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Time-frequency voiced and unvoiced excitation
models for harmonic speech systems

Miguel Arjona Ramirez

Abstract— A time-frequency voiced model (TFVEX) is pro- in this analysis-synthesis system (ASyS) is equivalent to a
posed for the excitation of a harmonic autoregressive (AR) soft decision because the separation is implemented in the
wideband speech analysis-synthesis system, which is intated modulation domain.

with a previously proposed unvoiced time-frequency modelni . . e .
the time-frequency unvoiced-voiced excitation (TFUVEX) fame- The nature of the voiced-unvoiced classification will be

work. The voiced component model has low time resolution @ppreciated after the description of ASyS, when the cateri
defined by the concentration of the excitation signal distfbution ~ for classifying and segmenting speech excitation into ewic

in the modulation domain while the time-frequency unvoiced part and unvoiced part are presented in Section Il. The doice
excitation (TFUNEX) model has cycle time discrimination wth -, 5dg] (TFVEX) is developed in Section Ill upon specific

lower amplitude resolution and while the frequency resoluion for . . - .
both models is an octave in the high time resolution domain. fie time-frequency features of voiced excitation, which aré¢o

speech reconstructed by the compound TFUVEX model is rated Contrasted with those of the unvoiced model (TFUNEX) [10]
above the speech degraded by a modulated noise reference wunithat follows in Section IV. Then, the compound voiced-
(MNRU) at 25 dB in listening tests while yielding a parametrc  unvoiced model (TFUVEX) is presented in Section V with the
compression of over ten times. introduction of the spectral weighting in the pitch-syrmhous
Index Terms— speech analysis, speech coding, sparse represendomain. Finally, the three excitation models are assessed i

tations, modulation transform, time-frequency analysis,voiced- Section VI and remarks are drawn in conclusion.
unvoiced decision
Il. SPEECH EXCITATION CLASSIFICATION AND

. SEPARATION

ARMONIC speech representations have been used for_. . . :
coding at medium to low bit rates [1] even when Sinusoidal representations of speech are related to haamon
they fail to achieve perfect reconstruction. However, it jgpeech systems [11]. In fact, sinusoidal models may even

desirable to have a nearly perfect reconstruction (NPRjtfro representjat;] mhharmodnul:_ signal s_egmem), which may be
end representation since it is not bounded in performance®3Pressed by the modeling equation

I. INTRODUCTION

high rates. K

The classification of speech segments into voiced and un- 8(n) = ZAl cos (win + ¢1) , 1)
voiced classes is important for speech modification andcpee =1 _ )
coding since they are processed differently. Besides,sepa/nose parameters are the frequencigsthe amplitudesi;
speech representations are useful for source separatiand2 and the phases, for [ = 1,2,..., K. When the signal
if conceptually designed, they may be the basis for patte?Rgments(n) is periodic, the model may be simplified to the
playback in signal processing education [3]. harmonic expression

Usually, a model is fit to the voiced harmonic ampli- K
tudes [1], [4] for ease of manipulation and often as an 5(n) :ZAz cos (lwon + ¢1) , 3
intermediate stage in coding. Somehow unexpectedly, an un- =1
voiced model is important in making a harmonic systewhich has a simplified frequency description by having all
deliver natural-sounding speech [1], [5] or, for that mattefrequencies satisfying; = lwo, forl = 1,2,..., K, that is,

any synthesized audio signal [6], in particular music [#] [ they are harmonically related to the fundamental frequency

since any instrumental performance requires some randem= 27/po, Wherepy is the pitch period.

