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Construction and Analysis of Quaternion
MIMO-OFDM Communications Systems

L.G.P. Meloni, J.L. Hinostroza N., and O. Tormena Jr.

Abstract—Wireless communications systems with progressively
higher spectral efficiency have been investigated in past decades.
A promising area of research is the use of hypercomplex
algebras, notably, the use of the quaternion algebra. This pa-
per considers the construction of multiple-input-multiple-output
(MIMO) orthogonal frequency division multiplexing (OFDM)
using the algebra of quaternions. Several construction techniques
for quaternion orthogonal code designs have been proposed in
recent years, which offer the possibility to explore diversities in
various domains, such as space, time, frequency, and polarization,
in addition to combinations thereof. This paper presents a
formulation for quaternion MIMO-OFDM in matrix form as
an extension of the classical formulation that uses complex
variables. Quaternions allow elegant representation of pairs
of radiant elements in physical antennas configured for cross-
polarized propagation. Several simulations validate the proposed
method in diverse scenarios for wireless communications, in
which combined diversities have been exploited.

Index Terms—Quaternion MIMO-OFDM, quaternion Fourier
transform, combined diversities, frequency-selective fading chan-
nels, cross-polarized antennas.

I. INTRODUCTION

The search for wireless communications systems with bet-
ter spectral efficiency or low-complexity has continued over
recent decades. One promising field for this aim is the use
of hypercomplex algebras, among which we highlight the
quaternions. Quaternions have attracted the attention of re-
searchers in many fields of engineering in past decades. In
present times, the most widespread practical applications of
quaternions have been in 3D animation to solve the problem
called gimbal lock instability. This instability occurs when
the orientation of a sensor cannot be determined uniquely by
a mathematical representation using Euler angles, in which
case, the 3D system looses one degree of freedom [1]. In
inertial navigation systems, the application of quaternions
using sensors (gyroscope and accelerometers) in aerospace
vehicles has facilitated the study of these dynamic systems
and error propagation equations [2].

Quaternion Laplace and Fourier transforms are more recent,
dating from beginning of 1990s [3]. However, spectral repre-
sentations with hypercomplex commutative algebra were de-
veloped prior to this work; they have appeared in 2D imaging
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studies in nuclear magnetic resonance [4]. In 1998, Sangwine
and Ell concluded that an arbitrary root of -1 in 3D space
could be used as the imaginary unit in the quaternion Fourier
transform, which also allows one to apply this transform
to 1D signals [5]. The representation of a quaternion in its
polar form allows the formulation of instant frequency and
amplitude modulation of ortho-complex signals based on the
quaternion Hilbert transform [6]. Another area of interest
is the application of quaternions for colour images, which
are now treated as vector fields. Ell and Sangwine [7] have
shown that the quaternion Fourier transform is appropriate
for describing the spectral content of images. They have also
shown applications of quaternions for linear filtering of colour
images, which have no equivalent forms with iterated filters
when using separate colours.

The applications of quaternions in wireless communications
have also arisen at the frontier of knowledge. Quaternion
algebra is well suited for the description of MIMO channels,
for which antenna elements are configured for the cross-
polarization operation [8]. Quaternions for diversity schemes
for increased spectral efficiency has also been studied in the
design of space-time-polarization codes [9]. In a recent study,
one of the authors has introduced the use of quaternions and
hypercomplex commutative algebras to OFDM modulation
schemes in [10]. It was shown that the one-dimensional
quaternion Fourier transform is applicable to OFDM schemes.

The concept of MIMO-OFDM was first described by
Rayleigh and Jones before the turn of the century [11]. The
first widespread application of the technology was in the
IEEE 802.11n standard [12]. The application of concepts from
MIMO-OFDM are also responsible for the diversity gains
observed in current technologies, like IEEE 802.11ac, IEEE
802.16 (WiMAX) and LTE (Long Term Evolution) mobile,
as well as expected gains for future technologies like IEEE
802.11ax and 5G mobile [13].

In this paper, we extended MIMO diversity coding to
quaternion OFDM. MIMO has been introduced to complex
OFDM as a direct extension of Alamouti space-time coding
to this modulation technique in beginning of 2000s [14],
[15]. The importance of MIMO transmission with cross-
polarization antenna elements can be observed in recent field
tests conducted by Japanese public radio broadcasting (NHK)
[16]. Tests for terrestrial digital television signals in Super Hi-
Vision (8K) format have successfully reported transmission
over long distances, showing that it is possible to send huge
amounts of data in the 6-MHz UHF channel. These results also
motivate the present work, in which we show that MIMO-
OFDM modulation schemes can be incorporated in systems
for next-generation digital television, in addition to having
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potential applications in high-capacity link back-hauling and
other wireless applications.

In typical MIMO communication systems, as described in
[17], antenna spacings of at least half of the link wavelength
at the subscriber unit and ten wavelengths at the base station
are required to achieve significant multiplexing and/or diver-
sity gains. Thus, the possible use of co-located orthogonally
polarized antennas is an effective alternative for space and
cost reduction. Another possibility in these communications
schemes (which do not use cross-polarized antennas) is to
employ a pair of spatially separated antennas at both the
transmit and receive sides. MIMO-OFDM systems, presented
in the paper, allow to explore diversity modalities in space,
time, frequency, and/or polarization, offering very flexible
communications designs. Several simulation scenarios are
presented in paper, including comparision to complex cases,
show the potential for improving the above-mentioned gains
and further allowing use of highly efficient orthogonal code
designs.

