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Abstract

Time-frequency voiced and unvoiced models are proposed forthe excitation of a harmonic autoregressive
wideband speech analysis-synthesis system. The time-frequency voiced excitation (TFVEX) model has low time
resolution defined by the concentration of the excitation signal distribution in the modulation domain while the time-
frequency unvoiced excitation (TFUNEX) model has cycle time discrimination with lower amplitude resolution and
while the frequency resolution for both models is an octave.The speech reconstructed by the compound TFUVEX
unvoiced-voiced model is rated above the speech degraded bya modulated noise reference unit (MNRU) at 25 dB
in listening tests while yielding a parametric compressionof over ten times.

Index Terms

speech analysis, speech coding, sparse representations, modulation transform, time-frequency analysis, voiced-
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I. INTRODUCTION

HARMONIC speech representations have been used for coding atmedium to low bit rates [1] even
when they fail to achieve perfect reconstruction. However,it is desirable to have a nearly perfect

reconstruction (NPR) front-end representation since it isnot bounded in performance at high rates and it
will be more useful if amenable to be fit by simpler models for operation at lower bit rates that should
be controlled by a manageable and meaningful set of parameters.

The classification of speech segments into voiced and unvoiced classes is important for speech modifi-
cation and speech coding since they are processed differently. Besides, sparse speech representations are
useful for source separation [2] and, if conceptually designed, they may be the basis for pattern playback
in signal processing education [3].

Usually, a model is fit to the voiced harmonic amplitudes [1],[4] for ease of manipulation and
often as an intermediate stage in coding. Somehow unexpectedly, an unvoiced model is important in
making a harmonic system deliver natural-sounding speech [1], [5] or, for that matter, any synthesized
audio signal [6], in particular music [7], [8] since any instrumental performance requires some random
fluctuations in order to sound natural.

In this work voiced and unvoiced models are proposed within acommon framework for an NPR
front-end representation [9] so that sparse speech representations may be achieved.Unlike usual harmonic
representations which apply hard decision for voiced and unvoiced speech classification in the time
and/or in the frequency domain, the voiced-unvoiced decision in this analysis-synthesis system (ASyS) is
equivalent to a soft decision because the separation is implemented in the modulation domain.

A brief description of ASyS and the criteria for classifyingand segmenting speech excitation into
voiced part and unvoiced part are presented in Section II. The voiced model (TFVEX) is developed in
Section III upon specific time-frequency features of voicedexcitation, which are to be contrasted with
those of the unvoiced model (TFUNEX) that follows in SectionIV. Then, the compound voiced-unvoiced
model (TFUVEX) is presented in Section V with the introduction of the spectral weighting in the pitch-
synchronous domain. Finally, the three excitation models are assessed in Section VI and remarks are
drawn in conclusion.

II. SPEECH EXCITATION CLASSIFICATION AND SEPARATION

A lower dynamic range in the time-frequency domain can be achieved by prewhitening the speech
signal by means of linear prediction [10]. At a sampling rateof 16 kHz, 18th-order AR modeling has
been found adequate with von Hann window length of 20 ms at a frame rate of 400 Hz. The prediction
residual signalr(n) is then time-warped torw(ν), for ν ∈ Z, by means of bandlimited sinc functions in
order to hold the pitch period length constant atP0 samples [9] as depicted in Fig. 2 whereas the original
pitch trackp(n) is separated. Consequently, at this point the signal power is more evenly distributed in
both the time and the frequency domains as illustrated in Fig. 1, where the time-frequency distributions
of the power in the speech signal and in the residual signal are represented by a spectrogram and by the
intensity of a pitch-synchronous transform (PST), respectively.

The time-warped residual undergoes a pitch-synchronous transform, which is a modulated lapped
transform (MLT) [11] that produces the harmonic tracks

cl(k) =

(k+2)P0−1
∑

ν=kP0

rw(ν)φl (µk(ν)) (1)
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(a) Wideband spectrogram.
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(b) Pitch-synchronous transform intensity plot.