fluctuations in order to sound natural. More advanced implementations of sinusoidal coders derive
In this work a voiced model is proposed for an NPR frontheir amplitudes and phases from the frequency response

end representation [9] and this model fits into a framewor (¢’) of a synthesis filterH (=) so that the synthesized

that includes the unvoiced model previously proposed [90] §ignal segment is represented as

that sparse speech representations may be achieved. Unlike K ‘
usual harmonic representations which apply hard decision 5(n) :ZRe {H (e7'“) exp (jlwon)} . (3)
for voiced and unvoiced speech classification in the time 1=1

and/or in the frequency domain, the voiced-unvoiced dewisi This terminal model may be further decomposed into a model
for the excitation signal segment
This work is supported by Conselho Nacional de Desenvoluime
Cientifico e Tecnolbgico (CNPq) under Grant no. 307638120 and by . K
Fundagao de Amparo a Pesquisa do Estado de S&o Paul&&Runder d(n) = Z Re {exp (jlwon)} 4)
Grant no. 2012/24789-0. =1
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which is applied to the input of the synthesis filter. for pitch cyclesk € Z, harmonic indice$ € {0,1,... Py —1}
If we are now to model the excitation signal directly, wand local warped timeu;(v) = v + [4 — (k mod 4)] 2P,
must obtain it by filtering the speech signal segmemt) by where the basis functions are

the analysis filter, which is the inverse filter 5 or (14 1 _ P 1
+ Kk +
) d1(pr) = 4/ = cos [ ( 2)gP0 2 2) wy, () -
A) H(z) ®) (7)

The PST is evaluated at each pitch cycle over a two-cycle long

For ASyS, the analysis filter is the linear prediction (LP)indow wr (i), which is a modified square-root von Hann
whitener block in Fig. 1. It is a spectrum whitener becausgindow

the frequency components at its output tend to be very near

in amplitude. In fact, for the source-filter sinusoidal eatibn 11 2w (k) + ) 8
model in Eq. (4), the harmonic amplitudes are exactly the (ur(v)) = 5 s 2P, (8)
same.

The speech excitation signal for ASyS is obtained from ttfer the kth pitch cycle. In fact, any smooth symmetric window
speech signal(n) as the linear prediction (LP) residual signafould be used as long as its sum of squaresisso that it
r(n) in Fig. 1. This whitened signal has a lower dynamigatisfies the perfect reconstruction condition.
range in the time-frequency domain [12] The order of this The modulation transforms (MTS) of the reSUlting PST time
AR model is consistent with sound propagation in the affacks, forl € {0,1,... P — 1}, are obtained in modulation
inside a typical 17-cm long male vocal tract, which in &egmentn as

neutral configuration has one formant per kilohertz in its kom+Qm—1
spectrum [13]. Additionally, two poles may be included to eq(m) = Z 1 (B)mg (xm (K)) 9
account for glottal and radiation effects so that, ovetafiical k=kom

AR models orders are 10 and 12 for narrowband speech [1gfere (9, is the segment length with initial cycle index
and 16 for wideband speech [15]. ko, local cycle indexy,, (k) = k — 7' Q; and type-Il
But Rosenberg argues that, for source spectra of natuttT [19], [20] basis functions
speech, the typical asymptotic spectral decay is 12 dBidjt | 5
which requires two units of order to be assigned in accogntin v, (xm) = 1/ —— 7, cos (ﬂXm + ﬂ) Wi (Xom)
for the glottal pulse shape so that our count for wideband Qm Qm 2Qm (10)
speech speech would rise to 17th order. For ASyS, at.a . ,
sampling rate of 16 kHz, 18th-order AR modeling has be%a:eTeoggleafzginer:;eq;eggflﬁ]seé'\gzsj €{0.L,.,@m —1},
found adequate. 1
The signal is windowed with square-root von Hann win- _ { % if g=0 mod Qp,
dows, which support perfect reconstruction under trans- T 1 if g#0 mod Q,
forr_n a_naly5|s and synthe5|s. .The. W'”‘?'OW length is 20 mg, wpm (xm(k)) represents the rectangular window for the
which is compatible with quasistationarity for LP analysfs

” th modulation segment, which is supported within the inter-
speech [17]. Additionally, a frame rate of 400 Hz allows fo{%l {(kom, kom + 1 g Kom -+ Qm — 1}pp
high temporal resolution. O R0 e o e '

. , . , , It should be noted that the analysis process shown in Fig. 1
The prediction residual signal is then time-warped.i6), can pe inverted perfectly for obtaining the excitation sign

for v € Z, by_ means of bandlimited sinc functions in ordepcy The MT and the PST can be inverted perfectly within the
to hold the pitch period length constant B§ samples [10] merical precision of the system and the LP-whitener plus
as depicted in Fig. 1 whereas the original pitch tratk) IS ime \warper cascade couple can be inverted with segmental
separated. This allows intrapitch variations to be captil gNR of around 50 dB for obtaining the reconstructed speech
the pitch-synchronous transform in Fig. 2 due to the constaligna) as verified in our experiments. In fact, reconstaucti
pitch period after the time warper while preserving the IpitCgjgna).to-noise ratios in the 60 dB to 70 dB range are reporte
period information in the pitch track for further synthesis ;" have been obtained with this subsystem [9].

