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Resumo - Um novo algoritmo, o algoritmo LMS bi-
normalizado com reutilizagéo de dados € apresentado. O novo
algoritmo mostrou convergir mais rdpido do que outros algo-
ritmos do tipo LMS, tais como o algoritmo LMS normalizado
e varios algoritmos LMS com reutilizagdo de dados, em ca-
sos onde o sinal de entrada é fortemente correlacionado. A
complexidade computacional deste algoritmo novo € s6 lige-
ramente maior que a do algoritmo novo LMS normalizado
com reutilizacdo de dados recentemente proposto. O desem-
penho superior na velocidade de convergéncia €, entretanto,
seguido de um alto desajuste se o valor de passo € préximo
do valor que permite a convergéncia mais rdpida. Uma se-
qiiéncia de tamanho de passo 6tima para este algoritmo € pro-
posta ap6s considerar um mimero de pressupostos simplifica-
dores. Além disso, este trabalho traz consideragdes em como
lidar com estes requisitos conflitantes de convergéncia rdpida
e erro quadratico (MSE) minimo.

Abstract - A new algorithm, the binormalized data-reusing
least mean-squares (LMS) algorithm is presented. The new
algorithm has been found to converge faster than other LMS-
like algorithms, such as the Normalized LMS algorithm and
several data-reusing LMS algorithms, in cases where the in-
put signal is strongly correlated. The computational complex-
ity of this new algorithm is only slightly higher than a recently
proposed normalized new data-reusing LMS algorithm. Su-
perior performance in convergence speed is, however, fol-
lowed by a higher misadjustment if the step-size is close to
the value which allows the fastest convergence. An optimal
step-size sequence for this algorithm is proposed after con-
sidering a number of simplifying assumptions. Moreover,
this work brings insight in how to deal with these conflicting
requirements of fast convergence and minimum steady-state
mean-square error (MSE)

keywords: Adaptative filtering, least-mean square algo-
. rithms, optimization of step-size sequence, data-reusing al-
gorithms.

*Note from the Editor: The paper originally published at the 15" Bra-
zilian Telecommunications Symposium was authored by the first three au-
thors. In preparing this expanded version they included work contributed by
a fourth author, T. I. L..

1. INTRODUCTION

The least mean-squares (LMS) algorithm is very popular and
has been widely used due to its simplicity. Nevertheless,
its convergence speed is highly dependent on the eigenvalue
spread of the input-signal autocorrelation matrix (ratio be-
tween the largest and the smallest eigenvalue also known
as condition number) [1, 2]. Alternative schemes which try
to improve convergence speed at the cost of minimum ad-
ditional computational complexity have been proposed and
extensively discussed in the past [1, 3, 4].

The data-reusing LMS (DR-LMS) algorithm, which uses
current desired and input signals repeatedly within each iter-
ation is one among such schemes. It can be easily shown that
in the limit of infinite data reuses per iteration the DR-LMS
and the normalized LMS (NLMS) algorithms yield the same
solution [5]. Performance can be further improved with the
recently proposed normalized and unnormalized new data-
reusing LMS (NNDR-LMS and UNDR-LMS) algorithms [5].
These algorithms reuse the data pair, namely desired and in-
put signals, from previous iterations as well.

Inreference [5], a graphical description of the NNDR-LMS
and UNDR-LMS algorithms was presented and it was shown
that this new class of data-reusing algorithms had prospective
better performance than the NLMS algorithm. The geometric
description also showed why improvement is achieved when
the number of reuses is increased. The new binormalized
data-reusing LMS (BNDR-LMS) algorithm described here
employs normalization on two orthogonal directions obtained
from consecutive data pairs within each iteration. In all sim-
ulations carried out with colored input signals, the new algo-
rithm presented faster convergence than all other algorithms
mentioned above (case of two data pairs).