This article is organized as follows. In Section 2, classical
MIMO-OFDM is reviewed for space-time and space-frequency
diversities, followed by a review of OFDM systems using
quaternion mathematics. Section 3 presents a formulation
of quaternion MIMO-OFDM, several quaternion orthogonal
designs, and the maximum likelihood decoders. In Section
5, we present several simulation studies in different wireless
communications scenarios showing the advantages of using
quaternions for diversities in variate domains. Finally, Section
6 concludes the paper.

II. CLASSICAL MIMO-OFDM SYSTEMS

OFDM is a technique for digital modulation that is widely
used in wireless communications. It is typically implemented
using discrete Fourier transforms (DFTs) yielding high data
rates in frequency-selective fading channels. OFDM is applied
to many modern communications systems such as wireless
mobile communications, broadcasting of digital radio and
television signals, and wireless LAN. The discrete Fourier
transform can also be viewed as a modulation technique
with several transmit subcarriers, which are equally spaced in
frequency; these subcarriers are defined by the base functions
of the transform. For transmission, not all subcarriers are used
for data modulation: some are reserved as guard frequen-
cies to provide robustness against interference from adjacent
channels (Ng), and some are reserved for synchronization
of pilot subcarriers (Np). Pilot carriers are also used for
channel equalization. Message bit-streams are grouped for
modulating subcarriers of all other Fourier transform base
functions (consisting of Nl payload subcarriers).

In the transmitter, serial-to-parallel data conversion allows
mapping of the message bit-stream according to the constel-
lation in the modulation, so as to form a discrete-Fourier
transform vector of size N = Nl + Ng + Np . Normally, N
is chosen to be a power of 2 to take the advantage of fast
Fourier transform algorithms. Thus, OFDM can be viewed as
a block or symbol vector transmission system. For each OFDM
symbol, N carriers are prepared for computing the inverse

Fourier transform. Therefore, this vector is time dependent,
changing at mTs for each OFDM symbol period Ts , and
containing N subcarriers, that is

Xm = [Xm[0] Xm[1] . . . Xm[N − 1]]T, (1)

where T represents the vector transpose. This vector is then
submitted to the inverse Fourier transform. In the time domain,
the last Nc block samples are repeated at its beginning,
creating a cyclic extension which is used as a time guard
interval. Typically, Nc is chosen to be 1/4, 1/8, 1/16, or 1/32
of the size N of the FFT. Therefore, in the time domain, the
OFDM symbol has a length of Ns = N + Nc , which is cyclic
extended into a vector

xc
m = [xm[N −Nc] . . . xm[N −1] xm[0] . . . xm[N −1]]T . (2)

It is important to note that it is possible to use different
modulation techniques for different groups of subcarriers. Note
that during the period Ts = NsT , the vector xc

m is serially
transmitted by the sequence x[n], where T is the sampling
period.

In typical OFDM modulation, the signal sequence x[n] is
transmitted through a frequency-selective fading channel of
order L, such that the causal response of the channel link is
hm[n] = 0, for n < 0 and for n > L. To avoid inter-symbol
interference, the time guard interval is Nc ≥ L. Typically,
we assume that the channel response is invariant during the
OFDM symbol period, in which case, the receive signal is
simply the convolution of hm[n] with the sequence x[n], i.e.,
y[n] = x[n] ∗hm[n]; however, hm[n] varies for each symbol m.
At the receiver side, the sequence y[n] is segmented symbol-
to-symbol, resulting in the sequence ycm[n].

After removing the cyclic samples of the time guard inter-
val, one obtains a received time vector of size N

ym = [ycm[Nc] ycm[Nc + 1] . . . ycm[Nc + N − 1]]T . (3)

Convolution in the time domain corresponds to the product
in the DFT domain, that is, for the cyclic-prefix-removed
sequences,

Ym[k] = Xm[k]Hm[k] + Zm[k], k = 0, 1, . . . , N − 1, (4)

where Hm[k] is the DFT of hm[n], and Zm[k] is the DFT of
the channel noise at OFDM symbol m. This expression can
be expressed in matrix form as

Ym = XmHm +Zm, (5)

where Xm is a diagonal matrix whose elements are the DFT
sequence Xm[k], Hm and Zm are respectively the frequency
response of the channel and the DFT of the channel noise, both
refered to the OFDM symbol m. This equation means that the
OFDM with a cyclic prefix transforms a frequency-selective
fading channel into N perfectly flat fading sub-channels.

A. Transmit Diversity in Time Domain

MIMO technique has been introduced to classical OFDM.
The direct extension of Alamouti space-time coding to this
modulation [14] requires two OFDM symbols, as shown in
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Fig. 1. This code application achieves diversity gains over fre-
quency-selective fading channels. Note that this scheme will
use one OFDM engine for each transmit antenna. Therefore,
after the serial-to-parallel conversion block, two data blocks
are created

Xm = diag{Xm[0], Xm[1], . . . , Xm[N − 1]},
Xm+1 = diag{Xm+1[0], Xm+1[1], . . . , Xm+1[N − 1]}.

