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Abstract

Time-frequency voiced and unvoiced models are proposedhirexcitation of a harmonic autoregressive
wideband speech analysis-synthesis system. The timedmey voiced excitation (TFVEX) model has low time
resolution defined by the concentration of the excitatigmai distribution in the modulation domain while the time-
frequency unvoiced excitation (TFUNEX) model has cycledtidiscrimination with lower amplitude resolution and
while the frequency resolution for both models is an octdee speech reconstructed by the compound TFUVEX
unvoiced-voiced model is rated above the speech degradadimydulated noise reference unit (MNRU) at 25 dB
in listening tests while yielding a parametric compressibmover ten times.
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. INTRODUCTION

ARMONIC speech representations have been used for codingedium to low bit rates [1] even

when they fail to achieve perfect reconstruction. Howeiteils desirable to have a nearly perfect
reconstruction (NPR) front-end representation since iitasbounded in performance at high rates and it
will be more useful if amenable to be fit by simpler models fpetion at lower bit rates that should
be controlled by a manageable and meaningful set of parasnete

The classification of speech segments into voiced and uedaitasses is important for speech modifi-
cation and speech coding since they are processed ditferBesides, sparse speech representations are
useful for source separation [2] and, if conceptually destj they may be the basis for pattern playback
in signal processing education [3].

Usually, a model is fit to the voiced harmonic amplitudes [4] for ease of manipulation and
often as an intermediate stage in coding. Somehow unexgigctn unvoiced model is important in
making a harmonic system deliver natural-sounding spegLH4] or, for that matter, any synthesized
audio signal [6], in particular music [7], [8] since any inghental performance requires some random
fluctuations in order to sound natural.

In this work voiced and unvoiced models are proposed withioommmon framework for an NPR
front-end representation [9] so that sparse speech repeggams may be achieved.Unlike usual harmonic
representations which apply hard decision for voiced andgbiged speech classification in the time
and/or in the frequency domain, the voiced-unvoiced degigi this analysis-synthesis system (ASyS) is
equivalent to a soft decision because the separation ieimgaited in the modulation domain.

A brief description of ASyS and the criteria for classifyimgd segmenting speech excitation into
voiced part and unvoiced part are presented in Section k. vidiced model (TFVEX) is developed in
Section Il upon specific time-frequency features of voieditation, which are to be contrasted with
those of the unvoiced model (TFUNEX) that follows in Sectldh Then, the compound voiced-unvoiced
model (TFUVEX) is presented in Section V with the introdoatiof the spectral weighting in the pitch-
synchronous domain. Finally, the three excitation modeés assessed in Section VI and remarks are
drawn in conclusion.

[I. SPEECH EXCITATION CLASSIFICATION AND SEPARATION

A lower dynamic range in the time-frequency domain can bdexeld by prewhitening the speech
signal by means of linear prediction [10]. At a sampling ratel6 kHz, 18th-order AR modeling has
been found adequate with von Hann window length of 20 ms aamdrrate of 400 Hz. The prediction
residual signak(n) is then time-warped te,(v), for v € Z, by means of bandlimited sinc functions in
order to hold the pitch period length constantFatsamples [9] as depicted in Fig. 2 whereas the original
pitch trackp(n) is separated. Consequently, at this point the signal posverdre evenly distributed in
both the time and the frequency domains as illustrated in Eigvhere the time-frequency distributions
of the power in the speech signal and in the residual sigmatepresented by a spectrogram and by the
intensity of a pitch-synchronous transform (PST), redgpelst

The time-warped residual undergoes a pitch-synchronaussfisrm, which is a modulated lapped
transform (MLT) [11] that produces the harmonic tracks

(k+2)Po—1

ak) =Y ru@)e () (1)
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(b) Pitch-synchronous transform intensity plot.

Fig. 1. Wideband spectrogram of the speech signal and P&msity plot of the prediction residual for the phrase “Shd kaur dark
suit...”, uttered by a male speaker.

for pitch cyclesk € Z, harmonic indicesd € {0,1,... P — 1} and local warped timeu.(v) = v +
[4 — (k mod 4)]2P,, where the basis functions are

o (1 + X B 41
1lpe) = 35 cos ”(“)g‘;’; 22|y ). @

The PST is evaluated at each pitch cycle over a two-cycle leimglow wy. (i), which is a modified
square-root von Hann window

2w v)+ 2
wy, (pk(v)) = % - %COS (MI;(PO) *3) 3)

for the kth pitch cycle. In fact, any smooth window could be used ag las its squared sum is unity so
that it satisfies the perfect reconstruction condition.
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Fig. 2. Block diagram of the analysis process in ASyS.

