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On the minimum probability of classification error
through effective cardinality comparison

Jugurta Montalvão, Jânio Canuto, and Elyson Carvalho

Abstract—This work proposes a method for estimating a
lower (Bayesian) bound for classification error rate in two-class
problems. This lower bound is typically inferred through specific
classifier structures. By contrast, the proposed approach is based
on “collision” (quadratic) entropy estimator, deployed in the
very pragmatic form of simple coincidence counters. To properly
introduce this new approach, we first discuss the concept of sets’
effective cardinality in view of basic concepts of probability and
set theory. The usefulness as well as some limitations of the
analysis based on effective cardinality are exemplified throughout
the text.

Index Terms—Entropy through coincidence, Multivariate
statistics, Collision entropy, Effective cardinality, Classification
error probability.

I. INTRODUCTION

A fundamental problem in pattern recognition is the opti-
mization of classifiers. Whenever the criterion is the minimiza-
tion of probability of misclassification, it is well known that
the optimum performance is reached by the Bayesian classifier
[1]. However, in many practical situation, an experimenter
may only have few data samples, possibly multivariate and/or
heterogeneous, so that the Bayesian classifier becomes an
unattainable goal, for it depends on the perfect knowledge
of classes probability distributions and respective a priori
probabilities.

Consequently, the minimum error that the idealized
Bayesian classifier can provide is a lower bound that cannot be
perfectly known in such practical cases. Approximated values
for this lower error bound are generally obtained through
indirect approaches, such as classifiers with enough degrees
of freedom to empirically find suitable, possibly nonlinear,
classification boundaries. Good examples of these practical
classifiers are artificial neural networks and support vector
machines. These approaches allow for the adjustment of
classification boundaries without explicit class distribution
estimation. A Bayesian classifier can also be implemented
by explicit estimation of the probability distribution of each
class, followed by the application of the maximum a pos-
teriori probability decision rule. In both cases, however, the
minimum classification error is estimated as a consequence of
a classification structure applied to the available data.

By contrast, a similar problem in telecommunications his-
torically received a more direct approach, namely, the problem
of minimizing transmission error. To tackle this problem, C.
Shannon [2] discussed the probability of signals being wrongly
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associated to symbols – symbols used in a digital commu-
nication scheme –, and successfully established relationships
between quantities of symbols in sets (cardinalities) and error
rates. His work was not the first to address the problem in
terms of cardinalities, for as early as in 1928 (thus before the
seminal papers published by Shannon), Ralph V. L. Hartley
was already concerned with a practical measure of information
given by the logarithm of the number of possible symbol se-
quences [3], or the cardinality of a set of messages, which later
on was directly linked to the concept of entropy, in information
theory. In 1951, a short but important note by S. Kullback
and R. A. Leibler [4] generalized the Shannon entropy as
a measure of divergence between statistical populations. The
so-called Kullback-Leibler divergence was proposed as a tool
to measure how difficult it is to discriminate between two
competing distributions, in terms of measure of information.
S. Kullback and R. A. Leibler exemplified the usefulness of
their divergence through its application on testing a given
hypothesis, which turns out to be a matter of measuring
probability of errors (i.e. false acceptance and false rejection
of a hypothesis). This divergence was further generalized by
the Rényi’s family of divergences [5].

Finding a noisy channel capacity or discriminating between
two competing distributions are practically motivated problems
closely related to finding the minimum probability of classifi-
cation error. But it is noteworthy that the pragmatic motivation
of works such as those by Shannon or by Hartley migrated,
through the years, to sophisticated theoretical developments,
not always aimed at practical applications, as pointed out in
[6]. Nevertheless, nowadays, it is widely agreed that entropy
based tools are useful in most domains where information
can be symbolically and/or numerically handled, ranging from
Econometrics [7] to Biology [8].

In this work, we propose an approach to estimate the
minimum probability of classification error through cardinality
of sets and simple probability concepts, in the manner of
early works on information theory. Moreover, in order to keep
our approach as pragmatic as possible, we also follow the
ideas proposed by M. O. Hill [8], in which cardinalities are
regarded as measures of the degree of specie polydominance,
in Biology. We adhere to their standing point as much as
possible, thus replacing the less intuitive concept of entropy
with the mirror concept we chose to call effective cardinality
(defined in Section II).

We take advantage of the fact that effective cardinalities are
easier to handle than entropy, and we explain, in Section II,
the principles of the proposed method as plainly as possible
in terms of cardinality comparisons. The method itself is
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presented in Section III and, since it relies upon a proper
definition of the probabilistic event coincidence (or collision),
this sensitive point is separately discussed in Subsection III-A,
before the conclusions presented in Section IV.

II. CLASSIFICATION ERROR, ENTROPY AND EFFECTIVE
CARDINALITY

In this Section, the principles upon which the method pro-
posed in Section III is based are presented through examples.
We reckon that it is a rather unusual paper structure, but
we believe that it is more suitable to the reader, in terms
of presentation of practical aspects behind some abstract
concepts.