At the upper transmitter in the first OFDM symbol time slot,
Xm is transmitted, followed by −X∗

m+1 in the second time slot.
At the second transmitter, Xm+1 is transmitted first, followed
by X∗m.

The equivalent space-time block code transmit matrix is

C =
[

Xm Xm+1
−X∗

m+1 X∗m

]
,

whose elements are the OFDM symbol matrices and its con-
jugates. The first row of the matrix C corresponds to time slot
m and the second row corresponds to time slot m+1; the first
column of matrix C corresponds to the signal transmitted from
the 1st antenna and the second column from the 2nd antenna.
Because H (1,1)m and H (2,1)m are the respective DFTs of the
channel unit responses h(1,1)m [n] and h(2,1)m [n], where h(r,s)m [n]
represents the channel fading gain of the link from transmit
antenna r to receive antenna s, and because these responses
are constant during two consecutive OFDM symbol periods,
the correspondent received vectors is given by Y = CH +Z,
or, explicitly,[

Ym

Ym+1

]
=

[
Xm Xm+1
−X∗m+1 X∗m

] [
H (1,1)m

H (2,1)m

]
+

[
Zm

Zm+1

]
,

where Zm and Zm+ are noise components. By rearranging
the above equation, one can write[

Ym

Y ∗
m+1

]
=

[
H(1,1)m H(2,1)m

H(2,1)∗m −H(1,1)∗m

] [
Xm

Xm+1

]
+

[
Zm

Z∗
m+1

]
, (6)

where H(1,1)m and H(2,1)m are diagonal matrices, and Xm and
Xm+1 are column vectors. By neglecting noise components in
the above equation, estimates X̂m and X̂m+1 of the transmitted
information at receiver are[

X̂m

X̂m+1

]
= Hm

[
Ym

Y ∗
m+1

]
= δ−1

[
H(1,1)∗m H(2,1)m

H(2,1)∗m −H(1,1)m

] [
Ym

Y ∗
m+1

]
,

(7)
whereHm is the Alamouti linear decoding matrix. This matrix
is the inverse of the system matrix in (6), and its opposite
determinant δ = (‖H(1,1)m ‖2F + ‖H

(2,1)
m ‖2F) is the sum of the

Frobenius norm of the respective channels. Explicitly, these
estimates are, by inserting (6) in (7), given by

X̂m = δ
−1(H(1,1)∗m Ym +H(2,1)m Y ∗m+1) =Xm +Z

′
m

X̂m+1 = δ
−1(H(2,1)∗m Ym −H(1,1)m Y ∗m+1) =Xm+1 +Z

′

m+1,

where Z
′
m and Z

′

m+1 are combination of noises filtered by
the channel responses. Therefore, these estimates are the
transmitted symbols plus noise components filtered by the
communication links. The above combined signal-plus-noise
components are then sent to the maximum likelihood detector.

B. Transmitter Diversity in the Frequency Domain

Diversity can also be exploited in the frequency domain
[15]. Fig. 2 presents a block diagram of a system using
orthogonal space-frequency block coding with two transmit
and one receive antennas. This system is a simple extension
of space-time coding to the frequency domain.

As in the case of transmitter diversity in the time domain,
one OFDM engine is used for each transmitter antenna. After
the serial-to-parallel conversion block, the data symbol Xm =

[Xm[0] Xm[1] . . . Xm[N − 1]]T is Alamouti coded into
two matrices as follows

X(1)m = diag{Xm[0],−X∗m[1], . . . , Xm[N − 2], X∗m[N − 1]},
X(2)m = diag{Xm[1], X∗m[0], . . . , Xm[N − 1], X∗m[N − 2]}.

Unlike space-time diversity, in the same OFDM block instant
m, X(1)m is transmitted from the first antenna while X(2)m is
transmitted from the second antenna. For a better description
of this modulation technique, it is useful to decompose the
matrix Xm = diag{Xm} into its even and odd components
using the following notation Xe

m, Xo
m. By doing the same for

X(1)m and X(2)m , we obtain X(1)em , X(1)om , X(2)em , and X(2)om . Thus,
the equivalent space-frequency block coding matrix will be

C =
[

Xe
m Xo

m

−Xo∗
m Xe∗

m

]
.

The received signal vector is Ym = CHm +Zm. In a similar
way to that in the previous section, we use a rearranged
channel model

Ym = H(1,1)m X (1)m +H(2,1)m X (2)m +Zm,

where H(1,1)m and H(2,1)m are diagonal matrices whose diagonal
elements are the respective unit responses of h(1,1)m [n] and
h(2,1)m [n]. Splitting Ym into its even and odd components, and
doing in similar way for matrices H(1,1)m and H(2,1)m , we obtain

Y e
m = H(1,1)em X (1)em +H(2,1)em X (2)em +Zem

Y o
m = H(1,1)om X (1)om +H(2,1)om X (2)om +Zom,

where Zem and Zom are noise components. In similar way
to space-time coding, using linear decoding Alamouti matrix
and considering even and odd adjacent propagation channel
responses as approximately equal, this conducts respectively
to the estimates of X̂e

m and X̂o
m at the receiver:

X̂e
m = δ

−1(H(1,1)e∗m Y e
m +H(2,1)em Y o∗

m ) =Xe
m +Z

e′
m

X̂o
m = δ

−1(H(2,1)e∗m Y e
m −H(1,1)em Y o∗

m ) =Xo
m +Z

o′
m,

where δ = (‖H(1,1)em ‖2F + ‖H
(2,1)e
m ‖2F), and Ze

′
m and Zo

′
m are

combinations of filtered noises by the channel responses.
These terms are the even and odd components of the estimate
X̂m, which are sent to the maximum likelihood detector.