Convergence speed is related to the level of mean-squared
error (MSE) in steady-state which is controlled by a step-size
parameter p. For 4 = 1, we have the fastest convergence
and also the highest steady-state MSE when compared to the
values of the step-size closer to zero. In [8], it was shown
that the BNDR-LMS algorithm converges if the step-size is
in the range from zero to two. For practical reasons, the value
of u is kept between zero and one since it was observed that
the steady-state MSE was higher and the convergence slower
when the step-size was set to a value between one and two.
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Only after [9] an analysis for the MSE behavior of the BNDR-
LMS algorithm was available. In this paper, the expression
for the MSE developed in [9] is used to derive an optimal
step-size sequence which allows fast convergence and mini-
mum misadjustment.

This paper is organized as follows: Section 2 presents
LMS-like algorithms and a graphical illustration of their co-
efficient updating. Section 3 introduces the new BNDR-LMS
algorithm as well as some remarks about its convergence be-
havior. In section 4, the optimal step-size sequence is derived
and several approximations for this optimal sequence are also
proposed. Section 5 contains simulation results and Section 6
presents conclusions.

2. LMS, DR-LMS, NLMS and MDR-
LMS ALGORITHMS

For the LMS algorithm, the coefficient vector w is updated
in the opposite direction of the gradient vector obtained from
instantaneous squared output error, i.e.,

wrms(k+1) = wrms(k) — pV (€% (k)] (1)

where

e(k) = d(k) — T (k)wrms(k) ()
is the output error, d(k) is the desired signal, x(k) is the
input-signal vector containing the N + 1 most recent input-
signal samples, and p is the step size. The coefficient-
updating equation is

©)

For the DR-LMS with L data reuses, the coefficients are
updated as

wrms(k+ 1) = wrys(k) + pe(k)z(k)

wiy1(k) = wi(k) + pei(k)z(k)

fori =0,...,L; where

@

ei(k) = d(k) — =7 (k)wi(k), )

wo(k) = wpr-Lms(k), (6)

and
wpr-rms(k+1) = wria(k). 0]

Note that if L = 0 these equations correspond to the LMS
algorithm and that y is the step-size. :

The NLMS algorithm normalizes the step-size such that
the relation expressed by =7 (k)wnrms(k + 1) = d(k) is
always satisfied, i.e.,

wyrms(k+1) = wyims(k) + xT(ke(k) z(k) (8)

)z(k) + €
where ¢ is a very small number used to avoid division by zero.
Normalization for this algorithm implies a line search in the
opposite direction of the gradient towards the minimum of the
instantaneous squared output error.
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Figure 1: Updating the coeficient vector:

Lw(k);

2.wrps(k + 1) (first step of DR-LMS and UNDR-LMS);
3.wpr-Lms(k +1);

4. wpnrps(k + 1) (first step of NNDR-LMS);
5.wynpr-Lms(k+1);

6.wNNDR-LMs(k + 1);

7wpNnpr-LMs(k + 1).

For the NNDR-LMS algorithm with L data reuses, the co-
efficient vector is updated by the following relations:

o es(k) =
wi+1(k) = wt(k) F :'L'T(k —z')a:(k *"‘i) +€$(k 1) )
fori =0,...,L; where
ei(k) = d(k) — =T (k)w;(k), (10)

wo(k) = wynpr-LMs(K), (11)

and

wyNDR-LMs(k+ 1) = w1 (k). 12)

For the sake of comparison, our interest is in one single
reuse such that L = 1. Figure 1 illustrates geometrically
the updating of the coefficient vector in a two-dimensional
problem for all algorithms discussed above, starting from an
arbitrary w(k).

Let S(k) denote the hyperplane which contains all vec-
tors w such that 7 (k)w = d(k). In a noise-free perfect-
modeling situation, S(k) contains the optimal coefficient vec-
tor, w,. Furthermore, it can be easily shown that z(k) and,
consequently, V,,[e?(k)] are orthogonal to the hyperplane
S(k).