The modulation transforms (MTs) of the resulting PST timecks, for! € {0,1,... P — 1}, are
obtained in modulation segment as

kom +Qm -1

eq(m) = Z (k) mg (Xm (K)) 4)

k;:k;()m

where@,, is the segment length with initial cycle indéy,,, local cycle indexy,,(k) = k — Z’;’Ol Q;
and type-ll DCT [12], [13] basis functions

/ qm
¢mq(Xm) = Qm’Yq COs (@Xm + 262—m> wm(Xm) (5)
for modulation frequencies (MFsg) < {0,1,...,Q., — 1}, where coefficienty, is defined as

v = % ?fq:O mod @,
1 1 ifg#0 modQ@Q,

andw,, (xm(k)) represents the rectangular window for th¢h modulation segment, which is supported
within the interval{ko., kom + 1, ..., kom + Qm — 1}.

It should be noted that the analysis process shown in FignZoeanverted perfectly for obtaining the
excitation signal back. The MT and the PST can be invertetepily within the numerical precision of
the system and the LP-whitener plus time-warper cascadgle€@an be inverted with segmental SNR of
around 50 dB for obtaining the reconstructed speech signal.

The time-frequency distribution concentration (TFDC) sw@a& used for the modulation transform is
the unnormalized modified Zakai's entropy

Qm—1

(m, Qm) = Z Z ql (6)

where the square root replaces the original log functloﬂn[\ntﬂle preserving the convexity of the measure.
The DCT space dimension is increased one step further ifRI30 satisfies the inequality

whereCg(m, Q,,) is the TFDC for the current modulation segment @n\gm+1,1) is the TFDC for the
next single-cycle segment whileis the difference TFDC threshold, which should be unity fodetband
speech with unit-variance residual signal. By increashegmodulation segment length in unit steps, the
actual length?,, is reached when inequality (7) fails to hold.



The baseline for voiced-unvoiced separation is a quiteoderiresidual whose energy lies completely
in the DC modulation coefficient for all harmonic tracks. Fosequence of nonidentical pitch cycles, it
is postulated that the lower

Gom = max{3,]0.2Q,,|} (8)

MT coefficients represent the voiced part while the rest ilest¢he unvoiced part. Therefore, this voiced-
unvoiced separation criterion effectively sets, — 1 as the voicing cutoff frequency for modulation
segmentn.

Finally, transients are envelope-detected and modelexithke voiced part. As a result, the average
modulation segment length is around twelve pitch cyclesraagl be controlled by the TFDC threshold.
Further, the number of MFs in the unvoiced region is noteddaadiher larger than that in the voiced
region due to the voiced-unvoiced separation criterion.

[1l. THE TIME-FREQUENCY VOICED EXCITATION MODEL

The TFVEX model is based on the concept that a voiced modelhear lower time resolution [1]
and must have greater spectral amplitude resolution. Intiadda high-fidelity representation for the
low-frequency PST tracks emphasizes the harmonic strictur

The time resolution for the TFVEX model is the varying modiga segment length since it is a good
estimate of the range of local stationarity. An algebragnsapplied to each local standard deviation
estimates provides adequate spectral amplitude resolutio

For wideband speech, the, = P, = 256 modulation tracks of same MF are clustered iAtoctave
bands that hold, 1, 2,4, ..., 128 tracks, respectively. Low-frequency fidelity is achieveditcluding the
voiced MT coefficients for the lower compound baBd = {/}7_, .

8

For the set of upper five PST bands, =] B,, the estimated MT voiced coefficient variance is
b=4
evaluated as the mean square modulation intensity ovecitév® band by

(v 2 1 — v 2
(o5 m) = 55 2 (b)) ©)
1=2b-1
for each upper band, = {2°7',2°"' +1,...,2° — 1} for b = 4,5,...,8 and MFs in the voiced range
0 <q < qum — 1, whereg,,, — 1 is the highest MF in the voiced region for modulation segment
Given the structure above, MT coefficients for the voiced elate retained for the lower band and
made equal to the estimated variances affected by the aligigns for the upper bands, that is,

(v)
o gy = 4 ot ) L€ b (10)
al sign<e§;>(m)) 6% (m) 1€ B, C B,
fori =0,1,...,FPp—1and0 < ¢ < ¢,,» — 1. This modeled modulation segment is built immune to
spillover across the voiced-unvoiced boundary by addiiigrdefining
ey (m) =0 (12)

for MFs in the unvoiced region,,, < ¢ < @,, — 1 and harmonic tracké=0,1,..., Py — 1.

Therefore, the TFVEX model consists of 8 MT coefficients, Biaraces and 248 signs. Packing signs
into sets of sixteen 16-bit coded values, it amounts to d aftd9 parameters per voiced MF.

The framework for the voiced model is consistent with theaicwd model, proposed in [9] and outlined
in Section IV. However, TFVEX and TFUNEX differ in their tirfeequency footprints and their amplitude
resolution within.