Other SF codes proposed in the literature guarantee full-rate
and full-diversity transmission in MIMO-OFDM systems [18].
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Fig. 2. Space-Frequency OFDM transmit diversity system.

III. OFDM SYSTEM USING QUATERNION ALGEBRA

The design of hypercomplex OFDM modulation schemes
using quaternions and hypercomplex algebras were proposed
by one of authors in [10]. These schemes use dual polarized
antennas for complex signal transmission [8].

OFDM is based on the discrete Fourier transform. Several
formulations of the Fourier transform have been defined for
hypercomplex algebra. The first definition in context of nuclear
magnetic resonance fields was proposed in the late 1980s [4].
For the quaternion OFDM scheme, results [10] show that the
quaternion Fourier transform of 1D signals is suitable for this
modulation technique

X[k] =
N−1∑
n=0

e−µ2πkn/N x[n], (8)

where, in general, µ is an arbitrary root of -1, and x[n]
is a quaternion sequence. The quaternion OFDM transmitter
system is illustrated in Fig. 3. In general, a forward error
correction code can be applied to the binary sequence. Other
important modules used in OFDM schemes, such as carrier
and frame synchronizers, and time and frequency interleaving,
can be included as need. At the transmitter input, a serial-to-
parallel conversion block stores N samples for computing the
inverse Fourier transform.

The quaternion Qm in the constellation uses the Cayley-
Dickson (CD) form

Qm = Qm,1 +Qm,2µ, (9)

where µ is either i, j, or k, and Qm,1 and Qm,2 are complexes
into orthogonal Argand domains to µ and Qm ∈ H, respec-

tively, (in the quaternion system). The simplex part of Qm is
defined as S{Qm} = Qm,1 and the perplex part is defined as
P{Qm} = Qm,2. The quaternion representation in the above
form is called symplectic composition; it allows to resolve a
quaternion into two perpendicular planes intercepting at the
origin of the 4D space. Each of these planes is an Argand
plane [5]. Incoming bit-streams are separated into two groups
b0,i and b1,i (for 0 ≤ i ≤ Nb); each of these groups defines an
independent constellation, such that the entire constellation has
22Nb entries [10]. It is possible to apply distinct modulations
to different subcarriers.

The next block performs the inverse quaternion discrete
Fourier transform, which can be implemented efficiently using
classical fast Fourier transform algorithms [7], [19]. The
complexity of these algorithms, without taking the complexity
of the necessary Cayley-Dickson decomposition into account,
is twice that of the classical Fourier transform.

The cyclic extended vector is prepared for transmission,
which, in addition to providing subcarrier orthogonality, fa-
cilitates block synchronization. When using the time-shifting
property of the quaternion Fourier transform, any consecutive
N samples of the OFDM symbol m could be used; however,
the last symbols, as indicated by (3), are better for mitigating
inter-symbol interference (ISI).

The last blocks of the transmitter perform parallel-to-serial
conversion, followed by the symplectic decomposition (con-
version of quaternion into two complex numbers). In this
way, the signals are transmitted by two independent antenna
arrays using cross-polarized waves. The last transmitter blocks
are typical in wireless communications systems; these blocks



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 32, NO.1, 2017. 84

Quaternion

IFFT

Linear

PA

Cyclic 

extension

bits

Pulse

shaper

and DAC

Cayley-

Dickson

decomposition
Cross-

polarized

antennas

Quaternion 

modulation

Serial to

parallel

Parallel

to serial

Quaternion

FFT
Cyclic

Extension

removal

bits

LNA

Equalizer
Quaternion 

demodulation
Parallel to 

serial

Qm

ib ,0

ib ,1

fc

ADC
Cayley-

Dickson

composition

Serial to

parallel

Fig. 3. Quaternion OFDM transmitter and receiver.

consist of a pulse shaper, a digital-to-analogue converter, a
mixer, and power amplifier blocks.

At the receiver, after analogue-to-digital and down-conver-
sion the first step is to compose the symplectic form using (9);
next, data is buffered for performing the Fourier transform.
First, cyclic extension is removed before applying the direct
quaternion Fourier transform. The data equalization may be
conducted in the Fourier domain, as illustrated in Fig. 3, but
it might be applied in the time domain as well. The symplectic
decomposition is performed inside the hypercomplex demod-
ulation block; thereafter, a classical demodulator can be used.