The solution given by the DR-LMS algorithm, w(k + 1),
iteratively approaches S(k) by following the direction given
by z(k) (see 3 in 1). This solution would reach S(k) in the
limit, as the number of data reuses, L, goes to infinity [5]. The
NLMS algorithm performs a line search to yield the solution
w(k+1) € S(k) in a single step (see 4 in 1). The algorithms
presented in [5] use more than one hyperplane, i.e., data pair
(z, d), in order to produce a solution w(k +1) (see 5 and 6 in
r1) that is closer to w, than the solution obtained with only
the current data pair (z(k),d(k)). For a noise-free perfect-
modeling situation, w, is at the intersection of N + 1 hy-
perplanes constructed with linearly independent input-signal
vectors. In this case, the orthogonal-projections algorithm [6]
yields the solution w, in N+1 iterations. This algorithm may
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be viewed as a normalized data-reusing orthogonal algorithm
which utilizes N + 1 data pairs (z, d).

In the next section, the new binormalized data-reusing
LMS algorithm will be described. This algorithm com-
bines data reusing, orthogonal projections of two consecu-
tive gradient directions, and normalization in order to achieve
faster convergence when compared to other LMS-like algo-
rithms. At each iteration, the BNDR-LMS yields the solution
w(k+1) which is at the intersection of hyperplanes S(k) and
S(k — 1) and at a minimum distance from w(k) (see 7 in 1).
The algorithm can also be viewed as a simplified version of
the orthogonal projections algorithm which utilizes just two
previous consecutive directions.

3. THE BNDR-LMS ALGORITHM

In order to state the problem, we recall that the solution which
belongs to S(k) and S(k — 1) at a minimum distance from
w(k) is the one that solves

o [lw(k+1) - wk)]? (13)
subjected to
=T (k)w(k + 1) = d(k) (14)
and
z’ (k- Dw(k+1) =d(k— 1) 15
The functional to be minimized is, therefore,
flwk+1)] = [wk+1)— wk)[wk+1)— w(k)
+1 [T (K)w(k + 1) — d(k)]
+X2[2T (k — Dw(k + 1) — d(k — 1}16)

which, for linearly independent input-signal vectors (k) and
z(k — 1), has the unique solution

w(k+1) = w(k)+(—M/2)z(k)+(—-A2/2)2(k—1) (17)
where
—/2= "d":f (18)
and
—X/2= %‘2 (19)
with:
numl = [d(k) — =T (k)w(k)]zT (k - 1)z(k - 1)
—[d(k — 1) — T (k — 1)w(k))=T (k)z(k — 1)
um2 = [d(k—1) - «T (k — w(k)|zT (k)z(k)
—[d(k) - 2T (F)w(k))” (k — 1)z(k)
den = zT(k)z(k)zT (k- 1)z(k—1)
~[a" (k)2(k - 1)} 20)

It can be verified by simulations that the excess of mean-
square error (MSE) for the BNDR-LMS algorithm is close

BNDR-LMS
€ = small positive value
for each &k
{z1 = =(k)
zo=x(k—1)
d, = d(k)
de = d(k - 1]
a=zTx,
b=zlz;
c=x¥x
d= a:’{w(k]
if a®
{ w[k + 1) = w(k) + p(dy — d)z1/(b—€)
else
{e=zTw(k)
den = be — a?
A = (dic+ ea — dc — dpa) /den
B = (dgb+ da — eb — dya)/den
w(k + 1) = w(k) + p(Az; + Bzo)
}
}

Table 1: The binormalized data-resusing LMS algorithm [8]

to the variance of the measurement noise when there is no
modeling error in a system-identification example. In order to
control this excess of MSE, a step-size 1 will be introduced.
It is worth mentioning that the maximum convergence rate is
usually obtained with g = 1. The BNDR-LMS algorithm is
summarized in Table 1.

3.1. Geometrical Derivation

This algorithm can be alternatively derived from a purely ge-
ometrical reasoning. The first step is to reach a preliminary
solution, w1 (k), which belongs to S(k) and is at a minimum
distance from w(k). This is achieved by the NLMS algorithm
starting from w(k), i.e.,

e(k)

wy (k) = w(k) + ZR)=(F)

z(k) (21)

In the second step, w; (k) is updated in a direction orthog-
onal to the previous one, therefore belonging to S(k), until
the intersection with S(k — 1) is reached. This is achieved
by the NLMS algorithm starting from w; (k) and following
the direction zi-(k) which is the projection of z(k — 1) onto
S(k).