Accordingly, the first example just shows how set cardinality
and classification error probability are related for random
variables with uniform distributions. Step by step, further
examples are added to gradually explain how quadratic entropy
can be used as a tool to adapt this principle even to nonuniform
random variables, through the concept of effective cardinality.

As for the first example, we consider random variables
defined in terms of sets whose elements are drawn with
equal probabilities. In this case, there is a straightforward
relationship between set cardinality and classification error
probability.

Example 1: Two uniform random variables, X and Y , take
values from sets X = {1, 2, 3, 4} and Y = {2, 3, 4, 5, 6},
respectively, whose cardinalities are CX = 4 and CY = 5. If
an instance, z, is observed, but the observer does not know
whether it is an instance of X or Y (The observer only knows
that z is equally likely to be an instance of X or Y ), three
scenarios are possible, namely:
(a) z ∈ {1}, and it is decided that z is an instance of X .
(b) z ∈ {5, 6}, and it is decided that z is an instance of Y .
(c) z ∈ {2, 3, 4} and it is decided that z is an instance of

X (because 1
CX

> 1
CY

, see explanation below).
Clearly, only in the later scenario an error may occur, and

to minimize the error probability, decision (c) corresponds to
the Bayesian criterion according to which a decision might
be made in favour of X or Y by comparing the probabilities
PX Pr(z|X) and PY Pr(z|Y ), where PX and PY are a priori
probabilities of z being an instance of X or Y , respectively.
Given that PX = PY , Pr(z|X) = 1/CX and Pr(z|Y ) =
1/CY , the observer should systematically decide that any z
from the intersection of the two sets is an instance of X ,
because 1/CX > 1/CY .

In this example, the minimum probability of error is
Pr(error) = PY Pr(z ∈ X ∩ Y|Y ) = PY

CI

CY
= 0.3,

where CI = 3 stands for the cardinality of the intersection
between X and Y , and the cardinality comparison CI/CY is
the probability of an element of the intersection be drawn,
given that z is an instance of Y (thus a decision error, since
the observer should systematically decide in favour of X).

By generalizing this approach for uniformly distributed
random variable, the minimum error probability is given by

Pr(error) = CI min

(
PX

CX
,
PY

CY

)
. (1)

Example 2: X and Y are the same uniform random variables
defined in Example 1, but the respective a priori probabilities
are changed to PX = 1/3 and PY = 2/3. In this case, for
scenario (c), it should be decided that z is an instance of Y
(because PY

CY
> PX

CX
), and the minimum probability of error is

now Pr(error) = CI
PX

CX
= 0.25

The approach illustrated through examples 1 and 2 are based
on very basic concepts of probability and set theory, and the
simplicity of the proposed formula to compute error prob-
ability through cardinalities comparison (Equation 1) comes
from the fact that we are handling finite sets of equiprobable
elements.

To expand this straightforward approach to other kinds of
random variables, including those with continuous cumulative
distribution function, we use the concept of effective cardi-
nality, which is itself a proxy to the concept of entropy, as
explained in [8], with different terminology. Accordingly, we
adhere to the point of view presented in [8], through which we
further conjecture that a key point to explain – and to use – the
entropy of a random variable X as plainly as possible, mainly
for those with mathematical background under development,
is to replace it with the notion of effective number of elements
of the event space X . This number is not expected to be the
actual cardinality of X , but rather an effective cardinality of a
(equivalent) set with equiprobable events. As a consequence,
the effective cardinality may even be a fractional number.
In [8], from the perspective of applications in Ecology, this
quantity was referred to as the “effective number of species
present in a sample”, or “diversity number of order a”, given
by

C(a) =

(
K∑
i=1

wip(i)
(a−1)

) 1
1−a

, (2)

where K is the total number of detected species in the
sample and wi = p(i) is the proportion of specie i (thus∑K

i=1 p(i) = 1 and p(i) ≥ 0, ∀i). This formulation by M. O.
Hill allows a thoughtful understanding of C(a) as a weighted
generalized mean, or power mean with exponent (a−1), thus
an average quantity. Moreover, by replacing the proportion
of species, p(i), with the probability of the i-th event to
occur, Equation 2 also provides an interesting standing point
according to which the entropy generalization in [5], H(a), is
just the logarithm of the average quantity C(a), including the
Shannon entropy, for a = 1, probably the most used entropy
definition in information theory.