IV. THE TIME-FREQUENCY UNVOICED EXCITATION MODEL

The TFUNEX model is based on the facts that an unvoiced madehave lower spectral resolution [1]
and must have greater time resolution. The latter is fuffilty allowing TFUNEX to have pitch cycle
resolution. This is consistent with the observation thatribise in the voiced regions of speech is coherent
with the voiced part [8], [5].

The estimated variances for the upper bands are

(870) = 5 32 () 12)
l

—2b—1

for b =4,5,...,8. They shape the pitch-synchronous model tracks
(u)
¢ (k forl e B
Cz(o)(k) = Al(u)( ) ! (13)
Oy (k)l’l(/{?) for [ € B, C B,

for{ =0,1,..., P, — 1 andk in modulation segment:, wherez;(k) are generated by independent and
identically distributed zero-mean, unit-variance Gaaisgrocesses.
These tracks are modulation-transformeckgﬁé(m), that lead to the final model, which is obtained as

0 for0<g< -1

~(u) - >4 > Qum

“a () { e (m) fOr gu < q < Qu — 1 (14)
fori=0,1,..., P, — 1, whereq,, — 1 is the voicing cutoff frequency defined in Section Il. In th&TP

domain, the unvoiced excitation model for modulation segime is cl(“ (k) for k in modulation segment
m and harmonic tracks=0,1,..., P, — 1.

In total, the TFUNEX model consists of 13 parameters perhpiycle, which are 8 PST coefficients
and 5 variances. Since the number of unvoiced MFs is usualighngreater than the number of voiced
MFs as noted in closing Section I, the compression effebie@iFUNEX is greater than that achieved by
TFVEX and the finer time resolution necessary for the unwbicedel is not a heavy penalty. Besides,
this explains in part why the unvoiced model has been prapéss [9].

V. THE COMPOUND TIMEEFREQUENCY UNVOICEDVOICED EXCITATION MODEL

The TFVEX model proposed in Section Il and the TFUNEX modesdibed in Section IV can be
linearly combined in the modulation domain, giving rise tUVEX, the compound unvoiced-voiced

model

el (m) = &) (m) + &\ (m), (15)

for modulation frequencie® < ¢ < @,, — 1 in the mth modulation segment and harmonic tracks
0<I<F—1, Whereégj) (m) is the voiced model modulation coefficient for Mfof the /ith harmonic

track given by Eq. (10) or (11) andﬁ’(m) is the unvoiced model modulation coefficient for MFof
the [th harmonic track given by Eq. (14). This combination is atifua time-frequency juxtaposition due
to the antialiasing operations carried out in the modutatiomain in the determination of both models.

It is interesting to note that while the TFUVEX model juxtaes the models for the voiced and for
the unvoiced parts in the modulation domain for flexible ps®ing, the unvoiced model in [8] consists
of wavelet transforms around each harmonic peak, whichigesvfor a better recombination.

The spectral fitting performance for TFUVEX is illustratedfig. 3(c), where it can be seen to follow
rather closely the upper magnitude envelope.

Further, a spectral enhancement has been found beneficibéfier low frequency representation and
smooth voiced-unvoiced recombination. It is applied to uhgoiced model in the PST domain, where it
does not interfere with the periodicity in the signal.
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Fig. 3. Low-frequency speech signal spectrum (a) and itsn&tcuction with ASyS using the time-frequency unvoiceddeiaand original
voiced part (b) and using the compound time-frequency weebivoiced model (c).

At first, a highpass filter with cyclic cutoff frequencf. = 11/F, is designed by means of the sinc
function

sindn) = Sin;;") (16)
to have the impulse response
wy(n) = (1 —2f.) (=1)"sinc[(1 — 2f.) (n — 32)] a7

forn=0,1,...,64.
The pitch-synchronous spectral weighting (PSSW) vectotted in Fig. 4 is defined by sampling the
frequency response of the highpass filter as

w(l) = Wi (27 (18)

at the cyclic frequencieg, = 1/(2P,), for i =0,1,..., Py — 1.
Finally, the enhanced model coefficients for unvoiced etich are obtained by applying PSSW as

&' (k) = w(l)el™ (k) (19)
forl=0,1,...,P —1.
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Fig. 4. Pitch-synchronous spectral weights.

VI. EXPERIMENTAL RESULTS

For the listening tests, four male and four female utterarneere chosen so that each speaker couple
belongs to a different dialect region in the TIMIT databd&¢[for a total length of 448 thousand samples
at a sampling rate of 16 kHz. Each signal was synthesized l)5AS seven test conditions: the analyzed
Voiced Part; the modeled Voiced Part plus the analyzed WedbPart — TFVEX; the modeled Voiced
Part singled out — TFVEX Alone; the analyzed Voiced Part phesmodeled Unvoiced Part — TFUNEX;
the analyzed Voiced Part plus the modeled Unvoiced Part R&BW emphasis — TFUNEX-PSSW; the
modeled Voiced Part combined with the modeled Unvoiced ParFUVEX; and the modeled Voiced
Part plus the modeled Unvoiced Part with PSSW — TFUVEX-PSSW.