Fig. 1. Wideband spectrogram of the speech signal and PST intensity plot of the prediction residual for the phrase “She had your dark
suit...”, uttered by a male speaker.

for pitch cyclesk ∈ Z, harmonic indicesl ∈ {0, 1, . . . P0 − 1} and local warped timeµk(ν) = ν +
[4− (k mod 4)] 2P0, where the basis functions are

φl(µk) =

√

2

P0
cos

[

2π
(

l + 1
2

) (

µk −
P0

2
+ 1

2

)

2P0

]

wk (µk) . (2)

The PST is evaluated at each pitch cycle over a two-cycle longwindow wk(µk), which is a modified
square-root von Hann window

wk (µk(ν)) =

√

√

√

√

1

2
−

1

2
cos

[

2π
(

µk(ν) +
1
2

)

2P0

]

(3)

for the kth pitch cycle. In fact, any smooth window could be used as long as its squared sum is unity so
that it satisfies the perfect reconstruction condition.
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Fig. 2. Block diagram of the analysis process in ASyS.

The modulation transforms (MTs) of the resulting PST time tracks, for l ∈ {0, 1, . . . P0 − 1}, are
obtained in modulation segmentm as

eql(m) =

k0m+Qm−1
∑

k=k0m

cl(k)ψmq (χm(k)) (4)

whereQm is the segment length with initial cycle indexk0m, local cycle indexχm(k) = k −
∑m−1

i=0 Qi

and type-II DCT [12], [13] basis functions

ψmq(χm) =

√

2

Qm

γq cos

(

qπ

Qm

χm +
qπ

2Qm

)

wm(χm) (5)

for modulation frequencies (MFs)q ∈ {0, 1, . . . , Qm − 1}, where coefficientγq is defined as

γq =

{

1√
2

if q = 0 mod Qm

1 if q 6= 0 mod Qm

andwm (χm(k)) represents the rectangular window for themth modulation segment, which is supported
within the interval{k0m, k0m + 1, . . . , k0m +Qm − 1} .

It should be noted that the analysis process shown in Fig. 2 can be inverted perfectly for obtaining the
excitation signal back. The MT and the PST can be inverted perfectly within the numerical precision of
the system and the LP-whitener plus time-warper cascade couple can be inverted with segmental SNR of
around 50 dB for obtaining the reconstructed speech signal.

The time-frequency distribution concentration (TFDC) measure used for the modulation transform is
the unnormalized modified Zakai’s entropy

CE(m,Qm) = −

Qm−1
∑

q=0

√

√

√

√

P0−1
∑

l=0

e2ql(m) (6)

where the square root replaces the original log function [14] while preserving the convexity of the measure.
The DCT space dimension is increased one step further if its TFDC satisfies the inequality

CE(m,Qm + 1) ≥ CE(m,Qm) + CE(m+ 1, 1)− λ (7)

whereCE(m,Qm) is the TFDC for the current modulation segment andCE(m+1, 1) is the TFDC for the
next single-cycle segment whileλ is the difference TFDC threshold, which should be unity for wideband
speech with unit-variance residual signal. By increasing the modulation segment length in unit steps, the
actual lengthQm is reached when inequality (7) fails to hold.
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The baseline for voiced-unvoiced separation is a quite periodic residual whose energy lies completely
in the DC modulation coefficient for all harmonic tracks. Fora sequence of nonidentical pitch cycles, it
is postulated that the lower

qvm = max{3, ⌊0.2Qm⌋} (8)

MT coefficients represent the voiced part while the rest describe the unvoiced part. Therefore, this voiced-
unvoiced separation criterion effectively setsqvm − 1 as the voicing cutoff frequency for modulation
segmentm.

Finally, transients are envelope-detected and modeled like the voiced part. As a result, the average
modulation segment length is around twelve pitch cycles andmay be controlled by the TFDC threshold.
Further, the number of MFs in the unvoiced region is noted to be rather larger than that in the voiced
region due to the voiced-unvoiced separation criterion.

III. T HE TIME-FREQUENCY VOICED EXCITATION MODEL

The TFVEX model is based on the concept that a voiced model canhave lower time resolution [1]
and must have greater spectral amplitude resolution. In addition, a high-fidelity representation for the
low-frequency PST tracks emphasizes the harmonic structure.