On the other hand, collision entropy (a = 2) is advanta-
geous in practical experiments because it gathers all detected
coincidences (or collisions) in a single counter, as opposed
to histogram based approaches. As a matter of fact, entropy
estimators are always based on some kind of coincidence
detection, explicitly or not. For instance, simple plug-in ap-
proaches for entropy estimation typically use histograms as
estimators of probability mass functions (PMF), and then use
the resulting estimates as actual PMFs in entropy formulas.
We highlight that to build up histograms it is necessary to



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 31, NO. 1, 2016. 306

define a set of reference symbols (histogram bins), and to
count coincidences between observed instances and elements
of this reference set. Therefore, each bin in a histogram can
be regarded as a counter for a specific kind of coincidence.
By contrast, in collision based approaches, all detected co-
incidences between pairs of observed instances are gathered
into a single counter. As pointed out by researchers such as
A. Bialas and W. Czyz [9], this is experimentally attractive
because the statistical error of C(2) estimates drops very fast
(inversely proportional to the number of available instances).
This fast statistical convergence is convenient for practical
purposes where datasets are limited in size, and it is directly
related to what I. Nemenman [10] called the Ma square-root
regime, as a reference to the findings of S.-K. Ma [11].

Therefore, due to the pragmatic flavour of this work, we
narrow our attention to the quadratic entropy, although we also
keep an eye on the numerical results provided by the effective
cardinality of order one, C(1), which is related to the Shannon
definition of entropy. Accordingly, we define:

Definition: C
(a)
X is the effective cardinality of order a

associated to a random variable X .
For a discrete random variable, the effective cardinality is
given by Equation 2. In the specific case of a = 2, C(2)

X is the
number of elements in the support set of an idealized uniform
random variable W , so that two independent instances of W
have the same probability of collision – or coincidence – as
two independent instances of X .

Given this definition, one may wonder if the simple formu-
lae presented in Equation 1 would hold for idealized uniform
sets associated to nonuniform random variables X and Y . We
address this question in the next examples. Before, however,
it should be noticed that, unlike the effective cardinalities of
X and Y , the effective cardinality of the intersection is not
directly available. Fortunately, as illustrated in Example 3,
C

(2)
I can be estimated through the counting of coincidences

between independent instances of X and Y .

Example 3: The total number of pairs where one element is
taken from X = {1, 2, 3, 4}, and the other is taken from
Y = {2, 3, 4, 5, 6} is CXCY = 20. Amongst these 20
pairs, there are CI = 3 formed by coincident elements, clearly
corresponding to the cardinality of the intersection X ∩Y . The
probability of randomly finding one of these 3 coincident pairs
amongst the total of 20 is

Pr(X = Y ) =
CI

CXCY
=

3

20
. (3)

To keep the analogy with the probabilities of coincidence
between instances of X or Y , separately, which are 1/CX

and 1/CY , respectively, we define a new cardinality, CXY ,
such as

Pr(X = Y ) = 1/CXY , (4)

where CXY may be regarded as a cross-cardinality. In this
illustration with equally probable elements, CI is at hand, and
CXY = 20/3 is a rather unnecessary and almost meaningless
quantity. But, in cases where random variables are nonuniform,
CXY becomes a useful measure that can be directly estimated

trough cross-coincidence counting, whereas CI is not directly
available. Indeed, from 3 and 4 we may obtain CI as a function
of all the cardinalities directly estimable through coincidence
counting, namely:

CI = CXCY /CXY .

This definition is generalized to effective cardinalities of
order a as

C
(a)
I =

C
(a)
X C

(a)
Y

C
(a)
XY

. (5)

where we also define cross-cardinality of order a as a gener-
alization of Equation 2, as

C
(a)
XY =

( ∑
i∈X∪Y

pX(i)pY (i)
(a−1)

) 1
1−a

, (6)

for discrete variables, where pX and pY stand for the PMF of
X and Y , respectively, and

C
(a)
XY =

(∫
z∈X∪Y

fX(z)fY (z)
(a−1)

) 1
1−a

dz, (7)

for continuous variables, where fX and fY stand for the
probability density functions (PDF) of X and Y , respectively.

To illustrate how fair is the minimum error probability
estimated trough effective cardinality analysis on nonuniform
random variables, Example 4 addresses a case that can be
regarded as a model for two unfair dices being independently
thrown. Please note that the former examples can be regarded
as specific cases of Example 4.

Example 4: Two random variables, X and Y , take values from
sets X = {1, 2, 3, 4, 5, 6} and Y ≡ X , with probabilities
pX(z) = Pr(X = z) and pY (z) = Pr(Y = z) respectively.
An instance, z, is observed, and the observer only knows pX ,
pY , as well as that z is likely to be an instance of X or Y
with probabilities PX = PY = 0.5. For this example, 100,000
instances of distributions pX and pY were randomly created.
A validated pseudorandom number generator was used to
generate values for pX(z) and pY (z) between 0 and 1, with
uniform density. These values were further normalized for pX
and pY to be a valid PMF. The minimum error probability,
Pr(error) (according to the Bayesian criterion) was compared

to Pe(2) = C
(2)
I min

(
PX

C
(2)
X

, PY

C
(2)
Y

)
, thus yielding, in average,

Pr(error) = 0.338 and Pe(2) = 0.355.
For sake of comparison with the cardinality associ-

ated to the Shannon entropy, we also computed Pe(1) =

C
(1)
I min

(
PX

C
(1)
X

, PY

C
(1)
Y

)
, which yielded, in average, Pe(1) =

0.316. Therefore, we observed that Pe(1) is biased by about
-0.022 , whereas Pe(2) bias is about 0.017. Besides, the
standard deviations of errors (Pe(1)−Pr(error)) and (Pe(2)−
Pr(error)) are, respectively, 0.058 and 0.023.