Additionally, five control conditions were prepared for kaggnal, including the hidden reference and
the following four anchors: modulated noise reference (MNRU) processed versions at 20 dB, 25 dB,
and 30 dB SNR levels; and a 3.5 kHz lowpass-filtered version.

The twelve conditions above were presented to six femalesandhale listeners as a multi-stimulus
with hidden reference and anchors (MUSHRA) test [16] wheasmilts are displayed in Fig. 5.
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Fig. 5. Mean scores with 95% confidence intervals superieghas subjective assessment of ASyS provided with TFVEX, NEX and
TFUVEX models.

It is striking that the TFVEX Model is rated somewhat above #nalyzed Voiced Part and just a bit
below when singled out, holding evidence to the high qualityghe voiced model. Moreover, all single-
model conditions are scored above 25 dB MNRU and the onlyrmwolel condition which rises above
this level is TFUNEX-PSSW, underlining the distinctive taloution of the unvoiced model to higher
fidelity.

Furthermore, the analyzed unvoiced part matters becauS¢EX” is better than “TFVEX Alone”. But
it is paradoxical that “TFUVEX” is rated slightly below “TH&X Alone” as if the addition of the modeled
unvoiced part would not improve the modeled voiced part.alet,fthe modeled unvoiced part leaks into
the voiced region while the analyzed unvoiced part does Astshown in Section V, this interference
is attenuated by means of the PSSW emphasis, which can barséen 5 to be an effective measure
since “TFUVEX-PSSW” is rated considerably above “TFVEX A#J.

Besides, all test conditions provide wideband enhanceseog their Q values stand significantly above
the 20 dB equivalent narrowband version.

The equivalent Q-value is the SNR in dB of the MNRU-impairegnal with the same score as a
given condition and provides an inequivocal scale, with &vansal meaning [17]. Scores are known to



TABLE |
COMPRESSION RATIOS FOR ANALYSIS BASED UPONFVEX VOICED MODEL, TFUNEX UNVOICED MODEL AND TFUVEX COMPOUND
MODEL ALONG WITH COEFFICIENT AND PARAMETER COUNT BREAKDOWN

[ Model | Voiced | Unvoiced| Total | Specific ratio] Overall ratio |
Signal 421 k 749 k| 1170 k 1.0 1.0
TFVEX 48 k 749 k| 797k 8.8 15
TFUNEX | 421K 59k | 480Kk 12.7 2.4
TFUVEX 48 k 59 k| 107 k 10.9 10.9

be cultural and they may acquire a universal meaning by #gpiivalent Q-values. Therefore, by using
MNRUSs at different levels, it is possible to compare the itsswith any other representation method
tested anywhere. For instance, the adaptive multirate haideg (AMR-WB) coder has been rated at an
equivalent Q-value of 24 dB when operating at 12.65 kbit&.[1

The test database has 4569 pitch cycles with 1644 voiced MIF4170 thousand raw coefficients.
Since TFUNEX represents the unvoiced part of each cycle Wghparameters, it uses 59 thousand
parameters altogether. As for TFVEX, since it requires 2@upeters to represent each voiced MF across
all harmonic tracks, it uses 48 thousand parameters altegetherefore, as detailed in Table I, the
parametric compression ratios are about 9 for TFVEX oventiieed coefficient set and 1.5 overall, 13
for TFUNEX over the unvoiced coefficient set and 2.4 overall 41 for TFUVEX over all coefficients.

VIlI. CONCLUSION

Voiced and unvoiced excitation models are proposed for anbaic time-frequency autoregressive
speech analysis-synthesis system. The system featunee-dréquency NPR front-end for representation
of the prediction residual that is transferred to a modafatlomain within modulation segments of
varying length based on a time-frequency distribution eoi@tion measure. These modulation segments
are the seat for voiced-unvoiced separation so that theedgoart and the unvoiced are appropriately
recombined all across the pitch-synchronous time-frequéransform extent. The modulation segment
length also defines the time resolution for the TFVEX modeillevthe TFUNEX model has pitch-cycle
time resolution and lower amplitude resolution than TFVEB¢Gth models have octave-band frequency
resolution so that they can be conveniently combined intorapound TFUVEX unvoiced-voiced model
with spectral weighting. The TFUVEX model generates speefciquality rated above that of speech
degraded by 25 dB MNRU while providing a compression of oer times relative to the NPR time-
frequency representation that provides for lower rate mpatar coding.
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