A. Cross-polarized Link Model

It is important to mention that when using cross-polarization
transmit and receive antennas, a link model of the channel will
be [8], [9]

H×m =
[
Hhh
m Hhv

m

Hvh
m Hvv

m

]
, (10)

where each element has complex channel gains. Hhh
m and Hvv

m

are channel gains for the same polarization (for instance,
horizontal or vertical), and Hhv

m and Hvh
m are gains for cross-

polar scatter, received signals with different polarization due
to reflection or twist between transmit and receive elements of
the antennas. Using the following notation, which makes use
of the Cayley-Dickson decomposition, a quaternion symbol
Sm = Sm,1+Sm,2µ can be represented as [Sm,1, Sm,2], which are
the simplex and perplex parts of Sm. After symbol transmission
over the cross-polarized link defined by the above equation,
the received quaternion symbol plus noise is Ym = SmH×m + Z ,
or, explicitly,

Ym = [Ym,1,Ym,2]
= [Sm,1, Sm,2]H×m + [Z1, Z2]
= [(Sm,1Hhh

m + Sm,2Hvh
m), (Sm,1 Hhv

m + Sm,2Hvv
m)]

+ [Z1, Z2], (11)

where Z1 and Z2 are complex additive noise sources with
identical variance.

B. Link Characterisation of Dual-polarized Antenna

Ideally, the cross-polar scatter elements Hhv
m and Hvh

m of (10)
should be zero [17]; however, this does not hold true, because
of two mechanisms of depolarization: the use of imperfect
cross-polar isolation (XPI) antennas and the presence of wave
scattering, represented by a cross-polar ratio (XPR) in the
propagation channels. These effects are combined into an
overall cross-polar discrimination parameter (XPD), which is
defined as the ratio between the power in the orthogonal (or
cross-polar) elements to the received power in the co-polar
elements when the antenna is excited with a polarized wave
in the co-polar element.

In simulations section, we will use a simple approximation
to these mechanisms:

H×m = MrH⊥
mMt, (12)

where
H⊥
m =

[
Hhh
m 0

0 Hvv
m

]
(13)

represents a cross-polar channel with infinite XPI, and Mt and
Mr represent coupling matrices at, respectively, transmit and
receive sides by

Mt = γt

[
1 √

χt√
χt 1

]
and Mr = γr

[
1 √

χr√
χr 1

]
, (14)

where scalar XPI is defined as χ−1
t and χ−1

r at transmit and
receive antennas, respectively. We also assume that Hhh

m and
Hvv
m are independent channels. γt and γr are gain factors used

for channel link normalisation, given by

γt =

√
2

1 + √χt
and γr =

√
2

1 + √χr
. (15)

IV. QUATERNION MIMO-OFDM SYSTEM

The proposed quaternion MIMO-OFDM (QOFDM) de-
sign uses an orthogonal space-time-polarization block (STP),
space-frequency-polarization (SFP) block codes, or these two
modes combined into space-time-frequency-polarization cod-
ing. Fig. 4 illustrates the quaternionic MIMO-OFDM system.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 32, NO.1, 2017. 85

At the transmitter, Mt dual-polarized antennas are used. Mr

dual-polarized antennas are used at the receiver. In general, the
frequency-selective fading channel for each pair TX-RX has
L independent delay paths, and this channel remains constant
over the QOFDM symbol period. The unit response from the
transmit antenna r to the receive antenna s for each pair of
elements of the cross-polarized antennas is

hZ(r,s)m [n] =
L∑
l=0

α
Z(r,s)
l

δ(n − nZl ), (16)

where αZ(r,s)
l

is a complex gain of the lth path between link
r and s, nZ

l
is the delay of the lth path, and symbol Z is

a mnemonic for hh, hv, vh, or vv polarization cases. The
element-to-element channel frequency response is expressed
by

HZ(r,s)m [k] =
L∑
l=0

α
Z(r,s)
l

e−j 2πk
T nZ

l , k = 0, 1, ..., N − 1, (17)

where the subcarrier separation is 1/T , and j is the complex
imaginary unit. In this way, a quaternion channel response
from transmit antenna r to receive antenna s can be represented
by quaternion vector

H×(r,s)m = [H×(r,s)m [0]TH×(r,s)m [1]T · · ·H×(r,s)m [N −1]T]T . (18)

Elements of H×(r,s)m can also be separated into vectors for
each link of the cross-polarized antennas

HZ(r,s)m = [HZ(r,s)m [0]HZ(r,s)m [1] · · ·HZ(r,s)m [N − 1]]T, (19)

which are link channel responses in (17).
The input bitstreams are pairwise separated into two groups

b0,i and b1,i , for 0 ≤ i ≤ Nb , forming two 2Nb -ary complex
symbols, which are mapped onto two perpendicular Argand
planes intercepting at the origin of the 4D space [10]. Using
the CD composition (9), quaternion values Qm[k], for k =
0, 1, ..., N − 1 are created. These N quaternions are grouped
into a column vector Qm to be OFDM modulated using Nl

subcarriers.
A set of Mb consecutive OFDM blocks, represented by Qm,

Qm+1, ..., Qm+Mb−1, are mapped onto a diversity codeword,
which is expressed by the following MbN × Mt matrix

C =
[
CT1 CT2 . . . CTMb

]T
, (20)

where each element Cm is defined as

Cm =


C(1)m [0] C(2)m [0] . . . C(Mt )

m [0]
C(1)m [1] C(2)m [1] . . . C(Mt )

m [1]
...