The time resolution for the TFVEX model is the varying modulation segment length since it is a good
estimate of the range of local stationarity. An algebraic sign applied to each local standard deviation
estimates provides adequate spectral amplitude resolution.

For wideband speech, theLh = P0 = 256 modulation tracks of same MF are clustered into9 octave
bands that hold1, 1, 2, 4, . . . , 128 tracks, respectively. Low-frequency fidelity is achieved by including the
voiced MT coefficients for the lower compound bandBd = {l}3l=0 .

For the set of upper five PST bandsBu =
8
⋃

b=4

Bb, the estimated MT voiced coefficient variance is

evaluated as the mean square modulation intensity over its octave band by

(

σ̂
(v)
qb (m)

)2

=
1

2b−1

2b−1
∑

l=2b−1

(

e
(v)
ql (m)

)2

(9)

for each upper bandBb =
{

2b−1, 2b−1 + 1, . . . , 2b − 1
}

for b = 4, 5, . . . , 8 and MFs in the voiced range
0 ≤ q ≤ qvm − 1, whereqvm − 1 is the highest MF in the voiced region for modulation segmentm.

Given the structure above, MT coefficients for the voiced model are retained for the lower band and
made equal to the estimated variances affected by the original signs for the upper bands, that is,

ê
(v)
ql (m) =

{

e
(v)
ql (m) l ∈ Bd

sign
(

e
(v)
ql (m)

)

σ̂
(v)
qb (m) l ∈ Bb ⊂ Bu

(10)

for l = 0, 1, . . . , P0 − 1 and 0 ≤ q ≤ qvm − 1. This modeled modulation segment is built immune to
spillover across the voiced-unvoiced boundary by additionally defining

ê
(v)
ql (m) = 0 (11)

for MFs in the unvoiced regionqvm ≤ q ≤ Qm − 1 and harmonic tracksl = 0, 1, . . . , P0 − 1.
Therefore, the TFVEX model consists of 8 MT coefficients, 5 variances and 248 signs. Packing signs

into sets of sixteen 16-bit coded values, it amounts to a total of 29 parameters per voiced MF.
The framework for the voiced model is consistent with the unvoiced model, proposed in [9] and outlined

in Section IV. However, TFVEX and TFUNEX differ in their time-frequency footprints and their amplitude
resolution within.
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IV. THE TIME-FREQUENCY UNVOICED EXCITATION MODEL

The TFUNEX model is based on the facts that an unvoiced model can have lower spectral resolution [1]
and must have greater time resolution. The latter is fulfilled by allowing TFUNEX to have pitch cycle
resolution. This is consistent with the observation that the noise in the voiced regions of speech is coherent
with the voiced part [8], [5].

The estimated variances for the upper bands are

(

σ̂
(u)
b (k)

)2

=
1

2b−1

2b−1
∑

l=2b−1

(

c
(u)
l (k)

)2

(12)

for b = 4, 5, . . . , 8. They shape the pitch-synchronous model tracks

c
(0)
l (k) =

{

c
(u)
l (k) for l ∈ Bd

σ̂
(u)
b (k)xl(k) for l ∈ Bb ⊂ Bu

(13)

for l = 0, 1, . . . , P0 − 1 andk in modulation segmentm, wherexl(k) are generated by independent and
identically distributed zero-mean, unit-variance Gaussian processes.

These tracks are modulation-transformed toe
(0)
ql (m), that lead to the final model, which is obtained as

ê
(u)
ql (m) =

{

0 for 0 ≤ q ≤ qvm − 1

e
(0)
ql (m) for qvm ≤ q ≤ Qm − 1

(14)

for l = 0, 1, . . . , P0 − 1, whereqvm − 1 is the voicing cutoff frequency defined in Section II. In the PST
domain, the unvoiced excitation model for modulation segment m is ĉ(u)l (k) for k in modulation segment
m and harmonic tracksl = 0, 1, . . . , P0 − 1.

In total, the TFUNEX model consists of 13 parameters per pitch cycle, which are 8 PST coefficients
and 5 variances. Since the number of unvoiced MFs is usually much greater than the number of voiced
MFs as noted in closing Section II, the compression effectedby TFUNEX is greater than that achieved by
TFVEX and the finer time resolution necessary for the unvoiced model is not a heavy penalty. Besides,
this explains in part why the unvoiced model has been proposed first [9].