e1(k)

w(k+1) = w (k) + m% ® @
g ()27 (k)
Ly = e WS ey
Ty (k) o [I mT(k)z(k)] (k 1) (23)
and
e1(k) =d(k —1) — =T (k — 1)w; (k) (24)
The use of z{ (k) obtained from x(k — 1) assures that the

minimum-distance path is chosen.
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It is easy to show that if the BNDR-LMS algorithm was
modified to utilize ¥ mod (N + 2) orthogonal direc-
tions, instead of two orthogonal directions, the resulting al-
gorithm would be the orthogonal-projections algorithm de-
scribed in [6] requiring reinitialization after every N + 1 iter-
ations.

Note that the requirement of linear independence of con-
secutive input-signal vectors «(k) and z(k — 1), necessary to
ensure existence and uniqueness of the solution, is also man-
ifested here. If x(k) and z(k — 1) are linearly dependent,
then we cannot find i (k) € S(k) and the algorithm yields
w(k +1) = wi(k).

3.2. Mean-square error analysis

Let us assume that an unknown FIR filter is to be identified
by an adaptive filter of the same order, employing the BNDR-
LMS algorithm. Input signal and measurement noise are
assumed to be independent and identically distributed zero-
mean white-noise with variances o2 and o2.

Assuming that the minimum mean-square error was caused
by additive noise only, an expression for the MSE conver-
gence behavior of the BNDR-LMS algorithm was obtained
in [9] in terms of the excess in the MSE, defined as the differ-
ence between the MSE and the minimum MSE after conver-
gence, i., AE(k) = E(K) — Epin = E[€*(k)] — 02,

2)

Af(k+1) = [1+i‘—(§i—] A£(k)

Nu(l - p)(p—2)
(N+1)2

[+ N(p - 2)*u? o3

N+D)(N+2-vg) ™

where v, is the kurtosis of the input signal.

+ Aé(k—1)

@25)

4. OPTIMAL
QUENCE

In this section the optimal step-size sequence for the given
problem is derived. We will follow an approach similar to that
used in [4] assuming that up to time & the optimal sequences
Ho(0) 10 po(k — 1) and AL, (0) to AL, (k) are available. For
the sake of simplicity, the kurtosis of the input signal is as-
sumed equal to one in (25), i.e.,

STEP-SIZE  SE-

Ag(k+1) AL, (k)

p(k)(u(k) — 2)
[1 + =t

(k) of the BNDR-LMS algorithm
A£(0) = A¢(-1) = 03
= =noise variance
N =adaptative filter order
p(0) =1
for each k
(u(k) =1- /1 - gElpasey
k) (u(k)—2
aa = |1+ =505
bb = Nu()(1—p(k)® (u(k)—-2)
= N+1)* =
o (1+N(?}(\;=_]£)22) £®) ;2
Aé(k +1) = aaAé(k) + bbAE(k — 1) + cc
}

Table 2: Algorithm for computing the optimal step-size se-
quence

T e ekt 20
= \/1 T

It is worth mentioning that (27) is in accordance with the sit-
uation when convergence is reached; in that case £, (k) =
£,(k —1) = o2 and p,(k) = 0, as expected. More-
over, from the above relation, if 02 = 0 and admitting that
A¢ (k) = A& (k — 1), po(k) is close to one.

For the normalized LMS (NLMS) algorithm, a recursive
formula for p, (k) in terms of p,(k — 1) and the order IV was
obtained in [4]. For the BNDR-LMS algorithm, a routine
based on (26) and (27) is presented in Table 2. This routine
has an important initialization parameter with a strong influ-
ence on the behavior of 1, (k). This parameter is the ratio 5;-
where the numerator is the variance of the reference signal
(c.f. Figure 7).

5. SIMULATION RESULTS

In order to test the BNDR-LMS algorithm, simulations were
carried out for a system identification problem. The system
order N was equal to 10, the input signal was correlated noise
such that the input-signal autocorrelation matrix had a condi-
tioning number around 55 and input-signal to observation-
noise ratio SN R equal to 150dB. The learning curves (MSE
in dB) for the NLMS, the NNDR-LMS (one reuse), and the
BNDR-LMS are depicted in Figure 2, corresponding to an
average of 200 realizations.