In this case with random variables taking values in a set
of six elements, both Pe(2) and Pe(1) are biased estima-
tors of Pr(error), with a bias of about 5% of the actual
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error probability for Pe(2). To further explore the limits of
these two rough probability estimators, we extended Example
4 to X and Y taking values from the much bigger set:
{1, 2, 3, . . . , 1000}, which yielded biases for Pe(1) and
Pe(2) of about −0.03 and 0.04, with standard deviations of
about 0.006 and 0.002, respectively.

Examples from 1 to 3 are aimed at building an intu-
itive perception that the minimum error probability can be
roughly estimated through effective cardinality analysis, even
for nonuniform random variables, and the experimental results
from Example 4 corroborate this perception. Moreover, the
relatively small deviations obtained for Pe(2) is the most
welcome, because a quadratic entropy/cardinality estimator is
known to provide meaningful results even for small sets of
random variable instances [9], as compared to most Shannon
entropy estimators.

Up to this point, we already know that, for classes mod-
elled as discrete random variables, the minimum classification
error probability can be roughly estimated through effective
cardinality analysis. However, a more difficult to handle clas-
sification problem may include continuous random variables.
Fortunately, the concept of effective cardinality still holds
for continuous variables, and to study the approach under
continuous variables, we do two brief experiments, namely:

1) First we consider X and Y as two continuous random
variables with uniform probability density functions, fX
and fY , with unit range (fX(z) = 1 if |z − µX | < 0.5
and fY (z) = 1 if |z − µY | < 0.5), centered at µX and
µY , respectively. The a priori probabilities are arbitrarily
set to PX = 0.4 and PY = 0.6, just to improve graphic
visualization, as in Fig. 1.

2) Secondly we consider X and Y as two Gaussian random
variables, whose probability density functions, fX and
fY , are two unit variance Gaussians with means µX

and µY , respectively. Their a priori probabilities are the
same (i.e. PX = PY = 0.5), as represented in Fig. 2.

In both experiments, the actual minimum classification
error (for the optimum Bayesian classifier) is also computed
while the gap µY − µX between the two classes is gradu-
ally increased. Error estimates – through effective cardinality
analysis – are obtained according to:

• P̂ e
(1)

= C
(1)
I min

(
PY

C
(1)
Y

, PX

C
(1)
X

)
;

• P̂ e
(2)

= C
(2)
I min

(
PY

C
(2)
Y

, PX

C
(2)
X

)
,

where effective cardinalities are obtained according to Equa-
tion 7, with notation simplified as

C
(1)
X = C

(1)
XX ; (8)

C
(1)
Y = C

(1)
Y Y ; (9)

C
(2)
X = C

(2)
XX ; (10)

C
(2)
Y = C

(2)
Y Y ; (11)

and C
(a)
I = C

(a)
X C

(a)
Y /C

(a)
XY .

Through this experiment, we observe that the estimator
based on quadratic effective cardinality gives a precise es-

Fig. 1. Comparison of the actual error probability to its estimates through
cardinalities for a = 1 (corresponding to the Shannon entropy) and a = 2
(corresponding to the quadratic entropy) – Two classes with uniform distri-
butions.

Fig. 2. Comparison of the actual error probability to its estimates through
cardinalities for a = 1 (corresponding to the Shannon entropy) and a = 2
(corresponding to the quadratic entropy) – Two classes with Gaussian distri-
butions.

timate of Pr(error) for classes with uniform distribution,
whereas the estimator based on order one cardinalities (related
to the Shannon entropy) clearly fails1. These results strongly
corroborates the intuition that the quadratic entropy, being
related to collision detection – which turns out to be a matter
of fundamental comparison between instances of random
variables – would also be more closely related to classification
error. Likewise, in the second experiment, whose results are
presented in Fig. 2, the estimate of order two seems to be a
more suitable choice for pattern classification purposes, giving
better probability estimates for values of Pr(error) below
10%.