Consequently, at this point the signal power is more evenlyThe concentration measure of the time-frequency distri-

distributed in both the time and the frequency domains gtion (CMTFD) used for the modulation transform is the
illustrated in Fig. 2, where the time-frequency distrion§ |, normalized modified Zakai's entropy

of the power in the speech signal and in the residual signal

are represented by a spectrogram and by the intensity of a Qm—1

pitch-synchronous transform (PST), respectively. Cr(m,Qm)=— Y \| > €(m) (11)
The time-warped residual undergoes a pitch-synchronous =0 1=0

transform, which is a modulated lapped transform (MLT) [18)here the square root replaces the original log functiorj [21

that produces the harmonic tracks while preserving the convexity of the measure. The dimensio

of the DCT space is increased one step further if its CMTFD

satisfies the inequality

(k+2)P() —1

c (k) = T (V v
k) u:ZkPU ()1 (k) Ce(m,Qm+1)>Cr(m, Q)+ Cer(m+1,1)— X (12)
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Fig. 1. Block diagram of the analysis process in ASyS.

whereCg(m, Q) is the CMTFD for the current modulation 8000
segment and’z(m+1,1) is the CMTFD for the next single-
cycle segment while\ is the difference CMTFD threshold,
which should be unity for wideband speech with unit-var@nc  gggo!

7000( (I8

residual signal. By increasing the modulation segmenttteng |
in unit steps, the actual lengt,, is reached when inequal- L 5000 |
ity (12) fails to hold. 3

The baseline for voiced-unvoiced separation is a quit(§4ooof

periodic residual whose energy lies completely in the DCg 30900} i
modulation coefficient for all harmonic tracks. In general, &
the most energetic voiced coefficients are at low modulatior 20007

bands [9] and speech itself has its energy concentratetharra

low modulation frequencies [22]. In fact, for a sequence ol 1000
nonidentical pitch cycles, it has been found that the lower 0 , bt .. ;
0 0.2 0.4 0.6 0.8
qom = max{3,0.2Q |} (13) Time (s)

- . . a) Wideband spectrogram.
MT coefficients represent the voiced part while the rest de- (@) P 9

scribe the unvoiced part [10]. Therefore, this voiced-uced
separation criterion effectively sets,,, — 1 as the voicing 7000+
cutoff frequency for modulation segment.

Finally, transients are envelope-detected and modeled lik 6000}
the voiced part. As a result, the average modulation segmeTIszoooi s
length is around twelve pitch cycles and may be controllec= i
by the CMTFD threshold. Further, the number of MFs in the & 4o &
unvoiced region is noted to be rather larger than that in th S :
voiced region due to the voiced-unvoiced separation doiter EBOOOf =

LL
2000

Ill. THE TIME-FREQUENCY VOICED EXCITATION MODEL

The TFVEX model is based on the concept that a voicet 1000
model can have lower time resolution [1] and must have 0 : !
greater spectral amplitude resolution. In addition, a high 0 02 04 Ti?ﬁg ©) 0.8 1 12
fidelity representation for the low-frequency PST tracks em ) ] .
phasizes the harmonic structure. (b) Pitch-synchronous transform intensity plot.

The time resolution for the TFVEX model is the varying
modulation segment length since it is a good estimate of thig. 2. Wideband spectrogram of the speech signal and P&msity plot
range of local stationarity. An algebraic sign applied tarea gf the prediction residual for the phrase “She had your daik.$, uttered

. . . y a male speaker.

local standard deviation estimates provides adequatdrapec
amplitude resolution.