...
. . .

...

C(1)m [N − 1] C(2)m [N − 1] . . . C(Mt )
m [N − 1]


.

(21)
The above Qm mapping is similar to complex Xm mapping
cases in Section II. Each column l of matrix (20) will be
transmitted from antenna l after having been processed by
an OFDM transmit engine, which applies a quaternionic
IFFT (inverse fast Fourier transform) and appends a cyclic
prefix. Frequency, time, or both frequency and time diversities
are implemented along the rows of C, whereas space and

TABLE I
DIMENSION OF SEVERAL QUATERNION MATRICES AND VECTORS FOR THE

QUATERNIONIC MIMO-OFDM COMPUTED BASED ON THE NUMBER OF
COMPLEX ELEMENTS.

Symbols Dimensions
D MbN Mr × 2MbN Mt Mr
Di MbN × MbN
H MbN Mt Mr × 2

Y , Z MbN Mr × 2

polarization diversities are implemented along the columns of
C. From the above matrix codeword, another sparse matrix is
defined by

D = IMr ⊗ [Ds
1D

p
1D

s
2D

p
2 . . .D

s
Mt
Dp

Mt
],

where ⊗ represents the Kronecker product, IMr is the identity
matrix of order Mr , and elements Ds

i and Dp
i are diagonal

matrices defined by

Ds
i = diag{S{C(i)m [0]},S{C(i)m [1]}, . . . ,

S{C(i)m [MbN − 1]}}, i = 1, 2, ..., Mt,

and

Dp
i = diag{P{C(i)m [0]},P{C(i)m [1]}, . . . ,

P{C(i)m [MbN − 1]}}, i = 1, 2, ..., Mt,

whose elements are columns of matrix C. Table I shows the
dimension of the above vectors or matrices based on the
number of complex elements.

The received signal in matrix form is

Y =

√
ρ

Mt
DH +Z . (22)

The
√
ρ/Mt term is used for adjusting the signal-to-noise

ratio at a receive antenna to be independent of the number
of transmit antennas [18]. The channel H is defined as

H = [H (1,1)T · · ·H (Mt,1)TH (1,2)T · · ·H (Mt,2)T

· · ·H (1,Mr )T · · ·H (Mt,Mr )T]T, (23)

where H (r,s) is defined by

H (r,s) = [H×(r,s)Tm H×(r,s)T
m+1 · · ·H×(r,s)

T

m+Mb−1]
T, (24)

whereH×(r,s)m is defined in (18), and m indicates the beginning
of a block code.

The received signal is

Y = [Y(1)T Y(2)T · · · Y(Mr )T]T, (25)

where each element is

Y(i) =



[S{Y (i)m [0]},P{Y (i)m [0]}]
...

[S{Y (i)m [N − 1]},P{Y (i)m [N − 1]}]
[S{Y (i)

m+1[0]},P{Y
(i)
m+1[0]}]

...

[S{Y (i)
m+M−1[N − 1]},P{Y (i)

m+M−1[N − 1]}]


. (26)
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Fig. 4. Quaternion MIMO-OFDM system using cross-polarized antennas.

The structure of the quaternion noise vector Z is similar
to that given above for Y . The simplex and perplex parts
of the quaternion noise Z are complex additive Gaussian
noise with independent and identically distributed zero-mean
2D Gaussian random variables with the same variance. For
the presented formulation, once one of the cross-polarized
elements are turned off, the equations are reduced to classical
complex schemes [20].

A. Orthogonal Diversity Codes

The proposed MIMO-OFDM technique presented in the
previous section can take advantage of the diversity in several
dimensions, i.e. space, time, frequency, and polarization. The
first space-time code in OFDM modulation made use of trellis
codes [21]. Unlike space-time block codes (STBCs), trellis
codes are able to provide both coding gain and diversity
gain, and have better bit-error rate performance; however,
they are more complex than STBCs, because they rely on
a Viterbi decoder at the receiver, whereas STBC uses only
linear processing. Studies have shown that STBC, which
achieves full diversity in quasi-static flat fading channels, can
be used to construct space-frequency codes that achieve the
maximum diversity available in frequency selective MIMO
fading channels [20].

A theory for quaternion orthogonal designs was developed
in [9]. Several details related to this work are reproduced here,
where it is relevant to know whether the quaternion orthogo-
nal designs are built over complex or quaternion variables.
Quaternion orthogonal design (QOD) may be defined over
complex variables commutative for multiplication z1, . . . , zu
of type (s1, . . . , su) as an r × n matrix A with entries from
a set {0,±z1,±z∗1, ±z2,±z∗2, . . . ,±zu,±z∗u}, including possible
multiplications on the left and/or right by a quaternion element
q ∈ H, and satisfying

AHA =

(
u∑
l=1

sl |zl |2
)

In,

where (·)H indicates the Hermitian quaternion matrix trans-
pose and In is the identity matrix of order n.