However, considering Equations 6 and 7, error estimation
through effective cardinality, at a first glance, is just a rough
estimate whose computational burden is equivalent to that of
the direct estimation of Pr(error). Therefore, if distributions

1C
(1)
XY cannot even be properly computed if fY (z) = 0 for any z such

that fX(z) ̸= 0. To avoid singularity, fY (z) was replaced with fY (z) + ε,
with ε ≈ 0.
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are known, as well as the classes a priori probabilities, PX

and PY , either Pr(error) or Pe(2) are obtained through
sum/integration of functions over the support sets of X or
Y . For instance, if both X and Y are continuous random
variables, the computation of Pr(error) is given by inte-
grals of PXfX(z) or PY fY (z), over regions RY and RX ,
respectively, where RX (respectively RY ) is a region where
PXfX(z) ≥ PY fY (z) (resp. PXfX(z) < PY fY (z)). Thus, in
terms of computational burden, there would not be an evident
reason for using the proposed rough estimator Pe(2). But a
known caveat that may hinder the computation of Pr(error)
is that RY and RX may be formed by imbricated disjoint
subregions. For instance, the one-dimensional random vari-
ables whose probability density functions are represented in
Fig. 3, under equal a priori probabilities (for simplicity), form
optimum classification regions which are disjoint. For this one-
dimensional problem, the minimum classification error prob-
ability is still easily computable, yielding Pr(error) = 0.092,
but it gives an idea of how difficult it would be if X and
Y were multivariate, thus defined in high-dimensional spaces
and forming irregular and disjoint regions RX or RY , difficult
to integrate over, mainly because of the issue of defining the
irregular integration boundaries.

By contrast, effective cardinalities are always computed
over the entire support set of X and Y , which can be much
simpler in many practical cases, and yet, it may give a
useful estimate of Pr(error). In the example corresponding
to the distributions in Figure 3, Pe(2) = 0.089 whereas
Pr(error) = 0.092.

Fig. 3. Bayesian optimum classifier illustrated for a unidimensional two-class
problem.

It should be noticed that the computation of Pr(error)
is prone to strong deviations in practical situations where
an experimenter has a limited amount of instances of each
random variable. In this case, a straightforward approach
would be that of approximating the Bayesian classifier with
explicit estimates of fX and fY which, in turn, yields empiri-
cally approximated optimum classification boundaries between
(possibly disjoint) regions RX or RY . Afterwards, it would be
necessary to integrate segments of PXfX and PY fY over the

corresponding regions.
Evidently, this practical deployment of a Bayesian classifier

is rather indirect (if the goal is just to estimate Pr(error)) and
not always viable. On the other hand, effective cardinalities
can always be easily estimated trough coincidence counting,
and this is indeed our main motivation to propose the very
pragmatic method detailed in Section III. Although Pe(2)

was shown to be biased, through the former experiments,
the proposed method is so simple to implement that it can
be a useful additional tool for experimenters with different
theoretical backgrounds. Besides, the method is based on the
accumulation of any detected coincidence, and can be used
as a fast alternative to a rough minimum error estimation,
notably in cases with heterogeneous data (e.g. categorical and
numerical data mixed up). As a matter of fact, coincidence
is probably the most fundamental concept in cognition, and
the proposed method can be applied wherever coincidence is
defined – nothing else is required.

III. A PRAGMATIC METHOD FOR MINIMUM
CLASSIFICATION ERROR ESTIMATION THROUGH EFFECTIVE

CARDINALITY

To estimate the effective cardinalities, we adapted the
quadratic (collision) entropy estimation method originally pro-
posed by S.-K. Ma, in [12], for it is a very simple method
that can handle problems where the number of instances is
even less than the effective cardinality itself. Ma’s method was
proposed in the context of Physics and the event coincidence
was consequently defined in terms of dynamic system states.
By contrast, in a broader perspective of pattern recognition, it
is helpful to adapt the method by splitting it into three steps,
as explained in the sequel.
For a dataset of NX and NY independent instances of X and
Y , respectively,

1) Define coincidence between instances of X and Y .
2) Estimate effective cardinalities as explained bellow:

a) Compare all the TX = NX(NX − 1)/2 possible
pairs of instances of X to find the number of
detected coincidences, DX .

b) Compare all the TY = NY (NY − 1)/2 possible
pairs of instances of Y to find the number of
detected coincidences, DY .

c) Compare all the TXY = NXNY possible pairs of
instances of X versus Y to find the number of
detected coincidences, DXY .

d) Estimate the effective cardinalities of virtual sets
as ĈX = TX/DX , ĈY = TY /DY and ĈXY =
TXY /DXY .

e) Estimate the effective cardinality of the intersection
between the two virtual sets according to Equation
5, as ĈI = ĈXĈY /ĈXY .

3) As in Example 1, estimate P̂ e
(2)

= PX
ĈI

ĈX
, if PX

ĈX
≤

PY

ĈY
, or P̂ e

(2)
= PY

ĈI

ĈY
, otherwise.

