) (S7 = ¥ Sy) = S5 — f*¥5,,
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where
1' 1_ ... 1_
6t1]_ 6‘&; ﬁtz,.
Ly = . . .
ﬁr‘til ﬁr.t-iz ﬁr.tz,.

Thus det L = 0 if and only if det Ly = 0. Since det L; isa
Vandermonde determinant, it follows that

detIy=+ J[ (8%~
0<i<k<r+1

ﬁt‘ik).

Hence, det Ly = 0 if and only if there exists j,k € Z with
7 < ksuch that 8*% = %, Now,

B = g s ) = 1 s 4(i; —43) =0 (mod 6n).

However, ged(t,6n) = s < 6 implies that ged(%,82) = 1.
Suppose that £(i;~i;) =0 (mod 6n). Thus 6n | t(zj—z;,)
Hence, &2 | %(i; — i), and then, 82 | (4; — i), because
ged(%, 5") =1 Smceﬁ > sand (z_.,-——zk) < n—1,then &2 >
n, and therefore & > (i;—1,), thatis, & cannot divide (zJ
i). Hence, t(z, —ix) 20 (mod Gn) which implies that
B4 # %, fori < k. Thus det Iy # 0, and consequently,
the 7 + 1 columns of H are linearly independent. O

The following two corollaries are immediate consequences
of Propositions 1 and 2.

Corollary 1 Let C be the code defined by the parity-check
marix

1 ﬁ n—1
1 ﬁt-l-l ﬁt+1 nel
H=1 . | ( ) , (19)
.1 -ﬁrt+1 .(ﬁrt+1)n._1
with (,p—1) £6,0<r<(p-1)/6, £<p—1 Then

the minimum Hamming distance of C is d®(C) = r + 2.
Therefore code C can correct up to | (v + 1)/2] (Hamming)
ervors. .

Corollary 2 Code C defined by the parity-check matrix H in
3, under the hypotheses of Corollary 1, are MDS with respect
to the Hamg:_ing distance.

All the results in this section hold if we consider the prime
numberp =1 (mod4),n = (p—1)/4, ({,p—1) < 4
and {3 replaced by o, where « is an element of 4 of order
4n=p—1,suchthat o™ =i and A = Z[i]. -

6. MULTIPLE ERROR CORRECTION

The purpose of this section is to show how to make use of the
Berlekamp-Massey algorithm [2], [7], and of Fomney’s proce-
dure [5] to decode codes over algebraic integers when mmlri-
ple Hamming errors occur. We focus mainly on codes over
the algebraic integers of Q(/—3). However, it is straightfor-

ward t0 adapt the results to Q(v/—1).
Let C be the code defined by the parity-check matrix,
1 ﬁ 62 ﬁn—l
1 67 ﬁ14 (ﬁ'?)n—l

1 ﬁﬁH—l ﬁ2(65+1) ﬁ(n—l) {6¢+1)

where 3 € A= GF(p),p=
o(f) =6n,and t < n.

Let e(z) = ej, 2™ + €5,3 + ... + e, 27 be the exror
pattern, where v < |(t + 1)/2] represents the number of
symbols in error in the received codeword. The syndromes
T; are given by

(mod 6) is a prime number,

T; = Spis = e(8%7%)

= &5, (B% ) + 5, (B )% +

(20)
e, (55, @D

fori=1,2,...,t+ 1.
Let
Y‘:‘-:ej-u i=1,2,--,0,
and ] .
Xizﬁji: 1=1,2,--+,v
Then

1
Ti=) Y X5 i=1,2,...,t
j=1

+ 1. (22)

Now let o(X) be the error locator polynomial, defined by

o(X)=J[(X—X§) = X*+01X""1+.. +0,1X 0y,
=1

(23)

where o1,02,...,6, are the elementary symmet-

ric functions of the emor location numbers X¥%,XS,

.., X8,

Multiplying the equation in (23) by ¥;X5"° and substi-

tuting X¥ for X in the same equation, we get

Y; Xf(i—}-v)--s + o1 Xf(i_.pu-l)—s 4 24)
+o, Y XIS, 1<y ()
Now summing the equations in (24) forl < 7 € v and

making use of equation (22) yield
ﬂ+y+o’1T-i+y—1+<-+o-u_1Ti-+1+ayﬂ = O, t=1,.,i+1,

This is a set of linear equations that rejates the syndromes
to the coefficients of o X). The first » equations can be writ-
ten in matrix form as

5 T T, Ty L+l
I T3 Lot Ou—1 =Ttz
. . . . = : )
T, Tv+1 Tov1 ) ~Ta,

where T; = Sgi—s
This equation has a unique solution if and only if the syn-
drome matrix (7). x. is nonsingular.

Proposition 3 The syndrome matrix

T Ty I,
M = T2 ’1.13 T,u'+1
Ty Tyn T2.u—1
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equivalently,
ST Sr SS;J.—S
Sy S1a Sep+1
. . - H
Sep—5  Sepi1 S1gp-11

is nonsingular if p = v. If ¢ > v then M is singular.

Pro'6f: Consider the matrices

1 1 e 1
x5  xX§ ... X5
A= . . -F )
. Xflwﬁ Xglc—s 366
M
and
“BX, 0 .- 0
0] YoXo --- 0]
B= . . . )
0 o0 Y. X,

where ¥; = X; = 0if § > v. Using the equations in (22),
itis easy to verify that M = ABA®, where A? denotes trans-
pose of A. Thus

det M = det A - det B - det A,

If o = v, then det B = [];_; ¥:X; is nonzero for the ele-
ments ¥; and X;, ¢ = 1,2,..., v, are nonzero. Also, det .4
is nonzero for 4 is a Vandermonde matrix and the elements
X i=1,2,...,uv, are distinct pairwise. Hence, det M # 0,
and therefore, M is nonsingular. On the other hand, if 1 > v,
then det B = (, which implies that det M = 0, and therefore
M issingular. O N

Thus, whenever the Hamming weight of the emor pattern
is less than or equal to v, it is possible to determine the po-
sitions in error in the received vector, by solving the lnear

system of equations in (26). This set of equations can be effi- -

ciently solved in the unknowns o7, . . . , &, by the Berlekamp-
‘Massey algorithm [2],{7]. Then, knowing 1, . .., ¢, enables
" us to determine the error locator polynomial whose roots are
X8, X5, , X5 (where X; = §%,i=1,2,--+,vare the er-
ror locator numbers), and they can be found by Chien search
[3]. From these roots, the error positions are easily deter-
mined, '
Finally, the error values are determined from the equations
in (20), which can be solved by Forney’s procedure I5]. By
using standard methods, see for example, [3], [6], it is not
difficult to show that each error magnitude ¥;,1 < 7 < v,
can be determined by

v—1
2 Tqg1 - Tu—l
I=0

Yj = , @n

v=1
X755 o x5

where 1 < 7 < v, and the coefficients ¢4 can be recursively
calculated by

Fis =0 T Xf * T4i—1-
3 .
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