Similarly, we define a QOD A on non-commutative quater-
nion variables a1, a2, . . . , au to have entries from a set

{0,±a1,±a∗1,±a2,±a∗2, . . . ,±au,±a∗u}, including possible mul-
tiplications on the left and/or right by quaternion element
q ∈ H, and satisfying AHA =

(∑u
l=1 sl |al |2

)
In.

The fact that AHA is diagonal ensures decorrelation of the
signals transmitted at the receiver. An orthogonal design that
has entries that are linear combinations of the permitted vari-
ables of the respective sets is said to be a design that performs
linear processing. Calderbank et al. proposed a quaternion
based QOD [22], but it was not with linear processing.

The QOD suggested in [9] takes two CODs(2, 2) (complex
orthogonal design) that are equivalent designs to Alamouti’s
code [23]

A =
[

z1 z2
−z∗2 z∗1

]
and B =

[
z2 z1
z∗1 −z∗2

]
,

such that applying the Cayley-Dickson construction over the
matrices results in

C = A + Bj =
[

z1 + z2j z2 + z1j
−z∗2 + z∗1j z∗1 − z∗2j

]
, (27)

which is a QOD(2, 2) with linear processing on complex
variables z1 and z2.

In this study, to take advantage of several diversities, it will
be of interest to work with orthogonal designs of higher order.
One example of QOD(4,4) with linear processing on complex
variables z1, z2, and z3 that uses Cayley-Dickson construction
is

C =


z3 − z1j −2z2j −z1 + z3j −2z2

2z∗2j z3 − z∗1j 2z∗2 −z∗1 + z3j
z∗1 + z∗3j −2z2 z∗3 + z∗1j −2z2j

2z∗2 z1 + z∗3j 2z∗2j z∗3 + z1j

 . (28)

Simplex and perplex parts of quaternion vectors
Qm,Qm+1, ...,Qm+Mb−1 define complexes zi in codeword C.

In [9], the QODs obtained over quaternion variables are
found to be more general and better suited to achieving full
diversity gain for an orthogonal and full rate code. In addition
to the CD construction, other methods for designing QODs
are quaternion-commuting variables and quaternion amicable
designs. However, for the purposes of this paper, because of
its simplicity, the CD construction technique was applied.
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B. Maximum Likelihood Decoding

For most part of simualations in the next section, maximum
likelihood (ML) detection is used. For a given channel (known
at the receiver), ML detector is based on the minimum
Euclidean distance between the received signal and all possible
transmit symbols. The channel estimation at the receiver is
typically implemented using channel equalizers from special
symbols (long prefix) that are periodically transmitted or from
the pilot subcarriers. Thus, the ML detector aims to minimise
the norm of ‖Y −CH ‖. This process is equivalent to finding
a set of symbols Ĉ that minimises the squared norm

‖Y − CH ‖2 = tr{(Y − CH)H(Y − CH)}
= tr{(Y H −HHCH)(Y − CH)}
= tr{Y HY − Y HCH−

HHCHY +HHCHCH}
= tr{Y HY } − 2Re{tr[Y HCH]}+

λ tr{HHH},
(29)

where in the last term CHC = λI. For a circular constellation,
Y HY is independent of the transmitted codeword.

V. SIMULATION RESULTS

Performance analysis of the quaternion MIMO-OFDM sys-
tems was carried out considering several common channel
scenarios: flat channel and selective fading (time and fre-
quency selectivity). In the strict sense, time and frequency
spreading in a mobile channel are correlated, but it is common
practice to independently analyse these effects, following
the WSSUS (wide-sense stationary uncorrelated scattering)
assumption [24].

This section present simulations for complex and quaternion
OFDM, where for all them Nl = 100 and quadrature phase-
shift keying (QPSK) is used per subcarrier modulation. Exper-
iments were conducted using QOD(2,2) in (27) and QOD(4,4)
in (28). The power normalization for the transceiver antennas
is the same as those used by Alamouti [23], where there are
four radiating elements (two cross-polarized elements) for the
QOD(2,2) and eight elements for QOD(4,4) are considered.
The presented results are based on average bit error rate (BER)
curves as a function of the signal-to-noise ratio (SNR) per bit.

In the first simulation scenario, channel coefficients were
assumed to be known at the receiver and are constant in each
OFDM block containing Mb symbols. Channel coefficients
are generated as random complex Gaussian i.d.d. variables,
with zero mean and unit variance. The results shown in Fig. 5
indicate that for this flat fading Rayleigh channel with AWGN,
using QPSK modulation, quaternion orthogonal space-time-
polarization block coding (QOSTPBC) transmit systems, and
for instance at a BER line of 10−3, substantial diversity
gains relative to established techniques are obtained, such as
confronting the classic Alamouti STBC scheme. SNR gains
are found to be over 7 dB for QOD(2,2), and over 10 dB
for QOD(4,4), these gains are due to the exploration of
polarization diversity. We observe that the results presented
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Alamouti (2Tx, 1Rx)

MRC (1Tx, 2Rx)

QOSTPBC (2Tx, 1Rx)

QOSTPBC (4Tx, 1Rx)

Fig. 5. Diversity gain for space-time-polarization transmit systems over a flat
fading Rayleigh channel: first three upper curves consider single elements for
Tx and Rx complex cases, and dual polarization antennas (two elements) for
the QOSTBC cases.

for QOD(2,2), although using MIMO-OFDM, are very similar
to those presented in [9].