As an illustration of the method, we consider again the
classification problem corresponding to Fig. 3, under equal
a priori probabilities for the classes, to which the optimum
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Bayesian classifier yields Pr(error) = 0.092. In step 1 of
the method, we define that a coincidence occurs every time
two scalar instances differs by less than ∆ = 0.1 (see discus-
sion about definition of coincidence for continuous random
variables in Subsection III-A). Then, with just 100 instances
of each random variable, NX = NY = 100, independently
drawn for each trial, the proposed method was repeatedly
applied 30,000 times, yielding an average estimate of about
P̂ e

(2)
= 0.088, and a standard deviation of about 0.028.

In order to preserve the pragmatic leitmotiv of the proposed
method, coincidence would be preferably defined according
to the expertise of the experimenter. For instance, in a given
collection of data, two forms with categorical and/or numerical
data may be regarded as two instances of a multivariate signal,
and determining whether these two forms are coincident or
not may be neither an objective nor a straightforward matter.
It is hard to imagine a general definition of coincidence
that would fit all practical requirements, regardless of the
corresponding domain of application. Moreover, even if a
given signal is consistently measured through a well defined
scale, we should not expect two coincident measurements in
Biology to be necessarily coincident for a physicist, as well. To
further discuss this sensitive point, in Subsection III-A, some
pragmatic aspects of coincidence definition are highlighted.

A. On the definition of coincidence

Although coincidence can be regarded as a fundamental
concept in pattern recognition (and in cognition, as a whole), it
is difficult to define it mathematically in a consensual manner.
Even the idea that coincidence is a Boolean variable (true or
false) can be challenged. For instance, there is an interesting
theoretical link between the quadratic entropy estimator in
[12] and the Information Theoretical Learning (ITL) frame-
work, started in [13] and further developed in [14], so that
coincidences, in ITL approach, can be regarded as a soft
version of coincidences in Ma’s method. More specifically,
both approaches aim at directly estimating quadratic entropy
from the data samples, without imposing assumptions about
random sources distributions, but the kernel (Parzen) based
PDF model used in ITL leads to the following equation
(transcribed here for reader convenience):

ĥ(2) = − log

 1

N2

N∑
i=1

N∑
j=1

G(xj − xi;σ)

 , (12)

where continuous degrees of coincidences between pairs of
samples, xi and xj , are measured through a Gaussian kernel,
G(xj − xi;σ), whose dispersion is parametrized by σ, and
are summed up. The resulting sum is divided by the number
or pairwise comparisons, N2. The similarity of this quadratic
differential entropy estimator and the method of estimation
through coincidences proposed by S.-K. Ma [12] (to be used
in statistical mechanics) is striking. By replacing G(·), in
Equation 12, with a simpler hard detector (0 or 1) function
– also typically used in Parzen models of PDF – the entropy

estimators of Equation 12 and that by S.-K. Ma coincide2.
It is further interesting to note that the nonparametric

estimator of entropy in Equation 12 was proposed as early
as in 1998, by Dongxin Xu and Jose C. Principe [13], as a
robust way to directly extract information from available data
(thus avoiding the postulation of parametric PDF models). This
corroborate our perception that the gathering all coincidence
in a single counter, detected either by a hard or by a soft
detector, yields well adapted estimators for limited amounts
of data. Nonetheless, as pointed out in [13], it does come
with a computational cost, since it is based on the comparison
of all available pairs of observations.

Regarding the definition of coincidence itself, deciding
between hard or soft coincidence detectors is just the tip
of the iceberg, and we do prefer to assume that it is a
matter of expertise, with a lot of subjective aspects, rather
than an objective theoretical problem. However, for sake of
simplicity, par défault, we arbitrarily suggest the use of hard
of Boolean (true or false) coincidence definitions. Besides, in
cases where the random variable is continuous and defined
over a metric space, we also suggest a rule of thumb based
on an interesting connection between effective cardinalities
and differential entropy. In such cases, a coincidence can be
defined, for two instances xi and xj of a random variable X ,
as:

Coincidence: a probabilistic event which is true, for a
pair (xi, xj), if xj is found inside a region with hyper-
volume ∆ around xi . The term hyper-volume can also
stand for length, area or volume, depending on the space
dimension where X is defined.
In Figure 4, this definition is used with several values of ∆,

and 10,000 independent instances were drawn for each of four
parametric distributions. The effective cardinality, C(2)

X , was
re-estimated for each value of ∆, thus allowing the resulting
plot of log2(1/∆) versus log2

(
C

(2)
X

)
, where an asymptotic

alignment of log2

(
C

(2)
X

)
with the quadrant diagonal can be

noticed. Indeed, as ∆ is reduced, for an unlimited amount
of instances, it is expected that the vertical distance from the
quadrant diagonal to log2

(
C

(2)
X

)
will tend to the quadratic

differential entropy of the corresponding continuous random
variable. In other words, the quantity ĥ

(2)
X = log2(C

(2)
X ) −

log2(1/∆) tends to the quadratic differential entropy, h(2)
X =

− log2

(∫∞
−∞ f2

X(x)dx
)