V. THE COMPOUND TIME-FREQUENCY UNVOICED-VOICED EXCITATION MODEL

The TFVEX model proposed in Section III and the TFUNEX model described in Section IV can be
linearly combined in the modulation domain, giving rise to TFUVEX, the compound unvoiced-voiced
model

ê
(uv)
ql (m) = ê

(v)
ql (m) + ê

(u)
ql (m), (15)

for modulation frequencies0 ≤ q ≤ Qm − 1 in the mth modulation segment and harmonic tracks
0 ≤ l ≤ P0 − 1, where ê(v)ql (m) is the voiced model modulation coefficient for MFq of the lth harmonic

track given by Eq. (10) or (11) and̂e(u)ql (m) is the unvoiced model modulation coefficient for MFq of
the lth harmonic track given by Eq. (14). This combination is actually a time-frequency juxtaposition due
to the antialiasing operations carried out in the modulation domain in the determination of both models.

It is interesting to note that while the TFUVEX model juxtaposes the models for the voiced and for
the unvoiced parts in the modulation domain for flexible processing, the unvoiced model in [8] consists
of wavelet transforms around each harmonic peak, which provides for a better recombination.

The spectral fitting performance for TFUVEX is illustrated in Fig. 3(c), where it can be seen to follow
rather closely the upper magnitude envelope.

Further, a spectral enhancement has been found beneficial for better low frequency representation and
smooth voiced-unvoiced recombination. It is applied to theunvoiced model in the PST domain, where it
does not interfere with the periodicity in the signal.
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(a) Reference low-frequency speech signal spectrum.
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(b) Spectrum reconstructed with the TFUNEX model.
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(c) Spectrum reconstructed with the TFUVEX model.

Fig. 3. Low-frequency speech signal spectrum (a) and its reconstruction with ASyS using the time-frequency unvoiced model and original
voiced part (b) and using the compound time-frequency unvoiced-voiced model (c).

At first, a highpass filter with cyclic cutoff frequencyfc = 11/P0 is designed by means of the sinc
function

sinc(n) =
sin(πn)

πn
(16)

to have the impulse response

wh(n) = (1− 2fc) (−1)n sinc[(1− 2fc) (n− 32)] (17)

for n = 0, 1, . . . , 64.
The pitch-synchronous spectral weighting (PSSW) vector plotted in Fig. 4 is defined by sampling the

frequency response of the highpass filter as

w(l) = Wh

(

ej2πfl
)

(18)

at the cyclic frequenciesfl = l/(2P0), for l = 0, 1, . . . , P0 − 1.
Finally, the enhanced model coefficients for unvoiced excitation are obtained by applying PSSW as

ĉ
(u)′
l (k) = w(l)ĉ

(u)
l (k) (19)

for l = 0, 1, . . . , P0 − 1.
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Fig. 4. Pitch-synchronous spectral weights.

VI. EXPERIMENTAL RESULTS

For the listening tests, four male and four female utterances were chosen so that each speaker couple
belongs to a different dialect region in the TIMIT database[15] for a total length of 448 thousand samples
at a sampling rate of 16 kHz. Each signal was synthesized by ASyS in seven test conditions: the analyzed
Voiced Part; the modeled Voiced Part plus the analyzed Unvoiced Part – TFVEX; the modeled Voiced
Part singled out – TFVEX Alone; the analyzed Voiced Part plusthe modeled Unvoiced Part – TFUNEX;
the analyzed Voiced Part plus the modeled Unvoiced Part withPSSW emphasis – TFUNEX-PSSW; the
modeled Voiced Part combined with the modeled Unvoiced Part– TFUVEX; and the modeled Voiced
Part plus the modeled Unvoiced Part with PSSW – TFUVEX-PSSW.

Additionally, five control conditions were prepared for each signal, including the hidden reference and
the following four anchors: modulated noise reference unit(MNRU) processed versions at 20 dB, 25 dB,
and 30 dB SNR levels; and a 3.5 kHz lowpass-filtered version.