In the second simulations in Fig. 6, we considered quater-
nion orthogonal space-time-frequency-polarization block cod-
ing (QOSTFPBC) using QOD(4,4) for both mobile and static
receivers (i.e. accounting for the Doppler shift or not). Re-
garding diversity, pairs of columns of C in (28) are grouped
for space-frequency-polarization diversity, and pairs of rows
of C are grouped for space-time-polarization diversity. Simu-
lations consider that the unit responses hZ(r,s)m [n] in (16) are
independent for hh, hv, vh, and vv links. A maximum Doppler
shift of fd = 100 Hz was chosen for representation of relative
automobile speeds in the urban environment in the GSM band.
For a total bandwidth of 1 MHz, the following four Rayleigh
channels were simulated [25]: COST 207, typical urban case
with a six-ray profile (TUx6), with and without Doppler
shift; and COST 207, typical urban case with twelve-ray
profile (TUx12), with and without mobile unit speed. When
Doppler shift was considered, it was modelled as a classic
Jakes’ Doppler spectrum. Channel models in Matlab standard
fading functions are used to compute the frame-to-frame unit
response for each OFDM symbol. This process yields H ,
which is to be applied to symbol codewords according to
(22). Although transmission channels are, in theory, assumed
to be static over the entire codeword C, vector Y will contain
the channel evolution over Mb OFDM symbols and will be
degraded by noise components. By contrast, in ML decoding,
H is assumed to be static and equal to Hm, corresponding to
the first OFDM symbol m. This situation simulates the channel
equalizer in periods equal to the codeword duration and is
updated only at the next codeword. Results for QOSTFPBC
transmit systems show good robustness for these different
wireless communication scenarios. We observe that, for a BER
line of 10−5, there is a difference between the typical urban



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 32, NO.1, 2017. 88

0 2 4 6 8 10 12 14 16

10−5

10−4

10−3

10−2

Eb/N0 (dB)

B
E
R

TUx6 fd = 0.001 Hz

TUx6 fd = 100 Hz

TUx12 fd = 0.001 Hz

TUx12 fd = 100 Hz

Fig. 6. BER for Q(4,4) QOSTFPBC for different wireless communications
scenarios.
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Fig. 7. BER for Q(4,4) QOSTFPBC using scattering matrix in different
wireless communications scenarios.

case with a six-ray profile using fD = 0.001 Hz and the twelve-
ray profile using fD = 100 Hz is 1.1 dB. Good discrimination
among the four propagation scenarios is observed. When
compared with the same QOD(4,4) scheme of Fig.5, moderate
diversity gains (around 3 dB) are observed for Eb/N0 up to 8
dB, even not considering the channel state information at the
transmitter side (CSIT) or more sofisticated schemes, such as
those using beamforming antenna arrays [26].

The final simulations in Fig. 7 are similar to those of the
previous scenario; however, they use matrix (12) for different
values of parameter XPI at receive and transmit antennas:
χt = χr = 0 and χr , and χt = χr = 0.01, without provision of
any mechanism of cross-polarization interference cancelation
(XPIC). As long as this cross paths are unknown in the
receiver, a degradation in the performance is observed around
6dB for same considered BER.

Simulations show that QOSTFPBC can effiently be used
for flexible higher spectral efficency designs, as long as
the channel state information is kwown at receivers (CSIR).
As observed in [9], when using well-designed quaternion
orthogonal codes, and here by use of quaternion MIMO-
OFDM, quaternion schemes are capable of achieving the
same performance as complex orthogonal space-time-block
codes or complex orthogonal space-frequency-block codes,
which would require twice the number of transmit and receive
antennas.

The last two simulations show that it is possible to consider
the communications schemes using independent antenna ele-
ments with spatial separation, which represents a doubling in
the number of Mt and Mr antennas at the transmit and receive
sides, or using polarized antennas. Therefore, it is possible to
group pairs of antennas on both sides to apply the proposed
formulation with non-polarized antennas. By contrast, dual-
polarized antennas have the advantage of reducing the size of
transmit and receive antennas.

VI. CONCLUSIONS

This paper has introduced a formulation for MIMO-OFDM
using quaternion algebra. The formulation is general and
allows us to take advantage of diversities in several domains,
such as space, time, frequency, and polarization. The use of
orthogonal quaternion code designs of higher order allows us
to explore full diversity in those domains. Several simulations
exploring scenarios in typical and severe urban environments,
including the Doppler shift in the Jakes spectral model, have
been presented. As expected, the use of a higher number
of transmit antennas significantly improves the system per-
formance, as could be observed for scenarios using random
coefficients for the link frequency responses. Using models for
real-world simulations (COST207), good discrimination of the
propagation scenarios can be observed in simulations that are
coherent to channel harshness.

The presented formulation applies both to double-polar-
ized antennas and to independent antenna elements that are
spatially separated. The presented modulation systems have
potential applications in modern wireless communications
including next-generation mobile, back-hauling, and digital
television systems.
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