In this example we can clearly verify the superior perfor-

 Nu(R)(1 — p(R)*(p(k) = 2) A, (k — 1) mance of the BNDR-LMS algorithm in terms of speed of

(N +1)2
(4 N(e) = 92)u(0)?
: (N +1)2 n

By differentiating A¢(k+ 1) with respect to ;2(k) and setting
the result equal to zero, we obtain

_ AL (k) +AL(k—1)
2[Mo(k 2 1) 15 O‘%]

=

Bo(k) =
52

convergence when compared to the NLMS and the NNDR-
LMS (with one single reuse) algorithms. Simulations for the

(26) conventional LMS algorithm and for the DR-LMS algorithm

were also carried out for the same setup, but their perfor-
mances were, as expected, inferior compared to that of the
NLMS algorithm and the results were omitted from Figure 2.

!Note that, for simplicity, the circle (o) was dropped from
the optimal values.
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Figure 2: Learning curves of the following algorithms:
NLMS, NNDR-LMS and BNDR-LMS.

Algorithm (MSE - MSEin)dB
Type Stationary | Nonstationary
NLMS -59.09 -39.15
NNDR-LMS -59.40 -39.42
BNDR-LMS -58.60 -39.45

Table 3: Excess Mean-Square Error.

OPTIMAL STEP-SIZE SEQUENCES FOR N=10

700 3 750 200 250

Optimal p(k) sequences for the BNDR-LMS algorithm.

In order to test performance of the algorithms in terms of
mean-square error after convergence, we measured the ex-
cess of MSE (MSE - MSE,,,;») in dB. The MSE,,.;,, is the
variance of the observation noise, set equal to 10~ in this
experiment. The results are summarized in Table 3 where we
can also observe the excess of MSE in dB for a nonstation-
ary environment. In this case, observation noise was set to
zero and the system (plant) coefficients varied according to
w,(k) = wo(k— 1) + v, where v is a vector whose elements
were random numbers with zero mean and variance equal to
10~5. As we can see from Table 3 the BNDR-LMS algorithm
performed closely to the NLMS and the NNDR-LMS algo-
rithms in both stationary and nonstationary environments.

In terms of computational complexity, Table 4 shows com-
parisons among these three algorithms. Note thatp = N + 1
is the number of coefficients.

We present in ?? the curves of u(k) forvahmot‘demed

signal to observation noise ratio, SNR = lOIog—},ﬁomOto
40 dB. Note that for 02 —O(nomelesscase).tleNRgocs

ALG. || ADD | MULT. | DIV.

NLMS | 3p-1] 3p 1
NNDR-LMS || 6p2 | 6p 2
BNDR-LMS || 7p+3 | 7p+2 2

Table 4: Comparation of computacional complexity.

to infinity and the step-size would remain constant, equal to
one.

We will next demonstrate the superior performance ob-
tained with the proposed adaptive step-size scheme which in
real time can be computed a priori and stored in memory or
computed. For this last option, an approximation of the curve
is of great interest. We will use here two classes of sequences
also proposed in [4]. They were chosen due to their simplic-
ity and, as will be seen later, lead to good results. The first
class is the optimal sequence for the NLMS algorithm. It is
given by

plk=1)
N+1

Ez!k—I!
N+1

=#(k—1)1r

pu(k) (28)

For the NLMS algorithm, the oon'ect initialization for this
sequence is given by p(0) =1 — —9 However, in our case

we can choose an initial value for the step-size such that the
two sequences are close, as will be seen.

The second class of sequences (referred to hereafter as the
1/k approximation) is quite simple and was also used in [4].
This sequence is given by

fO<k<c(N+1)
ifk > c(N+1)

(29)

The parameter ¢ will be related to the SN R of the optimal
sequence. A minimum step-size was introduced here (it can
be used in all sequences as well) in order to provide tracking
capability to the algorithm.

For the first simulation, we used a white noise input signal
in a system identification setup with N = 10, 02 = 1072
and SNR = 20dB. 3 shows the optimal step-size sequence
obtained with the algorithm described in Table 2 and other
curves from the two classes of approximations used.