, as ∆ tends to zero.
For instance, in the experiments shown in Fig. 4, best

estimates and theoretical values of the quadratic differential
entropies are compared in Table III-A. This asymptotic
behaviour can also be noticed for multivariate variables (i.e.
dimension L ≥ 1). Therefore, to keep coincidence definition as
simple as possible, the coordinates of xi may define the center
of a hypercube of edge ξ = ∆1/L, so that another instance xj

found inside this hypercube accounts for one coincidence. In
other words, for this definition of coincidence, the asymptotic

2Ma’s method makes N(N − 1)/2 non-redundant pairwise comparisons,
whereas the ITL method makes N2 redundant ones. Therefore, if G(·) is
replaced with the same hard coincidence detector used in Ma’s approach, both
methods provide the same average number of coincidences per comparison.
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TABLE I
QUADRATIC DIFFERENTIAL ENTROPIES FOR THE CURVES IN FIGURE 4.

PDF Theoretical Estimated
Uniform (range = 1) log2(range) = 0 0.02
Gaussian (σ = 1) log2(2σ

√
π) ≈ 1.83 1.84

Exponential (λ = 1) 1− log2(λ) = 1 1.03
Laplace (λ = 1) 2(1− log2(λ)) = 2 1.99

Fig. 4. Differential entropy and the asymptotic behaviour of coincidence
counters for continuous variables.

convergence of h
(2)
X indicates that the probability density

function tends to be uniform inside every hypercube of edge
ξ [15]. Thus, a rule of thumb for defining coincidence region
for continuous variables can be set according to the following
practical iteration:

• Arbitrarily chose a hyper-volume ∆.
• Count all κ coincidences over the whole dataset.
• Double the hyper-volume.
• Recount all coincidences over the whole dataset.
• Accept the hyper-volume ∆ as suitable for coinci-

dence definition if the recounted number of coincidences
roughly equals 2κ. Otherwise, reduce ∆ and move back
to step 2.

Unfortunately, too small datasets may not allow this asymp-
totic behaviour to be observed, mainly if L ≫ 1, and the
definition of coincidence should again depend on the analyst
expertise, in which case error probabilities are expected to be
as meaningful (of meaningless) as the chosen definition of
coincidence.

To illustrate the utility of the proposed method in a case
where the optimum classification boundary in nonlinear and
two-dimensional, we first gathered independent instances of
each random variable, representing two equally probable
classes (i.e. same a priori probabilities), with distributions
given by:

X1 ∼ N
(
[0, 0],

[
σ 0
0 3

])
, X2 ∼ N

(
[2, 0],

[
σ 0
0 3

])
.

to which the Bayesian boundary is clearly a straight vertical
line at coordinate 1 of the Cartesian plane, and the minimum

classification error can be easily obtained through the integral
Pr(error) = 1√

2πσ

∫∞
1

exp
(

−x2

2σ2

)
dx.

As an artifice to obtain a perfect nonlinear two-dimensional
optimum Bayesian boundary, all instances of X1 and X2 are
distorted by a nonlinear bijective function, W = f(X), where

X =

[
a
b

]
→ W =

[
tanh(0.1(a+ b)

− tanh(0.2(a− b))

]
The resulting distorted clusters of of these points can be

seen in Fig. 5, along with the also distorted optimum decision
boundary. Since f(·) is a bijective function, the minimum error
rate remains unchanged, although the boundary is no longer
a straight line, and any classifier whose goal is to minimize
the classification error rate would be adjusted, through the
available instances of W , to find this optimum boundary.

By contrast, through the proposed method, we defined
coincidence with the rule of thumb proposed in this section,
with ξ = 0.01, and estimates of the minimum error (of a
hypothetical well adjusted classifier) were easily obtained. In
Fig. 6, these estimates are presented for values of σ ranging
from 0.3 to 3.5, with N = 5000 independent instances of each
class for each value of σ.

Fig. 5. Nonlinear classification problem example with its optimum decision
boundary.

IV. CONCLUSION

A pragmatic method was presented to yield a rough but
potentially useful estimate of the minimum probability of clas-
sification error, for a two-classes problem. The basic principles
that support the method are very simple, namely: cardinality
of sets and basic probability concepts, thus providing unbiased
error estimates for uniformly distributed random variables.

As for nonuniform random variables, we borrowed the
meaningful concept of effective cardinality from [8], and we
experimentally showed that the method still provides useful
but biased estimates of the minimum error, if the quadratic
(collision) entropy is used to obtain effective cardinalities of
idealized sets, associated to equally idealized uniform distri-
butions. Estimation biases were found to be either positive
or negative, and some interesting cases were studied through
numerical simulations.
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Fig. 6. Decision error for the nonlinear classification problem example –
circles correspond to minimum error estimates through effective cardinality
comparison, thus without explicit decision boundary estimation.