The twelve conditions above were presented to six female andsix male listeners as a multi-stimulus
with hidden reference and anchors (MUSHRA) test [16] whose results are displayed in Fig. 5.
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Fig. 5. Mean scores with 95% confidence intervals superimposed in subjective assessment of ASyS provided with TFVEX, TFUNEX and
TFUVEX models.

It is striking that the TFVEX Model is rated somewhat above the analyzed Voiced Part and just a bit
below when singled out, holding evidence to the high qualityof the voiced model. Moreover, all single-
model conditions are scored above 25 dB MNRU and the only two-model condition which rises above
this level is TFUNEX-PSSW, underlining the distinctive contribution of the unvoiced model to higher
fidelity.

Furthermore, the analyzed unvoiced part matters because “TFVEX” is better than “TFVEX Alone”. But
it is paradoxical that “TFUVEX” is rated slightly below “TFVEX Alone” as if the addition of the modeled
unvoiced part would not improve the modeled voiced part. In fact, the modeled unvoiced part leaks into
the voiced region while the analyzed unvoiced part does not.As shown in Section V, this interference
is attenuated by means of the PSSW emphasis, which can be seenin Fig. 5 to be an effective measure
since “TFUVEX-PSSW” is rated considerably above “TFVEX Alone”.

Besides, all test conditions provide wideband enhancementsince their Q values stand significantly above
the 20 dB equivalent narrowband version.

The equivalent Q-value is the SNR in dB of the MNRU-impaired signal with the same score as a
given condition and provides an inequivocal scale, with a universal meaning [17]. Scores are known to
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TABLE I

COMPRESSION RATIOS FOR ANALYSIS BASED UPONTFVEX VOICED MODEL, TFUNEX UNVOICED MODEL AND TFUVEX COMPOUND

MODEL ALONG WITH COEFFICIENT AND PARAMETER COUNT BREAKDOWN.

Model Voiced Unvoiced Total Specific ratio Overall ratio

Signal 421 k 749 k 1170 k 1.0 1.0
TFVEX 48 k 749 k 797 k 8.8 1.5
TFUNEX 421 k 59 k 480 k 12.7 2.4
TFUVEX 48 k 59 k 107 k 10.9 10.9

be cultural and they may acquire a universal meaning by theirequivalent Q-values. Therefore, by using
MNRUs at different levels, it is possible to compare the results with any other representation method
tested anywhere. For instance, the adaptive multirate wideband (AMR-WB) coder has been rated at an
equivalent Q-value of 24 dB when operating at 12.65 kbit/s [18].

The test database has 4569 pitch cycles with 1644 voiced MFs for 1170 thousand raw coefficients.
Since TFUNEX represents the unvoiced part of each cycle with13 parameters, it uses 59 thousand
parameters altogether. As for TFVEX, since it requires 29 parameters to represent each voiced MF across
all harmonic tracks, it uses 48 thousand parameters altogether. Therefore, as detailed in Table I, the
parametric compression ratios are about 9 for TFVEX over thevoiced coefficient set and 1.5 overall, 13
for TFUNEX over the unvoiced coefficient set and 2.4 overall and 11 for TFUVEX over all coefficients.

VII. CONCLUSION

Voiced and unvoiced excitation models are proposed for a harmonic time-frequency autoregressive
speech analysis-synthesis system. The system features a time-frequency NPR front-end for representation
of the prediction residual that is transferred to a modulation domain within modulation segments of
varying length based on a time-frequency distribution concentration measure. These modulation segments
are the seat for voiced-unvoiced separation so that the voiced part and the unvoiced are appropriately
recombined all across the pitch-synchronous time-frequency transform extent. The modulation segment
length also defines the time resolution for the TFVEX model while the TFUNEX model has pitch-cycle
time resolution and lower amplitude resolution than TFVEX.Both models have octave-band frequency
resolution so that they can be conveniently combined into a compound TFUVEX unvoiced-voiced model
with spectral weighting. The TFUVEX model generates speechof quality rated above that of speech
degraded by 25 dB MNRU while providing a compression of over ten times relative to the NPR time-
frequency representation that provides for lower rate parameter coding.
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