From 3, we can guess which curve to use. If we use the
least norm of the difference between the optimal and the ap-
proximation sequences as a criterion to decide which curve
to implement, the chosen parameters for this example will be
©(0) =0.93and ¢ = 3.

With these parameters we have run a simulation with a
fixed step-size, an optimal step-size and the two approxima-
tions. The learning curves (average of 1000 runs) are depicted
in 2?2 where we can see that the same fast convergence and the
same small steady-state MSE are shared by the three time-
varying step-size sequences used. The fixed step-size was set
to one and, as expected, has the highest misadjustment.

1
,U-(k) - { mx{ﬂmén,ﬁg}
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OPTIMAL STEP-SIZE SEQUENCE FOR SNR=20dB

e

s rJ.:!Irr!al sequence | 4
- = NLMS approximation sus, 0.93 and 0.95]
- 1/k approximation (c=1, 2 and 3) |

o

step-size
© © o 9

o
HY

50 700

D‘:

Figure 3: Optimal step-size sequences and two classes of
aproximation sequences.

LEARNING CURVES FOR TIME-VARYING STEP-SIZE

— fixed step-size ]
- - optimal step-size |

MS approximation
- 1!k approximation

MSE In dB

e

S2ay,
e, o K Syt e i e A o e e e

%5 50 100 750 200 250

k
Learning curves for the fixed step-size, the optimal step-size
and its two approximations.

A second experiment was carried out in order to evaluate
the performance of this optimal sequence in case where the
input signal is correlated. The same setup was used but with
an input signal having a condition number around 180. ??
shows us that, also in cases of correlated input signal, the
proposed step-size sequence has a good performance.

LEARNING CURVES FOR COLORED SIGNAL

, MSE n dB

150
Comparing the learning curves for the case of colored input
signal.

100

54

A final remark is the possibility to use an estimator for £(k)
instead of calculating A£(k) using (26) as described in the
algorithm of Table 2. We have also made an experiment using
the following estimator:

£(k+1) = X¢(k) + (1 — N)eP(k) (30

This experiment has shown us that a reasonable value for A
is around 0.96. The advantage of this alternative approach is
the possibility of fast tracking of sudden and strong changes
in the environment. In this case, the instantaneous error be-
comes high and the estimated £(k + 1) is increased such
that the value of p approaches the unity again and a fast re-
adaptation starts.

When using this approach, it is worth remembering that,
since equation (27) is of the type 1 — /1 — z, the step-size
p(k) can be written as ;2= which is a numerically less
sensitive expression. Equation (31) shows (27) rewritten with
this numerically better expression.

k)+€(k=1)—202
26(k—1)

1+\/1 £(k)+£(k—1)—202

e
6. CONCLUSIONS

This paper introduced the BNDR-LMS algorithm which has
faster convergence than a number of other LMS-like algo-
rithms when the input signal is highly correlated. A geomet-
ric interpretation of the algorithm was also provided showing
that the coefficients are updated in two normalized steps fol-
lowing orthogonal directions. The relationship between the
BNDR-LMS algorithm and the orthogonal-projections algo-
rithm was clarified. Simulations carried out in a system iden-
tification application showed that the BNDR-LMS algorithm
compared favorably with other LMS-like algorithms in terms
of speed of convergence. Moreover, the more correlated is the
input signal, the better the new algorithm performs. This im-
provement is clearly verified in cases of high signal to noise
ratio.

This work also addressed the optimization of the step-size
of the BNDR-LMS algorithm when the input signal is un-
correlated. An optimal sequence was proposed and a simple
algorithm to find this sequence was introduced. Alternative
approximation sequences were also presented and their ini-
tialization parameters compared. Simulations carried out in a
system identification problem showed the good performance
of the optimal step-size sequence as well as the possibility
of using alternatives sequences obtained with less effort and
with similar efficiency. It was possible to observe that the
same step-size sequence, optimal for the white noise input,
can also be used in applications where a highly correlated in-
put signal is present.

(k) = 31)
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