Moreover, the representation will be more useful if it can
be controlled by an easily manageable set of parametdf@cks of same MF are assigneddactave bands that hold
The third-octave band resolution used in audio analysis hksl> 2,4, - - -, 128 tracks, respectively.
motivated the clustering of frequency bands into nine bands But precision is not compromised since low-frequency fi-
For wideband speech, thé;, = P, = 256 modulation delity is achieved by including in full precision the voiced
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MT coefficients for the lower compound barig;, = {l}f’zo. for b = 4,5,...,8. They shape the pitch-synchronous model

In this way, the model can reach on average sixth-octatracks

resolution at low frequency. This happens to be so because C(u)(k) forlc B

the constant pitch perioffy = 256, or fundamental frequency o (k)= { j(u) d

Fy = 31.25 Hz, after time warping achieves a 6.4-fold increase oy (k)au(k) forle By C By

in resolution for an average fundamental frequency of 200 Hgr | = 0,1, ..., P,—1 andk in modulation segment:, where
The total number of bands has been chosen to approxima}gi) are generated by independent and identically distributed

one band per octave at the lower fundamental frequency &fro-mean, unit-variance Gaussian processes.

31.25 Hz. This clustering of PST tracks has a decreasingThese tracks are modulation—transformedeg%? (m), that

resolution as the frequency increases, which is consistggid to the final model, which is obtained as
with hearing perception and has been found adequate in

. (u 0 for0<qg<gqum—1
experiments. . el(ﬂ)(m) — { ©) (19)
For the set of upper five PST band3, =|J B, the

eql (m) for Qum S q S Qm -1
. . - . . b=t fr 1 = 0,1 Py — 1, where — 1 is the voicing
estimated MT voiced coefficient variance is evaluated as t 1yt 0 ’ dom

mean square modulation intensity over its octave band by CUtoff frequency defined in Section II. In the PST domain,
the unvoiced excitation model for modulation segments

(v 2 12 » 2 & (k) for k in modulation segment: and harmonic tracks
() =5 £ (Wom)”aay LT
! In total, the TFUNEX model consists of 13 parameters per

pitch cycle, which are 8 PST coefficients and 5 variances.
where g — 1 is the highest MF in the voiced region forSince the number of }Jnvoiced MFs is u_sually .much greater
modulation segment. than the numb_er of voiced MFs as noted in closing Section Il,
the compression effected by TFUNEX is greater than that

Given the structure above, MT coefficients for the voiced . . . X
. chieved by TFVEX and the finer time resolution necessary
model are retained for the lower band and made equal to thé

estimated variances affected by the original signs for fhpeu or th_e ur_1v0|ced model is not.a heavy penalty. Besides, this
bands, that is, explains in part why the unvoiced model has been proposed

®) first [10].
<mm{%mm e By

ql sign(ef;)(m)) &gz)(m) l€ B, C B, V. THE COMPOUND TIME-FREQUENCY UNVOICEDVOICED
(15) EXCITATION MODEL

forl=0,1,...,Py—1and0 < ¢ < ¢ym — 1. This modeled = The TFVEX model proposed in Section Ill and the TFU-
modulation segment is built immune to spillover across tH$EX model described in Section IV can be linearly combined

(18)

=20—
for each upper band, = {2°-1,20=1 +1,...,2° — 1} for
b=4,5,...,8 and MFs in the voiced rande< ¢ < qum — 1,

voiced-unvoiced boundary by additionally defining in the modulation domain, giving rise to TFUVEX, the com-
. (v) pound unvoiced-voiced model
€q (M) =0 (16) J(w0) () () 20
for MFs in the unvoiced region,,, < ¢ < Q,, — 1 and eq (m) =&y (m) + €, (m), (20)
harmonic trackg = 0,1,..., P — 1. for modulation frequencie® < ¢ < @Q,, — 1 in the mth

Therefore, the TFVEX model consists of 8 MT coefficientanodulation segment and harmonic tradks< [ < Py — 1,
5 variances and 248 signs. Packing signs into sets of sixt&elmereéf;) (m) is the voiced model modulation coefficient for
16-bit coded values, it amounts to a total of 29 parametars pgF ¢ of the ith harmonic track given by Eq. (15) or (16)
voiced MF. and éf;;)(m) is the unvoiced model modulation coefficient

The framework for the voiced model is consistent with thisr MF ¢ of the ith harmonic track given by Eq. (19). This
unvoiced model, proposed in [10] and outlined in Section Nsombination is actually a time-frequency juxtapositionedu
However, TFVEX and TFUNEX differ in their time-frequencyto the antialiasing operations carried out in the modutatio
footprints and their amplitude resolution within. domain in the determination of both models.