The proposed method also takes advantage of the fact
that quadratic entropy is probably the easiest entropy to
be estimated from a limited amount of instances, through
simple coincidence counting. For sake of simplicity of use, we
divided the method into three steps, where the first one is the
definition of the probabilistic event coincidence. It was further
discussed the importance of the expert to provide meaningful
definitions of coincidence, according to the source of the data
under analysis. Nonetheless, a rule of thumb for continuous
random variable was also provided in Section III-A, based
on an expected asymptotic behaviour of differential entropy
estimators.

Concerning coincidence definition, yet an interesting theo-
retical link between the quadratic entropy estimator in [12]
and the Information Theoretical Learning (ITL) framework
was pointed out here, illustrating that coincidence can even be
defined in a continuous scale of values (i.e. soft coincidence).
This illustration supports the idea that coincidence is a rather
difficult to define concept, in spite of its apparent simplicity.

We believe that the effective cardinality concept simplifies
the understanding of the practical tools presented in this paper,
potentially making it easier to adapt them to experiments done
in different domains, regardless of the experimenter fluency
in information theory. The pragmatic aspect of the proposed
approach may explain, for instance, the connection between
the cross-cardinality, C

(2)
XY , estimated through coincidence

counting, and the mutual index of coincidence (MIC), used
in cryptography [16]. This connection also indicates another
potential domain of application for the proposed method, with
extension to DNA analysis, where MIC is already in use [17].

Whatever the chosen application, a common aspect of many
practical problems related to actual data is the difficulty of ap-
plying tools based on entropy estimation to heterogeneous and
high-dimensional data. To this concern, the proposed method
establishes a net separation between coincidence detection and
quantities estimation. This approach doesn’t come without
risks, for error probabilities are expected to be as meaningful

(of meaningless) as the provided definition of coincidence. On
the other hand, we also hope that this strategy may simplify
the practical use of our method because, in essence, once the
event coincidence or collision is defined by the experimenter,
all the other steps are as simple as counting coincidences and
making some basic calculations. This strategy also paves the
way for application were experimental data is heterogeneous
(e.g. mixed categorical and numerical data), since it just de-
mands a proper definition of coincidence for the corresponding
heterogeneous data, thus preserving all the other method steps
unchanged.

Concerning the practical deployment of the proposed
method, the pre-analysis of available data (observed instances),
in terms of quantity and quality, is recommended. The main
steps of the method rely upon quadratic entropy estimates,
therefore reliable such estimates are paramount requirements.
For categorical data, as suggested by S.-K. Ma himself [11],
if the number of symbols is very small and each symbol is
used many times, one would prefer plug in methods (through
PMF estimation). Indeed, just as Ma’s method for entropy
estimation, our method finds its main application potential in
cases where the number of instances is much greater than
the square-root of the number of symbols, but not enough
to yield reliable PMF estimates (e.g. sparse histograms). The
theoretical reasons for the robustness of quadratic entropy
estimators under data shortage is further studied in the more
recent work by Paninski [18].

As for continuous observations in L−dimensional observa-
tion spaces, even if they are part of a heterogeneous collection
of observations (i.e. continuous L−dimensional multivariate
data coupled to categorical data) they should be separately
preprocessed for proper definition of multivariate coincidence
event. As proposed in [19], in the Section entitled Setting
and testing a coincidence neighbourhood, if the standard
deviations in each dimension of the continuous data are
normalized, one may take advantage of an approximative
relationship between a first guess for the effective cardinality
and the hyper-volume ∆. For instance, given a first rough
guess for effective cardinality of about C(2) = 1000, and
L = 3, then one may set ∆ ≈ 1.6(3.5)L

C(2) ≈ 0.07, as a first
choice for ∆, and then refine it as in Subsection III-A. Note
that if the test proposed in Subsection III-A does not hold
for any value of ∆, one should conclude that there is not
enough data (continuous data) for the entropy estimator to
properly work. After categorical and numerical observations
are separately tested, they should be jointly tested as well.
Practically speaking, the test proposed in Subsection III-A
should be applied again, under the definition of coincidence
chosen by the experimenter, for the heterogeneous set of
observations.

A remaining important issue is to be sure that instances are
taken independently, for the coincidence method for entropy
estimation assumes it is true. As a practical advice, one
should test if it is at least approximately true, mainly in the
cases where samples are taken through time from a dynamic
phenomenon. In [11], S.-K. Ma drags the reader’s attention to
what he calls the relaxation time, which can be regarded as
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a phenomenon momentum. Indeed, any dynamic phenomenon
may have at least one source of momentum/inertia, regardless
whether it is a physical or a social phenomenon (just to
mention two) and if samples are sequentially taken without
taking it into account, independence between samples may be
significantly violated, and entropy estimates, in general, tend
to be lowered.

As a final comment on the principles behind this work, as in
[8], we also believe that thinking in terms of sets and effective
cardinalities – instead of entropy – may induce new interesting
ways of thinking about the powerful theoretical background
behind the information theory.
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