It is interesting to note that while the TFUVEX model

IV. THE TIME-FREQUENCY UNVOICED EXCITATION MODEL  jyxtaposes the models for the voiced and for the unvoicets par

The TFUNEX model is based on the facts that an unvoicédthe modulation domain for flexible processing, the unedic
model can have lower spectral resolution [1] and must hawgodel in [8] consists of wavelet transforms around each
greater time resolution. The latter is fulfiled by allowingharmonic peak, which provides for a better recombination.
TFUNEX to have pitch cycle resolution. This is consistent The TFUNEX model may cause distortion upon reconstruc-
with the observation that the noise in the voiced regions tbn in the lower frequency region as found in Fig. 3(b) in

speech is coherent with the voiced part [8], [5]. comparison to Fig. 3(a). The spectral fitting performanae fo
The estimated variances for the upper bands are TFUVEX is illustrated in Fig. 3(c), where it can be seen
) b_ ) to follow rather closely the lower magnitude envelope. This
(015 )(k)) = 5 Z (Cz( )(k)) (17) |r_nproved_ rendltl_on with two models lends support to their
virtuous integration.

1=2v-1
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(a) Reference low-frequency speech signal spectrum. quencyl

Fig. 4. Pitch-synchronous spectral weights.

VI. EXPERIMENTAL RESULTS

Magnitude (dB)

For the listening tests, four male and four female utterance
were chosen so that each speaker couple belongs to a differen
‘ 2 14 15 18 dialect region in the TIMIT database [23] for a total length o
448 thousand samples at a sampling rate of 16 kHz. Each
(b) Spectrum reconstructed with the TFUNEX model. signal was synthesized by ASyS in seven test conditions:
the analyzed Voiced Part; the modeled Voiced Part plus the
analyzed Unvoiced Part — TFVEX; the modeled Voiced Part
singled out — TFVEX Alone; the analyzed Voiced Part plus
the modeled Unvoiced Part — TFUNEX; the analyzed Voiced
Part plus the modeled Unvoiced Part with PSSW emphasis —
TFUNEX-PSSW; the modeled Voiced Part combined with the
P Il e modeled Unvoiced Part — TFUVEX; and the modeled Voiced
Frequency (kHz) Part plus the modeled Unvoiced Part with PSSW — TFUVEX-
(c) Spectrum reconstructed with the TFUVEX model. PSSW.
Additionally, five control conditions were prepared for bac
Fig. 3. Low-frequency speech signal spectrum (a) and itsntcuction with signal, including the hld_den reference ar_]d the followingrfo
ASyS using the time-frequency unvoiced model and origiated part (b) anchors: modulated noise reference unit (MNRU) processed
and using the compound time-frequency unvoiced-voiceda). versions at 20 dB, 25 dB, and 30 dB SNR levels; and a 3.5 kHz
lowpass-filtered version.
.. The twelve conditions above were presented to six female
Further, a spectral enhancement has been found benefigiah gjy male listeners as a multi-stimulus with hidden ref-

for better low frequency representation and smooth voicegrance and anchors (MUSHRA) test [24] whose results are
unvoiced recombination. It is applied to the unvoiced m°d8|splayed in Fig. 5.

in the PST domain, where it does not interfere with the
periodicity in the signal.

At first, a highpass filter with cyclic cutoff frequengy =
11/ Py is designed by means of the sinc function

I I I I
0 0.2 0.4 0.6 0.8 1

12
Frequency (kHz)

110

-
1<}
=)

Magnitude (dB)
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Mean MUSHRA score

. sin(7mn » ° allo
smc(n):g (21) 2 «F | g|| & g | | alls |
™ e o X || = bl | B N (2]
slIsIISSIE S]] YY) =2d]21] 2
i o [ E||2[1||5]|52 (3115729 | 2 || 2 ]
to have the impulse response sllsllellz]l 2|20 2 ||29|25f| 2 || 2
14 > = = (= | el | e o | D=t =
1 2 3 4 5 9 10 11

6 7.8
Test cont]mon

wp(n) = (1 —2f.) (=1)"sinc[(1 — 2f.) (n — 32)] (22)
forn=0,1,...,64. Fig. 5. Mean MUSHRA scores with 95% confidence intervals sopEsed

The pitch-synchronous spectral weighting (PSSW) vecti?'gaf/bé‘;cf%’g dglsssessme”t of ASyS provided with TEVEX, TFONEnd
plotted in Fig. 4 is defined by sampling the frequency respons '

of the highpass filter as It is striking that the TFVEX Model is rated somewhat
w(l) = Wy, (e72711) (23) a_bove the analy_zed V_oiced Part anq just a.bit below when
. . singled out, holding evidence to the high quality of the eoic
atthe cyclic frequencief = 1/(2F), forl =0,1,..., Po—1.  model. Moreover, all single-model conditions are scoremvab
Fina”y, the enhanced model coefficients for unvoiced ex% dB MNRU and the on|y two-model condition which rises
tation are obtained by applying PSSW as above this level is TFUNEX-PSSW, underlining the distineti

él(u)l(k) _ w(l)él(“)(k) (24) contribution of the unvoiced model f[o higher fidelity.
Furthermore, the analyzed unvoiced part matters because
fori=0,1,..., P — 1. “TFVEX” is better than “TFVEX Alone”. But it is paradoxical
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that “TFUVEX"” is rated slightly below “TFVEX Alone” as if excitation model, giving rise to a voiced-unvoiced excita-
the addition of the modeled unvoiced part would not improwén model. The system features a time-frequency nearly
the modeled voiced part. In fact, the modeled unvoiced parfect reconstruction (NPR) front-end for representatid
leaks into the voiced region while the analyzed unvoiced pdahe prediction residual that is transferred to a modulation
does not. As shown in Section V, this interference is attegtia domain within modulation segments of varying length based
by means of the PSSW emphasis, but, in Fig. 5, its effect is ot a concentration measure of the time-frequency distabut
so outstanding since “TFUVEX-PSSW” is rated only slightlffhese modulation segments are the seat for voiced-unvoiced
above “TFVEX Alone”. separation so that the voiced part and the unvoiced part
Besides, all test conditions provide wideband enhancememn¢ appropriately recombined all across the extent of the
since their Q values stand significantly above the 20 d@tch-synchronous time-frequency transform. The length o
equivalent narrowband version. the modulation segment also defines the time resolution for
The equivalent Q-value is the SNR in dB of the MNRUthe TFVEX model while the TFUNEX model has pitch-cycle
impaired signal with the same score as a given condition atighe resolution and lower amplitude resolution than TFVEX.
provides an inequivocal scale, with a universal meaning.[2330th model s have octave-band frequency resolution in the
Scores are known to be cultural and they may acquirehigh time resolution domain so that they are convenientig-co
universal meaning by their equivalent Q-values. Thereforigined into a compound TFUVEX unvoiced-voiced model with
by using MNRUs at different levels, it is possible to makepectral weighting. The TFUVEX model generates speech of
fair comparisons with other representation methods or tegiality rated above that of speech degraded by 25 dB MNRU
conditions. For instance, the adaptive multirate widebanvhile providing a compression of over ten times relative to
(AMR-WB) coder has been rated at an equivalent Q-valilee NPR time-frequency representation that results in &fow
of 24 dB when operating at 12.65 kbit/s [15]. rate parameter coding.
In order to compare the performance under the same condi-
tions, the AMR-WB coder has been applied to the same speech REFERENCES
signals at the rates of 12.65 kbit/s and 23.85 kbit/s by means o _ _ _ o
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